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Fine and gimply fine uniformnm

s paces

Véra Kﬁrkové - Pohlovd

In (P] 2. Prolik introduced the notion of a refine-
ment of a category and of fine and coarse objects with
respect to this refinement, These notions have served him
as a useful tool in his atudy of reflective and coreflec~
tive subcategories of the category of uniform spaces. In
Vilimovsky s paragraph [V] ibid a general theory of refi-
nements of a categary is developed and some special re-
sults valid in the category of uniform spaces are deri-
ved, We suppose that the reader is familiar with the no-
tions from Vilimovsky s paragraph (V1. We recall here on-
ly that for any modification 2 from any concrete cate-
gory X to its subcategory we can define a refinement,
say B , of X by putting
R(X,Y)m4ife Set (IXI,IYI), n, ofe K(X,¥)3 .

By IX| we denote the underlying set of an objéot X and
by Xy ¢ Y ——3 ~Y the modification of Y . Set

is the category of sets and mappings, Sat,, the catego-
ry of sets and bijective mappings. Similarly, Unif 18
the category of uniform spaces and uniformly continuous
mappings, Umaf, the category of uniform spaces and bi-
Jective uniformly odntinnons mappings. We use an abbrevi-

ated notation U (X, Y) 4instead of Unif (X,Y) .

In this note we turn our attention to the refine-

ments of Unif and of Um’f,' given, in the way desori-
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bed above, by an arbitrary given modification x of Unis

and it® restriction «, to Unie, . We study the inter-
relation of classes Rf of R -fine spaces and .'R: of
bijectively R ~fine apaces. |

A‘An easy reformuiation of definitions ylelds this des-
oription of olasses Rf, ﬂ: ‘

Rfa X 6 Unif® (#Ya Wnif) (Fe UK, LY) mud> & UCK, YT .
B w X6 Unif®, (#re Unit ) (IXIn IV 8 nhan))—p K&V +

Obviously 2f s :ﬁ: tor every modification n . The
oonverae inclusion fails to be generally true, as two ex-

amples given in this note iliustrate. Thus the prbblem a-

rises for whioh modifications x of WUmif :Rf, =27,
We atate one sufficient condition for a modification xn
@0 that :E: = @f « The suthor conjectures that this
oondition is far from being necessary, but no counterex-
emple is known. This leads to, maybe, a difficult prob-
lem, whether there exists a cardinal reflection A such
that R° = :H.: « This problem is partially discussed at
the end of our note and one interesting infinite combina-

torial problem is given there,

I.

_Let X Dbe the serodimensional moditication. i.e. for
every X< Umie? s X has for its base all the parti-
tiona Ve X .
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I.l, Lemma. If . 1is the zerodimensional modifica-

tion then every member of ﬁf is a discrete uniform spa-

Q8. .
Proof: For any X e .‘Rf denote by Jx' the subspa-

ce of £, (IXi) (see [P]) with the underlying set |3l =
=m{ec¥ 0& € é&d, xelIXi}  Define a mapping f: 1 —>
— IJXi by fyix)s 4% tor every x € |X\| . Since,

clearly xJy is an tndiascrete uniform space, it foll=-
owe that f, € % (X, K xJy) . Then f; € W(X,Iy) for Xe

< R'P . Hence X 1is a diascrete uniform apace.

A uniform space X ies called an atom if it is a mi-
nimal element in the aet of all non-discrete uniform spa-
ces with the underlying set (X| . ( X &Y if X 1is fi-

ner than Y .)

1.2, Lemma, Let & Vbe the z2erodimensional modifi-
cation and X be an atom with % X = A . Then X e.ﬂ.:.

Proof: Let mxX =xY for eume uniform space Y
with 1Y) = IX|. Since xX = X , it follows that Y £ X.
48 X s not dlecrete amd xY = X, ¥ 1is not disc-

rete, too, Thus Y = X .

I.3. Corellary. Let x be the zerodimemsional mo-
difscation then RF & RY .

Froof: By I.1 emd I.2 it suffices to find a serodi-
nedsicnal stom. As am ~xample of such a space, the follo-
wing atom descrided in [P - R] can serve: Let ¥ be an
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arbitrarily ochowen ultrafilter on the det @, , F e ¥ .

Fuy
Upmiimin2,meF) wilim, 0, m e wy = Fi v idim, 1)}, mea,-Fl.

Then 1U.,Fe ¥} forme a base for a zerodimensional uni-
form apace X with the underlying met iXimwg =2 For
the varifioation that X 1@ an atom see {F « R),

il.

‘Regall that a covering of a set is called star-fini-
te 1f each of its members meeta only a finite number of
the others, All star-finite uniform coverings of any uni-
form gpaca form a base for a uniformity (see (1)), It 1a
evident that thia change of. a uniformity ia functorial =
it is called the atar-finite modifioation,

If @ 18 a peeudometric on a aet X then we deno-
te by BS" (x,&) the open nall with center X and diame-
ter ¢ .,7359 (&) denoten tne covering {Bo(x,e),xeX}.
Sometimea we write snortly B(x,e) and JB(e) .

By f+ 1e denoted the precompact modification of
Undf | 1.6, X hae for its base all the finite uni-
form ooveringa of X .

P denotea the correaponding refinement of Unif ¢ epa-

gesn from ".P‘ are called proximally fine.

IX.1. Lemma, Let Y ©be an arbitrary uniform space,

Then every uniformly ecntinuous real-valued function on
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Y 1is bounded if and only if every star-finite uniform

covering of ¥ 4is finite.

Proof: To verify the sufficiency consider a uniform-
ly continuous real-valued function ¥ on Y , Evidently
F'4({B(m, 1Y,me Z3) (where Z denotes the set of all
integers) is a star-finite aniform covering of ¥ , Clear-
ly, if +-'(4B(m, 1),ma 2Z}) 1is finite then £ is boun-
ded.

To prove the necessity suppose that there exists an
infinite star-finite uniform covering 2L of Y . Choose
arbitrarily U e % . Put UL, =U{Uel,UNU +0F.
Since U is star-finite it follows that U, ={Use U ,
UNU, = 0} 18 infinite. Put uza'uw ¢ U, ,UNU, + 0F.
hgain, MU, = fUcU,,UNL, =0} 1g infinite, So, by
induction, we obtain an infinite covering {lUn,m Ew,l>
>U with U, NUy =0 whenever Im-mi> 14, ,A
countable covering indexed by integers with this proper-
ty 1s called linear, Every linear uniform covering of any
uniform space is realized by a real-valued function (see
(P - H)).

So we have a uniformly dont:.nuous function f on Y
with ¢ (4 Bm,)ymeZ)<flUpn,mew,?, Since
is bounded and { Uy ,m 6wy § 1linear, it follows that
fU,,m ew,} is finite. This is a contradiction.

II.2. Proposition, Let x be the star-finite modi-
fication, N be a disorete uniform epace with IN|= w,
and Y be an arbitrary proximelly fine uniform spaﬁo
with XY= fuY s ¥ . Then there exists X R: - ®f
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with 22X = oY x N .

Proof: If ¥ 18 proximally fine and xY = pY¥ then
Ye iR: . Namely, for every Y’ with 1V’i= 1Yl and oY=
= ny =y we have pY = n¥ ,and so Y=Y ,

Let X be a uniform espace with 1 Xl = |¥l containing
Just thosecoverings U of |Vl x w, ftor which there ex-
it a finite K € w, and U, € #Y = 2Y  such that, de-
noting U~/ iV Iix444=U, x{i} ,we nhave U e ¥ for eve-
ry i e v, and U, > U, for every 4 ¢ K . Clearly,

AX =xYxN=z=nYx N . We ashall verify that X e n‘: .

First, let us show that every Z with 1 Z1= 1Yilxaw,
and 2Z=#s) = N , has a base of some coverings of the
form %%i)a V: < 443, with 1V, e Y for every 1 €w, -
Z £nY »x N guarantees that {1Yi <41}, L ew, e Z .
Denote by Z; a eubspace of Z with (2;0l= 1Y)l < {41¥ -
Then, as tZ = ¥ >« N , we have xZ, = )Y x{13} ,Hence
Z,2Y=44it

Now, suppose that there exists some Z  with nZ=xX=
=mY>xN and Z ¥ X . Consider some ¥ e Z - X , Then
the set I of all i € w, such that VU, cannot be re-
fined by & uniform covering of Y is infinite. Let ¢
be a uniformly continuoue pseudomatric on Z with
5.’)(,('1) < ¥, PFor 1 el 1let X; be a maximal subset
of IYI such that @ ({x, 4>, {4 ,4>) > 4 for every
x, 6 X . Let We Z with wﬂ_:{%w&,‘ i3, W. e Y

for every 1 € w, such that % <7:2,,(%).81nce ,X.,; is

infinite, we can choose distinct points u:,.. ey X, € X.&
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for every 1 & I , Put W = {St (%,xj),...,suug._, x4 ),

v
UAW e W) (Fh =4, i)(x ¢ W)ii and
W\ W 448 U (g, fiVI= ta3)
Clearly, W 1is

star-finite and as W < W , Wwe have W e nZ . Since

{St'(w;_, x;;),. M ai,., it 1o a disjoint system of sets
for every + € I ,1t foliows that % & Y x N .This is

a contradiction,

Denote by o  the projection ar: Y| x'wo-——> Iyl. |
Then, clearly, & & U (X, nY) = A (X,Y) ;  hence

A& :Rf . So we established X € R: - R .

II.3. Corollary. Let n Be_the star-finite modi-
fication of Uni# , then R' & .Rf; .

Proof: By I1.2 and 11,1 it suffices to find some
- proximally finduniform space Y with pY 4 Y such
that every uniformly continuous real-valued function on
Y 1is bounded. Since every metric uniform space is pro-
ximally fine (see {I1), any non precompact metric space
Y such that every uniformly continuous real-valued
function on ¥ 1is bounded, will do. E.g. the subspace

of f,(w,) with the underlying set
{em, 0 ¢« ¢ &1, mewy,} (seelFl),
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III,

III.1, Proposition. Let » be a modification of
Unif fulfilling the following two conditions:
(a) If f: X—>Y 18 a projectively generating mapping
between arbitrary uniform spaces X ,Y then f: aX— xY

is projectively generating, too.

(b) X(XAnY) = pX AnY for arbitrary unifom spaces
X,Y with iXi= 1yl .,

f
Then :ﬁf = .'R«,' .

Proof:s Let X ¢ aj gnd feU(X,xZ) for some
Z .Denote by X’ the uniform space projectively genera-
ted by f:iXi—> Z . A8 f:nX'—> xZ is a projectively
generating mapping, we have X < x X’ . Hence 2 (XA 2 X)=,
=nX"AnX=nX.Since X eRf , it follows that X &
& XAxX andso feWU(CX,Z) .

For every infinite cardinal o« denote by 4™ the
modification of Umif such that n*X  contains all
the coveringe U ¢ X for which there exists a normal
sequence of ocoverings %, & X . with card U, < <
for avery m ew, and U > U, . It is kmown that un-
der the assumption of the Generalized Continuum Hypothe-
ois pX={Ue X (WX (V< Uk cord V' < )} for
every infinite cardinal o and every X e« Unis® . It 1
usual to write p instead of .115*" .

It is easy to check that every cardinal reflection

* fulfils the condition (a). The charaoterisation of

s
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the cardinal reflections fulfilling the ocondition (b) is

givo.n by the fol‘lowihg generalization of the known fact
On 1N . |

III,2, Proposition, (GCH) Let « be an‘ infinite
cardinal then L% (XA £%Y) = £%X A 7Y for ar-
bitrary uniform spaces X, Y with Xl = 1Yl 1e and on-
1y i 2%< «  for every cardinal 8 < o« .

Proof: Evidently £ CX A,p"Y) £ 45K A £7Y . To

prove the converse inequality consider some covering
QL:{u%,iem with < o« such that U =V AW ,
where VY'e X  and WeiW; ,53ecrie) ‘'with
o < c ,Then for every V € ¥ choose some mapping

QT — (3 such that VN W; = Uy, 3 for every

4 €7 . For a mapping ¢: » —> 3 put

V,=UiVe?, g, = o}, ¥ = 1V, ,9aSet (7, B)} Since
oa&d-"?:p{< o« , we have (under GCH) Ts p*X . Evi-
dently U > PaAw .

Now, assume that there ig some 3 < o« with 2"2
Za ,:l.e. there exists a one-to-one mapping #:ax —>
—>Set(f3,2),Denote by X the coarsest uniform space
with Xl = ¢ < 3 containing the covering {{iixf,vteéc ¥,
end by Y the coarsest uniform space with the same under-
lying set containing the covering {« x{3¥, 333 .
Pat
Uy =4€i, 3 deccxB,y(i)(3)= 03,1 =4<i, j o€ orm B,y (4)(5)= 43,

Then % ={U, U 3 e f°(XAY) = £5(XA £*Y) . Since ¥
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is one-to-one, it follows that U & XX A £*Y . Thus

XA RCY) £ 15X Ap%Y

Thug, many ocardinal reflections do not fulfil the
oondition (b). But nothing more is known. E.g., for =« =
= 4&1" W Hager‘ suggested this interesting problem: Deno-
te by N,M discrete uniform spaces with underlying

f

sets © w, . Does there exist X € :R., with IXl =

*, *1
= Wox &, and f#f X= N> qn M ? If there would ex-
ist such a space, then fR«: + R? eince evidently the
projection srs X — M is not uniformly continuous

but r e R .

This leads to the following infinite combinatorial
problem: Let a system of equivalences {@n, m e ,}
on the set w, be given such that for every distinoct x ,
¥ ¢ w, the set {m € wy,<X,4> & @, § 1is infinite, Do
there always exist equivalences {P,, m €w,} on oy
fulfilling the following three conditions:

1) e, 58, forevery mew,

(2) @, has only countably many classes for every
meow,

(3) there exists an uncountable X & @, suoch that for
every distinet x, 4 e X there is some m € w, with
X, 4> ¢ Fm 7
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