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Extension theory for Sobolev spaceson open sets with Lipschitz boundariesViktor I. BurenkovContentsIntroduction1. Notation2. Sobolev spaces3. General applications of extension theorems4. The one-dimensional case5. Classes of open sets6. Pasting local extensionsReferencesIntroductionThe main aim of this paper1 is to give a complete exposition of the extensiontheory for Sobolev spaces for the case of open sets with Lipschitz boundaries.Some results are known for more general open sets, and for some partic-ular values of the parameters necessary and su�cient conditions are knownensuring validity of the extension theorem.2 However, in that case the the-ory is not complete. On the other hand the case of open sets with Lipschitzboundaries is, and will be, the most important from the point of view ofapplications. For all these reasons we have restricted ourselves to this case.The extension theory consists of three interconnected parts. The �rst,main, part is the construction of an extension operatorT : W lp(
)!W lp(Rn ); (Tf)(x) = f(x); x 2 
; (1)1 This work was supported by the grants of European Association for Promotionof Fundamental Research (INTAS - 881 - 94) and Russian Foundation of BasicResearch (RFBR - 96 - 01 - 01380).2 At the recent conference \Functions spaces, partial di�erential equations andapplications" in Rostock I have promised to pay DM 1, 000 to a mathematicianwho would give a complete solution of the extension problem for all admissiblevalues of the parameters.



2 Viktor I. Burenkovwhich is linear and bounded, whereW lp(
) is the Sobolev space and 
 is anopen set with a Lipschitz boundary. The second part is the construction ofanalogous operators for the semi-normed Sobolev spaces and other variantsof Sobolev spaces. The third part is dedicated to sharp estimates of theminimal norm of extension operators, mentioned above.We present here only those proofs, which are related directly to theextension procedure, and omit the proofs of auxiliary statements (givingreferences, where to �nd them).The exposition is based mostly on the papers of the author, his pupilsand co-authors [6], [10], [21], [11], [12], [32], [16], [28], [14], [25], [26], [27].A brief information about other extension methods will also be given. Asfor further results, including the case of irregular open sets, for which anextension with preservation of smoothness is impossible, we shall give a verybrief survey and references.1 NotationWe shall use the following standard notation for sets:N { the set of all natural numbers,N0 { the set of all non-negative integers,R { the set of all real numbers,Nn0 = N0 � � � � � N0| {z }n�times { the set of multi-indices (n is the natural numberwhich will be used exclusively to denote the dimension),Rn = R � � � � � R| {z }n-times ,B(x; r) { the open ball of radius r > 0 centred at the point x 2 Rn .For � 2 Nn0 , � 6= 0, we shall write:D�f � @�1+���+�nf@x�11 � � � @x�nn { the (ordinary) derivative of the function f oforder � andD�wf � � @�1+���+�nf@x�11 � � �@x�nn �w { the weak derivative of the function f oforder �.For an open nonempty set 
 � Rn we shall denote by:C(
) { the space of functions continuous on 
,



Extension theory for Sobolev spaces 3C(
) { the Banach space of functions f uniformly continuous andbounded on 
 with the normkfkC(
) = supx2
 jf(x)j;Cl(
) (l 2 N) { the space of functions f de�ned on
 such that 8� 2 Nn0 ,where j�j = �1 + � � � + �n = l, and 8x 2 
 the derivatives (D�f)(x)exist and D�f 2 C(
),Cl(
) (l 2 N) { the Banach space of functions f 2 C(
) such that8� 2 Nn0 , where j�j = l, and 8x 2 
 the derivatives (D�f)(x) exist andD�f 2 C(
) with the normkfkCl(
) = kfkC(
) + Xj�j=l kD�fkC(
);C1(
) = 1Tl=0Cl(
) { the space of functions in�nitely continuouslydi�erentiable on 
,C10 (
) { the space of functions in C1(
) compactly supported in 
.Further notation will be introduced in the text.2 Sobolev spacesDe�nition 2.1. Let 
 � Rn be an open set, l 2 N, 1 � p � 1. Thefunction f belongs to the Sobolev space W lp(
) if f 2 Lp(
), if it has weakderivatives D�wf on 
 for all � 2 Nn0 satisfying j�j = l andkfkW lp(
) = kfkLp(
) + Xj�j=l kD�wfkLp(
) <1:Here kfkLp(
) = �Z
 jf jp dx�1=pfor 1 � p <1 and kfkL1(
) = ess supx2
 jf(x)j:



4 Viktor I. BurenkovRemark 2.1. In the one-dimensional case this de�nition is equivalent tothe following: the function f is equivalent to a function h on 
, for whichthe (ordinary) derivative h(l�1) is locally absolutely continuous on 
 andkfkW lp(
) = kfkLp(
) + kf (l)w kLp(
) = khkLp(
) + kh(l)kLp(
) <1:Moreover, if 
 = (a; b) is a �nite interval, the limits limx!a+h(x) andlimx!b�h(x) exist and one may de�ne h on [a; b] by setting h(a) and h(b)to be equal to those limits. Then h(s); s = 1; : : : ; l � 1, exist and h(l�1) isabsolutely continuous on [a; b]. This follows from the Taylor expansionh(s)(x) = l�s�1Xk=0 h(s+k)(x0)k! (x� x0)k+ 1(l � s� 1)! Z xx0 (x � u)l�s�1h(l)(u) du;where x; x0 2 (a; b) and s = 1; : : : ; l � 1. Since h(l) 2 Lp(a; b), henceh(l) 2 L1(a; b), the limits limx!a+h(x) and limx!b�h(x) exist. Consequently,the right derivatives h(s)(a) and the left derivatives h(s)(b) exist andh(s)(a) = limx!a+h(s)(x), h(s)(b) = limx!b�h(s)(x). Finally, since h(l�1)(x) =h(l�1)(x0) + R xx0 h(l)(u) du for all x; x0 2 [a; b] and h(l) 2 L1(a; b), it followsthat h(l�1) is absolutely continuous on [a; b].Other variants of Sobolev spaces V lp (
), W l;:::;lp (
) and V l;:::;lp (
) arealso of interest. They are characterized by the �niteness of the followingnorms: kfkV lp(
) = Xj�j�l kD�wfkLp(
);kfkW l;:::;lp (
) = kfkLp(
) + nXj=1



� @lf@xlj�w



Lp(
);kfkV l;:::;lp (
) = kfkLp(
) + nXj=1 lXm=1



�@mf@xmj �w



Lp(
)respectively.For a wide class of open sets with a quasi-resolved boundary (see de�ni-tion in Section 5) W lp(
) = V lp (
) and the norms k � kW lp(
) and k � kV lp (
)



Extension theory for Sobolev spaces 5are equivalent. Moreover, if 
 is a bounded domain with a quasi-resolvedboundary, these norms are equivalent tokfkLlp(
) = kfkL1(B) + Xj�j=l kD�wfkLp(
);where B � 
 is an arbitrary ball. (See, for example, [19], Chapter 4.)3De�nition 2.2. Let 
 be an open set, l 2 N, 1 � p � 1. The function fbelongs to the semi-normed Sobolev space wlp(
) if f 2 Lloc1 (
), if it hasweak derivatives D�wf on 
 for all � 2 Nn0 satisfying j � j= l andkfkwlp(
) = Xj�j=l kD�wfkLp(
) <1:Another variant of semi-normed Sobolev spaces wl;:::;lp (
) is also of in-terest. It is de�ned by the �niteness of the semi-normkfkwl;:::;lp (
) = nXj=1



� @lf@xlj�w



Lp(
):Remark 2.2. The initial idea of S. L. Sobolev was to study the spacesLlp(
), de�ned by the �niteness of the norm k � kLlp(
), hence to study theproperties of functions, for which only the Lp-norms of the weak derivativesof order l are �nite, without additional assumptions such as �niteness of theLp-norm of f in case of the spaceW lp(
) or �niteness of the Lp-norms of allweak derivatives of order less than l in case of the spaces V lp (
). One canverify that if Pj�j=l kD�wfkLp(
) < 1, then kfkL1(B) < 1 for each ballB � 
. Thus kfkL1(
) is added only to make the space Llp(
) a normedspace, which is so if 
 is a domain. Moreover in this case for di�erent ballsB � 
 the Llp-norms are equivalent. (If 
 is a disconnected open set, thenk � kLlp(
) is only a semi-norm.) Thus, the study of the spaces Llp(
) is\purely" related to the behaviour of the weak derivatives of order l.However, as was noted above, the spaces Llp(
) di�er from the spacesW lp(
) or V lp (
) only for \very irregular open sets". For this reason usuallythe spaces W lp(
) or V lp (
) are considered, just because their de�nition issimpler in the sense that an additional ball is not involved.3 The proof is direct and is based essentially on the one-dimensional inequalitiesfor the norms of intermediate derivatives. Application of extension theorems inthis case is not of interest because the statement is valid for such 
, for whichthe extension theorem could be invalid.



6 Viktor I. BurenkovStill more \pure" variant is the study of the spaces wlp(
). However,the fact that they are not normed spaces is sometimes inconvenient. On theother hand in some other cases it is useful to work with semi-norms k�kwlp(
)themselves.As for the spaces W l;:::;lp (
), V l;:::;lp (
) and wl;:::;lp (
), they are to a cer-tain extent anisotropic and are particular cases of purely anisotropic spacesW l1;:::;lnp (
), V l1;:::;lnp (
) and wl1 ;:::;lnp (
), whose de�nitions involve weakderivatives of di�erent orders lj with respect to di�erent variables xj .(They will not be considered in this article.) If Q is a parallelepipedwith the faces parallel to the coordinate planes, �nite or in�nite, thenW l;:::;lp (Q) = V l;:::;lp (Q) (= V lp (Q)) for 1 � p � 1 and W l;:::;lp (Q) = W lp(Q)for 1 < p < 1, and the appropriate norms are equivalent. The �rst state-ment easily follows from the one-dimensional inequalities for intermediatederivatives (see, for example, [19]), while the second one, which is muchmore complicated, follows from the Marcinkiewicz multiplier theorem (see,for example, [56]).If 
 is an arbitrary open set, then from the �rst statement it followsthat for 1 � p � 1, � 2 N0 satisfying j�j < l and4 for each � > 0,kD�wfkLp(
�) � c�kfkW l;:::;lp (
); (2)where c� > 0 is independent of f .In a continuation of this paper, for open sets 
 satisfying the conecondition (see de�nition in Section 5), it will be proved that W l;:::;lp (Q) =V l;:::;lp (Q) (= V lp (Q)) for 1 � p � 1 and W l;:::;lp (Q) = W lp(Q) for 1 <p <1, and the appropriate norms are equivalent. The proof will be basedon the fact, mentioned above, that for 
 = Rn these equalities are valid,and on the extension theorem for the spaces W l;:::;lp (
) for open sets witha Lipschitz boundary (see de�nition in Section 5).We also note that clearly W lp(
) � wlp(
) and W l;:::;lp (
) � wl;:::;lp (
).Moreover, locally these spaces coincide, i.e., for each open set G with com-pact closure in 
, W lp(
)���G= wlp(
)���G and W l;:::;lp (
)���G= wl;:::;lp (
)���G.In the continuation of this paper it will be proved that for 1 � p � 1for bounded open sets satisfying the cone condition, W lp(
) = wlp(
) andW l;:::;lp (
) = wl;:::;lp (
). (These equalities are equalities of the sets of func-tions; the equivalence of appropriate norms and semi-norms is impossible.)Again the proofs will be based on the extension theorems, now for the spaceswlp(
); wl;:::;lp (
) respectively, for open sets with a Lipschitz boundary.4 For � > 0, we denote 
� = fx 2 
 : dist(x; @
) � �g and 
� = Sx2
 B(x; �).



Extension theory for Sobolev spaces 7Finally, we recall that, due to the closedness of the weak di�erentiation,all considered spaces are complete: W lp(
); V lp (
);W l;:::;lp (
), V l;:::;lp (
) areBanach spaces5 and wlp(
), wl;:::;lp (
) are semi-Banach spaces.Remark 2.3. The �rst exposition of the theory of Sobolev spaces was givenby S. L. Sobolev himself in his book [60], later an extended exposition wasgiven in his other book [61].There are several books dedicated directly to di�erent aspects of the the-ory of Sobolev spaces: R.A. Adams [1], V.G. Maz'ya [48], A. Kufner [45],S. V. Uspenskii, G.V. Demidenko and V.G. Perepelkin [66], V. G. Maz'yaand S.V. Poborchii [53], V. I. Burenkov [19]. In some other books the the-ory of Sobolev spaces is included into a more general framework of thetheory of function spaces: S.M. Nikol'skii [56], O.V. Besov, V. P. Il'in andS.M. Nikol'skii [4], A. Kufner, O. John and S. Fu�c��k [46], E.M. Stein [63],H. Triebel [64], [65]. Moreover, in many other books, especially on the theoryof partial di�erential equations and functional analysis, there are chapterscontaining exposition of di�erent topics of the theory of Sobolev spaces,adjusted to the aims of those books (we do not name them here). Alsothroughout the years a number of survey papers were published, containingexposition of the results on the theory of Sobolev spaces. We name some ofthem: S. L. Sobolev and S.M. Nikol'skii [62], S.M. Nikol'skii [55], V. I. Bu-renkov [7], O.V. Besov, V. P. Il'in, L.D. Kudryavtsev, P. I. Lizorkin andS.M. Nikol'skii [3], S.K. Vodop'yanov, V.M. Gol'dshtein and Yu.G. Reshet-nyak [68], L.D. Kudryavtsev and S.M. Nikol'skii [44], V.G. Maz'ya [48].3 General applications of extension theoremsThe existence of a bounded extension operator (1) ensures that a numberof properties of the space W lp(Rn ) or W lp(G), where G is a ball or a cube,are inherited by the space W lp(
) (in the last case 
 � G). In this sectionwe shall prove and discuss a series of simple statements showing possibleapplications of di�erent variants of extension theorems. We start with thesimplest possible case.Lemma 3.1. Let l 2 N, � 2 Nn0 , j�j � l, 1 � p; q � 1. Suppose that8f 2W lp(Rn ) the inequalitykD�wfkLq(Rn) � c1kfkW lp(Rn); (3)5 As usual, saying a \Banach space", we ignore here the fact that the conditionkfk = 0 is equivalent to the condition f � 0 on 
 and not to the conditionf = 0 on 
.



8 Viktor I. Burenkovwhere c1 > 0 is independent of f , is valid. Let 
 � Rn be an open set suchthat there exists a bounded extension operator (1).Then there exists c2 > 0 such that 8f 2W lp(
),kD�wfkLq(
) � c2kfkW lp(
): (4)Proof. Since T is an extension operator, we havekD�wfkLq(
) � kD�w(Tf)kLq(Rn) � c1kTfkW lp(Rn)� c1kTkW lp(
)!W lp(Rn)kfkW lp(
) = c2kfkW lp(
):The above simple argument allows obtaining a more profound estimatefor the norm of an extension operator from below.For l; n 2 N; 1 � p � 1, let6Ml;n;p = f(�; q) : � 2 Nn0 ; j�j < l; 1 � q � 1 and (3) is validgand let C�(Rn ; n; l; �; p; q) and C�(
;n; l; �; p; q) be the sharp (minimalpossible) values of c1, c2 respectively.Lemma 3.2. Let l 2 N, � 2 Nn0 , j�j � l, 1 � p; q � 1. Suppose that
 � Rn is an open set and that inequality (4) holds.If inequality (3) does not hold, then a bounded extension operator (1)does not exist.If inequality (3) holds and there exists an extension operator (1), thenkTkW lp(
)!W lp(Rn) � sup(�;q)2Ml;n;p C�(
;n; l; �; p; q)C�(Rn ; n; l; �; p; q) :Proof. Since inequality (3) is valid with c1 = C�(Rn ; n; l; �; p; q), from theproof of Lemma 3.1 it follows thatkD�wfkLq(
) � C�(Rn ; n; l; �; p; q)kTkW lp(
)!W lp(Rn)kfkW lp(
):Hence, C�(
;n; l; �; p; q) � C�(Rn ; n; l; �; p; q)kTkW lp(
)!W lp(Rn);and the desired inequality follows.6 It is well known that (�; q) 2 Ml;n;p if, and only if, 1 � q � 1 if 1 � p � 1and j�j < l � n=p or p = 1 and j�j � l � n, 1 � q < 1 if 1 < p < 1 andj�j = l� n=p and 1 � q � pn=(n � pl) if 1 � p <1 and j�j > l� n=p.



Extension theory for Sobolev spaces 9Lemma 3.2 will be used in Section 4 for establishing sharp estimates forthe minimal norm of an extension operator.Next we note that, by the properties of the spaces Lq(
) and W lp(
),the class of open sets in Lemma 3.1 can be widened and, starting with opensets for which a bounded extension operator (1) exists, inequality (4) canbe proved for some open sets for which an extension operator (1) does notexist.Lemma 3.3. Let l 2 N, � 2 Nn0 , j�j � l, 1 � p; q � 1. Suppose thatinequality (3) is valid and let 
 = Ssk=1
k, where s 2 N or s =1 if p � qand s 2 N if q < p, and 
k are open sets such that in the case s = 1 themultiplicity of the covering f
kg1k=1 is �nite.Suppose that for each k = 1; s there exists a bounded extension operatorTk : W lp(
k)!W lp(Rn ). If s =1, let also supk2N kTkk <1.Then inequality (4) is also valid.Proof. By the properties of the weak derivatives D�wf exists on 
. Fur-thermore, if q < 1, then by (3) and Jensen's or H�older's inequality forsums,kD�wfkLq(
) � � sXk=1 Z
k jD�wf jq dx�1=q� � sXk=1 ZRn jD�w(Tkf)jq dx�1=q � c1� sXk=1 kTkfkqW lp(Rn)�1=q� c1M1� sXk=1 kTkfkpW lp(Rn)�1=p � c1M1� sXk=1 kTkkpkfkpW lp(
k)�1=p� c1M1 supk2N kTkk� sXk=1 kfkpW lp(
k)�1=p;where M1 = 1 if p � q and M1 = s1=q�1=p if q < p.Let { be the multiplicity of the covering f
kgsk=1. Then� sXk=1 kfkpW lp(
k)�1=p � ln� sXk=1 Z
k jf jp dx+ Xj�j=l sXk=1 Z
k jD�wf jp dx�1=p� ln{1=p�Z
 jf jp dx+ Xj�j=l Z
 jD�wf jp dx�1=p� ln{1=pkfkW lp(
);and the statement of the lemma follows.



10 Viktor I. BurenkovLemma 3.4. Let l 2 N, m 2 N0 , m < l, 1 � p; q � 1 and let 
 =Ssk=1
k, where s 2 N and 
k are bounded open sets for which there existbounded extension operators Tk :W lp(
k)!W lp(Rn ).Suppose that the embedding W lp(Q) � Lq(Q) is compact for each cubeQ, whose faces are parallel to the coordinate planes. Then the embeddingW lp(
) � Lq(
) is also compact.Proof. As in Lemma 3.3, it is enough to prove that the embeddingW lp(
k) � Wmq (
k) is compact for each k = 1; s. Let the cube Qk,whose faces are parallel to coordinate planes, be such that 
k � Qk,and IQk and I
k be the embedding operators, corresponding to the em-beddings W lp(Qk) � Wmq (Qk), W lp(
k) � Wmq (
k) respectively, i.e., say,IQk : W lp(Qk) ! Lq(Qk) and IQkf = f for f 2 W lp(Qk). In order to provethat the operator IQk is compact we note thatW lp(
) Tk�!W lp(Rn ) R1k�! W lp(Qk) IQk�! Lq(Qk) R2k�! Lq(
k);where R1k : W lp(Rn ) ! W lp(Qk) and R2k : Lq(Qk) ! Lq(
k) are therestriction operators. Thus,I
k = R2kIQkR1kTk:Since the operators Tk; R1k and R2k are bounded and the operator IQk iscompact, it follows that the operator I
k is compact.Next let us de�ne a variant of (p; l)-capacity. For an open set 
 � Rnwe put cp;l(
) = inffkfkpW lp(Rn) : f 2W lp(Rn ); f = 1on 
g:Lemma 3.5. Let 
 � Rn be an open set of �nite measure and let l 2 N,1 � p <1.Then for each extension operator (1),kTkW lp(
)!W lp(Rn) � � cp;l(
)meas
�1=p: (5)Proof. Sincecp;l(
) � kT (1)kpW lp(Rn) � kTkpW lp(
)!W lp(Rn)k1kpW lp(
);(5) follows.



Extension theory for Sobolev spaces 11Inequality (5) may be applied both for establishing estimates from abovefor (p; l)-capacity and for estimates from below for the norm of an extensionoperator. In [51], [52], [42] it was used for obtaining sharp estimates frombelow of the minimal norm of an extension operator.Lemma 3.6. Let l 2 N and let 
 = Ssk=1
k, where s 2 N or s = 1 and
k are open sets such that in the case s =1 the multiplicity of the coveringf
kg1k=1 is �nite and for each k = 1; s there exists a bounded extensionoperator Tk :W l;:::;lp (
k)!W l;:::;lp (Rn ). If s =1, let also supk2N kTkk <1.Then for 1 � p � 1 W l;:::;lp (
) = V l;:::;lp (
) and for 1 < p < 1W l;:::;lp (
) =W lp(
).Proof. Let 1 < p < 1, f 2 W l;:::;lp (
) and let � 2 Nn0 satisfy j�j = l. Bythe properties of weak derivatives D�wf exists on 
. Furthermore, since (seeSection 2) W l;:::;lp (Rn ) =W lp(Rn ) and the norms are equivalent, we havekD�wfkpLp(
) � sXk=1 Z
k jD�wf jp dx � sXk=1 ZRn jD�w(Tkf)jp dx�M1 sXk=1 kTkfkpW l;:::;lp (Rn) �M1 sXk=1 kTkkp kfkpW l;:::;lp (
k)�M1 supk=1;s kTkkp sXk=1 kfkpW l;:::;lp (
k)�M1(n+ 1)p�1 supk=1;s kTkkp� sXk=1 Z
k jfkjp dx+ nXj=1 sXk=1 Z
k ����� @lf@xlj�w����p dx��M2 { supk=1;s kTkkp�Z
 jf jp dx+ nXj=1 Z
 ����� @lf@xlj�w����p dx��M2{ supk=1;s kTkkpkfkpW l;:::;lp (
);where M1 > 0 and M2 =M1(n+ 1)p�1 depend only on n; l and p.Hence the second statement of the lemma follows. The �rst statement isproved in a similar way. (If p =1, then the proof is simpler and there is nonecessity to suppose in the case s =1 that the multiplicity of the coveringf
kg1k=1 is �nite.)Lemma 3.7. 1. Let l 2 N, 1 � p � 1 and let 
 = Ssk=1
k, where s 2 Nand 
k are bounded open sets such that for each k = 1; s and for some



12 Viktor I. Burenkov�k > 0 there exists an extension operator Tk : wlp(
k)! wlp((
k)�k ). ThenW lp(
) = wlp(
).2. The statement 1 is also valid if we replace wlp(�), W lp(�) by wl;:::;lp (�),W l;:::;lp (�) respectively.Proof. Let f 2 wlp(
). Since Tkf 2 wlp((
k)�k) and 
k � ((
k)�k )�k , by(2) we have f = Tkf 2 Lp(
k). Hence f 2 Lp(
) and the statement of thelemma follows.Next we give several examples showing the advantage of constructing ofan extension operator which is bounded both asT : Lp(
)! Lp(Rn ) and T :W lp(
)!W lp(Rn ): (6)First we note that from inequality (3), where 1 � p = q � 1 and � 2 Nn0satis�es j�j � l � 1, it follows that for all " > 0 and 8f 2W lp(Rn )kD�wfkLp(Rn) � c1"�j�j=(l�j�j)kfkLp(Rn) + " kfkwlp(Rn)and kD�wfkLp(Rn) � c3 kfk1�j�j=lLp(Rn) kfkj�j=lwlp(Rn);where c3 = c1�j�j=l1 � j�jl ��j�j=l�1� j�jl ��(1�j�j=l).Lemma 3.8. Let l 2 N, 1 � p � 1, � 2 Nn0 satisfy j�j � l � 1 and let
 � Rn be an open set such that there exists a bounded extension opera-tor (6). Then1) there exists c4 > 0 such that for all " > 0, 8f 2W lp(
),kD�wfkLp(
) � c4 "�j�j=(l�j�j)kfkLp(
) + "kfkW lp(
);2) for each "0 > 0 there exists c5 = c5("0) > 0 such that for all 0 < " � "0,8f 2W lp(
),kD�wfkLp(
) � c5 "�j�j=(l�j�j)kfkLp(
) + "kfkwlp(
);3) there exists c6 > 0 such that 8f 2 W lp(
)kD�wfkLp(
) � c6 kfk1�j�j=lLp(
) kfkj�j=lW lp(
):



Extension theory for Sobolev spaces 13Proof. Let kTk0 = kTkLp(
)!Lp(Rn) and kTkl = kTkW lp(
)!W lp(Rn).1) By (6) for all � > 0,kD�wfkLp(
) � kD�w(Tf)kLp(Rn)� c1�� j�jl�j�j kTfkLp(Rn) + �kTfkW lp(Rn)� c1�� j�jl�j�j kTk0 kfkLp(
) + �kTkl kfkW lp(
):Setting �kTkl = ", we obtain that for all " > 0,kD�wfkLp(
) � �c1kTk0kTkj�j=(l�j�j)l � "�j�j=(l�j�j)kfkLp(
) + "kfkW lp(
):2) Also for 0 < " � "0,kD�wfkLp(
) � �c1kTk0kTkj�j=(l�j�j)l "�j�j=(l�j�j) + "� kfkLp(
) + "kfkwlp(
)� �c1kTk0kTkj�j=(l�j�j)l + "l=(l�j�j)0 � "�j�j=(l�j�j)kfkLp(
) + "kfkwlp(
):3) Finally,kD�wfkLp(
) � kD�w(Tf)kLp(Rn) � c3kTfk1�j�j=lLp(Rn) kTfkj�j=lwlp(Rn)� c3kTk1�j�j=l0 kTkj�j=ll kfk1�j�j=lLp(
) kfkj�j=lW lp(
):Let us consider the K-functionalK(t; f; 
) = infg2W lp(
)�kgkLp(
) + tkf � gkW lp(
)�;where t > 0, l 2 N, 1 � p � 1 and 
 � Rn is an arbitrary open set.Let �Lp(
);W lp(
)��;q, where 0 < q < 1, 1 � � � 1, be an interpolationspace with the normkfk(Lp(
);W lp(
))�;q = �Z 10 (t�qK(t; f; 
))� dtt �1=�if 1 � � <1 andkfk(Lp(
);W lp(
))1;q = supt>0 (t�qK(t; f; 
));



14 Viktor I. Burenkovif � = 1. ((Lp(
);W lp(
))�;q is the closure of W lp(
) with respect to thisnorm.)Lemma 3.9. Let l 2 N, 1 � p � 1 and let 
 � Rn be an open set suchthat there exists a linear bounded extension operator (6).Then for all 0 < m < l, 1 � � � 1T : (Lp(
);W lp(
))�;m ! (Lp(Rn );W lp(Rn ))�;mand kTk(Lp(
);W lp(
))�;m!(Lp(Rn);W lp(Rn))�;m � max(kTk0; kTkl):Proof. Since the operator T is linear,K(t; T f;Rn) � kTgkLp(Rn) + t kTf � TgkW lp(Rn)= kTgkLp(Rn) + t kT (f � g)kW lp(Rn)� kTk0 kgkLp(
) + t kTkl kf � gkW lp(
)� max(kTk0; kTkl) (kgkLp(
) + t kf � gkW lp(
)):Hence, K(t; T f;Rn) � max( kTk0; kTkl )K(t; f; 
):Consequently,kTfk(Lp(Rn);W lp(Rn))�;m � max ( kTk0; kTkl ) kfk(Lp(
);W lp(
))�;m :It is well known (see, for example, [64]) that (Lp(Rn );W lp(Rn ))�;m, where1 � p; � � 1; 0 < m < l, coincides with the Nikol'skii-Besov space Bmp;�(Rn )de�ned by the �niteness of the normkfkBmp;�(Rn) = kfkLp(Rn) +�ZRn�k��hfkLp(Rn)jhjm �� dhjhjn�1=�;where � 2 N; � > m and ��hf is the di�erence of order � of the function fwith step h 2 Rn . If � = 1, then (RRn(�)� jhj�n) dh1=� should be replacedby suph2Rn;h 6=0(�):The de�nition is easily extended to open sets
 � Rn : one should replacek � kLp(Rn) by k � kLp((
)�jhj).



Extension theory for Sobolev spaces 15Lemma 3.10. Let m > 0, 1 � p; � � 1 and let 
 � Rn be an open setsuch that there exists a linear extension operator T which is bounded asT : Bmp;�(
) ! Bmp;�(Rn ) and, for some l 2 N, l > m, is bounded in thesense (6).Then (Lp(
);W lp(
))�;m = Bmp;�(
) and the norms are equivalent.Proof. 1. Let f 2W lp(
) and t > 0. Then for each g 2 W lp(Rn ),K(t; f; 
) � kgkLp(
) + t kf � gkW lp(
) � kgkLp(Rn) + t kTf � gkW lp(Rn):Hence, K(t; f; 
) � K(t; T f;Rn):Consequently, say for 1 � � <1,kfk(Lp(
);W lp(
))�;m = �Z 10 � t�mK(t; f; 
)�� dtt �1=�� �Z 10 � t�mK(t; T f;Rn)�� dtt �1=� = kTk(Lp(Rn);W lp(Rn))�;m� M1 kTfkBmp;�(Rn) � M1 kTkBmp;�(
)!Bmp;�(Rn)kfkBmp;�(
);where M1 > 0 is independent of f .2. On the other hand 8g 2W lp(
),kfkBmp;�(
) � kTfkBmp;�(Rn) �M2 kTfk(Lp(Rn);W lp(Rn))�;m=M2�Z 10 �t�mK(t; f;Rn)�� dtt �1=��M2max(kTk0; kTkl)�Z 10 �t�mK(t; f; 
)�� dtt �1=�=M2max(kTk0; kTkl) kfk(Lp(
);W lp(
))�;m ;where M2 > 0 is independent of f .Sometimes the following corollary of Lemma 3.10 is useful.Lemma 3.11. Let m > 0, l 2 N, l > m, 1 � p; � � 1 and let 
 � Rn bean open set such that there exists a linear extension operator T bounded insense (6).



16 Viktor I. BurenkovIf there exists a bounded linear extension operatorT1 : Bmp;�(
)! Bmp;�(Rn );then also T : Bmp;�(
)! Bmp;�(Rn )and is bounded.Proof. Let f 2W lp(
) � Bmp;�(
). Then by Lemmas 3.9, 3.10,kTfkBmp;�(Rn) �M1 kTfk(Lp(Rn);W lp(Rn))�;m�M1max(kTk0; kTkl) kfk(Lp(
);W lp(
))�;m �M2 kfkBlp;�(
);where M1;M2 are independent of f .Finally, we give some comments about applications of extension opera-tors which are bounded asT : Lp(
)! Lp(Rn ) and T : wlp(
)! wlp(Rn ): (7)First we note that if 
 is bounded or unbounded and such that for some�0 2 Nn0 satisfying j�0j = l � 1, kx�0kLp(
) <1, then operators T satisfy-ing (7) do not exist. Indeed, if it were so, then by the same argument as inthe proof of Lemma 3.8 one could prove thatkD�wfkLp(
) � c7 kfk1�j�j=lLp(
) kfkj�j=lwlp(
) ; (8)where c7 > 0 is independent of f . Taking f(x) = x�0 (by the above assump-tions x�0 2W lp(
)), we arrive to a contradiction.The analogue of Lemma 3.7 has the form:Lemma 3.12. Let l 2 N, 1 � p � 1, � 2 Nn0 satisfy j�j � l � 1 and let
 � Rn be an open set such that there exists a bounded extension opera-tor (7). Then1) there exists c8 > 0 such that for all " > 0, 8f 2W lp(
),kD�wfkLp(
) � c8 "�j�j=(l�j�j) kfkLp(
) + " kfkwlp(
);2) there exists c7 > 0 such that 8f 2 W lp(
) inequality (8) is valid.The proof is essentially the same as that of Lemma 3.8.



Extension theory for Sobolev spaces 174 The one-dimensional caseWe start with the simplest case of Sobolev spaces W lp(a; b), in which itis possible to give sharp two-sided estimates of the minimal norm of anextension operator T :W lp(a; b) �!W lp(�1;1).Lemma 4.1. Let �1 < a < b < c < 1. If f is de�ned on [a; c] andis absolutely continuous on [a; b] and [b; c], then f is absolutely continuouson [a; c].Proof. Given " > 0, there exists � > 0 such that for any �nite systemof disjoint intervals (�(1)i ; �(1)i ) � [a; b] and (�(2)i ; �(2)i ) � [b; c] satisfyingthe inequalities Pi (�(j)i � �(j)i ) < �; j = 1; 2, the inequalities Pi jf(�(j)i ) �f(�(j)i )j < "=2, j = 1; 2, hold. Now let (�i; �i) � [a; c] be a �nite systemof disjoint intervals satisfying Pi (�i � �i) < �. If one of them contains b,denote it by (��; ��) . ThenXi jf(�i)� f(�i)j � Xi: (�i;�i)�[a;b] jf(�i)� f(�i)j+ jf(��)� f(b)j+ jf(b)� f(��)j+ Xi: (�i;�i)�[b;c] jf(�i)� f(�i)j< ":(If there is no such interval (��; ��), then the summands jf(��) � f(��)jand jf(b)� f(��)j must be omitted.)Lemma 4.2. Let l 2 N, 1 � p � 1, �1 < a < b < c < 1, f 2 W lp(a; b)and g 2W lp(b; c). Then the pasted functionh = (f on (a; b);g on (b; c);belongs to W lp(a; c) if, and only if,f (s)w (b�) = g(s)w (b+); s = 0; 1; : : : ; l � 1; (9)where f (s)w (b�) and g(s)w (b+) are boundary values of f (s)w and g(s)w (see Re-mark 2:1).If (9) is satis�ed, thenkhkW lp(a;c) � kfkW lp(a;b) + kgjjW lp(b;c): (10)



18 Viktor I. BurenkovProof. Let f1 and g1 be the functions, equivalent to f and g, whose deriva-tives f (l�1)1 , g(l�1)1 exist and are absolutely continuous on [a; b], [b; c] respec-tively. Then f (s)1 (b) = f (s)w (b�) and g(s)1 (b) = g(s)w (b+); s = 0; 1; : : : ; l � 1.If (9) is satis�ed, then the functionh1 = (f1 on [a; b];g1 on [b; c];is such that h(l�1)1 exists and is absolutely continuous on [a; b]. Consequently,the weak derivative h(l)w exists on (a; b) andh(l)w = (f (l)w on (a; b);g(l)w on (b; c):Hence, inequality (10) follows.If (9) is not satis�ed, then for any function h2 de�ned on [a; b], coincidingwith f1 on [a; b) and with g1 on (b; c], the ordinary derivative h(l�1)2 (b) doesnot exist. Hence, the weak derivative h(l�1)w does not exist on (a; c) and his not in W (l)p (a; c).Lemma 4.3. Let l 2 N, 1 � p � 1. Then there exists a linear extensionoperator T :W lp(�1; 0) �!W lp(�1;1), such thatkTkW lp(�1;0)!W lp(�1;1) � 8l: (11)Idea of the proof. If l = 1, it is enough to consider the re
ection operator,i.e., to set (T1f)(x) = f(�x); x > 0: (12)If l � 2, de�ne (T2f)(x) for x > 0 as a linear combination of re
ection anddilations: (T2f)(x) = lXk=1�k(T1f)(�kx) = lXk=1�kf(��kx); (13)where �k > 0 and �k are chosen in such a way that(T2f)(s)w (0+) = f (s)w (0�); s = 0; 1; : : : ; l � 1: (14)Verify that kT2kW lp(�1;0)�!W lp(�1;1) < 1 and choose �k = k=l, k =1; : : : ; l, in order to prove (11).



Extension theory for Sobolev spaces 19Proof. Equalities (14) are equivalent tolXk=1�k(��k)s = 1; s = 0; 1; : : : ; l � 1:Consequently, by Cramer's rule and the formula for Van-der-Monde's de-terminant, �k = Q1�i<j�l(�i � �j) j�k=�1Q1�i<j�l(�i � �j)= Q1�i<k(�i + 1) Qk<j�l(�1� �j)Q1�i<k(�i � �j) Qk<j�l(�k � �j)= Y1�j�l;j 6=k 1 + �j�j � �k ; k = 1; : : : ; l: (15)
If �k = k=l, k = 1; : : : ; l, then�k = (�1)k�1kl + k �2ll �� lk�and j�kj � 4l kl � lk�:Therefore, setting y = ��kx, we havekT2fkW lp(0;1) = kT2fkLp(0;1) + k(T2f)(l)w kLp(0;1)� � lXk=1 j�k j��1=pk �kfkLp(�1;0) +� lXk=1 j�kj�l�1=pk �kf (l)w kLp(�1;0)� � lXk=1 j�k j��1=pk �kfkW lp(�1;0) � 4l� lXk=1 �kl �1�1=p� lk��kfkW lp(�1;0)� (8l � 1)kfkW lp(�1;0):Hence, inequality (11) follows if we take into account Lemma 4.2.



20 Viktor I. BurenkovRemark 4.1. It follows from the above proof that the inequalitieskT2kwmp (�1;0)!wmp (�1;1) � 8l; m 2 N0 ; m � l;also hold.Corollary 4.1. Let l 2 N, 1 � p � 1, �1 < a < b < 1. Then thereexists a linear extension operator T :W lp(a; b) �!W lp(2a� b; 2b� a), suchthat kTkW lp(a;b)!W lp(2a�b;2b�a) � 2 � 8l: (16)Idea of the proof. De�ne(T3f)(x) =8>>>>><>>>>>: lPk=1�kf(a+ �k(a� x)) for x 2 (2a� b; a);f(x) for x 2 (a; b);lPk=1�kf(b+ �k(b� x)) for x 2 (b; 2b� a); (17)where �k and �k are the same as in (13), observe that T3f is de�ned on(2a� b; 2b� a) since 0 < �k � 1, and apply the proof of Lemma 4.3.Corollary 4.2. Let l 2 N, 1 � p � 1, �1 < a < b < 1. Then thereexists a linear extension operator T :W lp(a; b) �!W lp(a�1; b+1) such thatkTkW lp(a;b)!W lp(a�1;b+1) � 2 � 8l�1 + (b� a)�l+1=p0�: (18)Proof. Let � = minf1; b� ag and de�ne(T4f)(x) =8>>>>><>>>>>: lPk=1�k;�f(a+ ��k(a� x)) for x 2 (a� 1; a);f(x) for x 2 (a; b);lPk=1�k;�f(b+ ��k(b� x)) for x 2 (b; b+ 1); (19)where �k are the same as in (17) and �k;� are such that lPk=1�k;�(���k)s = 1,s = 0; : : : ; l � 1. Since by (14) j�k;� j � (b � a)�l+1j�kj, applying the proofof Lemma 4.3 one arrives at (18).



Extension theory for Sobolev spaces 21In order to estimate the norm of an extension operator T :W lp(�1; 0)!W lp(�1;1) from below we prove the following statement, which reducesthis problem to a certain type of extremal boundary-value problems.For given a0; : : : ; al�1 2 R letG+p;l(a0; : : : ; al�1) = inff2W lp(0;1)f (k)w (0+)=ak; k=0;:::;l�1 kfkW lp(0;1):The quantity G�p;l(a0; : : : ; al�1) is de�ned in a similar way with (�1; 0)replacing (0;1). LetQp;l = supja0j+���+jal�1j>0 G+p;l(a0; a1; : : : ; al�1)G�p;l(a0; a1; : : : ; al�1)= supja0j+���+jal�1j>0 G+p;l(a0; a1; : : : ; al�1)G+p;l(a0;�a1; : : : ; (�1)l�1al�1) : (20)The latter equality follows if the argument x is replaced by �x in the de�-nition of G�p;l. Moreover, it follows from (20) that for 1 � p � 1,Qp;l � 1; l 2 N; Qp;1 = 1: (21)Lemma 4.4. Let l 2 N, 1 � p � 1. Then�1 +Qpp;l�1=p � infT kTkW lp(�1;0)!W lp(�1;1) � 1 +Qp;l: (22)(If p =1, then (1 +Qpp;l)1=p must be replaced by Q1;l.)Idea of the proof. Apply the inequality�kfkpW lp(�1;0) + kTfkpW lp(0;1)�1=p� kTfkW lp(�1;1) � kfkW lp(�1;0) + kTfkW lp(0;1): (23)In order to prove the �rst inequality (22) apply also the inequalitykTfkW lp(0;1) � G+p;l(a0; : : : ; al�1); (24)which, by the de�nition of G+p;l, holds for all a0; : : : ; al�1 and for each ex-tension operator T . In order to prove the second inequality (22) de�ne,



22 Viktor I. Burenkov8" > 0, the extension operator T" setting T"f = g" for x 2 (0;1), whereg" 2 W lp(0;1) is any function, which is such that g(k)";w(0+) = f (k)w (0�),k = 0; : : : ; l� 1, andkg"kW lp(0;1) � G+p;l(f(0�); : : : ; f (l�1)w (0�)) + " kfkW lp(�1;0): (25)Proof. 1. The second inequality in (23) is trivial sincekhkLp(�1;1) � khkLp(�1;0) + khkLp(0;1):The �rst inequality in (23) follows from Minkowski's inequality for �nitesums becausekhkW lp(�1;1) = �khkpLp(�1;0) + khkpLp(0;1)�1=p+ �kh(l)w kpLp(�1;0) + kh(l)w kpLp(0;1)�1=p� ��khkLp(�1;0) + kh(l)w kLp(�1;0)�p+ �khkLp(0;1) + kh(l)w kLp(0;1)�p�1=p= �khkpW lp(�1;0) + khkpW lp(0;1)�1=p:2. It follows from (23) and (24) that for each a0; : : : ; al�1 2 R such thatja0j+ � � �+ jal�1j > 0,kTkW lp(�1;0)!W lp(�1;1) = supf2W lp(0;1);f�0 kTfkW lp(�1;1)kfkW lp(�1;0)� �1 + supf2W lp(�1;0)f (k)w (0�)=ak;k=0;:::;l�1�kTfkW lp(0;1)kfkW lp(�1;0)�p�1=p� �1 + �G+p;l(a0; : : : ; al�1)�p supf2W lp(�1;0)f (k)w (0�)=ak; k=0;:::;l�1 1kfkpW lp(�1;0)�1=p= �1 +�G+p;l(a0; : : : ; al�1)G�p;l(a0; : : : ; al�1 �p�1=p;and we arrive at the �rst inequality in (22).



Extension theory for Sobolev spaces 233. Given " > 0, by (23) and (26) we havekT"k � 1 + supf2W lp(�1;0);f�0 kg"kW lp(0;1)kfkW lp(�1;0)� 1 + "+ supa0;:::;al�12R:ja0j+���+jal�1j>0 supf2W lp(�1;0)f (k)w (0�)=ak; k=0;:::;l�1 G+p;l(a0; : : : ; al�1)kfkW lp(�1;0)= 1 +Qp;l + "and the second inequality in (22) follows.Corollary 4.3. Let 1 � p � 1. TheninfT kTkW 1p (�1;0)!W 1p (�1;1) = 21=p:Proof. By (22) and (21), kTkW lp(�1;0)!W lp(�1;1) � 21=p for each extensionoperator T . On the other hand it is clear that for the extension operator T1de�ned by (12), kT1kW lp(�1;0)!W lp(�1;1) = 21=p.Lemma 4.5. Let l 2 N, 1 � p � 1 and f 2 W lp(0;1). ThenkfkW lp(0;1) � 



 l�1Xk=0 f (k)(0+)k! xk



Lp(0;(l!)1=l) (26)Proof. Let f 2W lp(0;1). Then for almost every x 2 (0;1)f(x) = l�1Xk=0 f (k)w (0+)xkk! + 1(l � 1)! Z x0 (x� u)l�1 f (l)w (u) du;where the f (k)w (0+); k = 0; 1; : : : ; l� 1, are the boundary values of the weakderivatives f (k)w . (See Remark 2.1.) Hence, by the triangle inequality for eacha > 0,



 l�1Xk=0 f (k)w (0+)xkk! 



Lp(0;a) � kfkLp(0;a)+ 1(l � 1)! 



Z x0 (x� u)l�1f (l)w (u) du 



Lp(0;a):



24 Viktor I. BurenkovBy H�older's inequality,



Z x0 (x� u)l�1 f (l)w (u) du 



Lp(0;a)� 



� x(l�1)p0+1(l � 1)p0 + 1�1=p0 kf (l)w kLp(0;x)



Lp(0;a)� ((l � 1)p0 + 1)�1=p0kxl�1=pkLp(0;a)kf (l)w kLp(0;a)= al(lp)�1=p((l � 1)p0 + 1)�1=p0kf (l)w kLp(0;a) � all kf (l)w kLp(0;a) :Consequently,



 l�1Xk=0 f (k)w (0+)xkk! 



Lp(0;a) � kfkLp(0;a) + all! kf (l)w kLp(0;a):Setting a = (l!)1=l, we get (26).Corollary 4.4. For all l 2 N, 1 � p �1, a0; : : : ; al�1 2 R,G+p;l(a0; : : : ; al�1) � 



 l�1Xk=0 akk! xk



Lp(0;(l!)1=l): (27)Lemma 4.6. For all l 2 N, 1 � p � 1 and every extension operatorT :W lp(�1; 0)!W lp(�1;1),kTkW lp(�1;0)!W lp(�1;1) � 0:3 � 2ll�1=(2p): (28)Proof. In view of Corollary 4.3 it is enough to consider the case l � 2. Weset fl(x) = (0 for �1 < x � ��a;(x+ �a)l for � �a � x � 0;where a = (l!)1=l and � = (pl + 1)1=(pl). With this choice of a and �,kflkW lp(�1;0) = (�a)l+1=p(pl + 1)1=p + l!(�a)1=p = 2 (�a)l+1=p(pl + 1)1=p :



Extension theory for Sobolev spaces 25Since l�1Xk=0 f (k)l (0)k! xk = (x+ �a)l � xl � (1� (1 + �)�l)(x+ �a)l� (1� 2�l)(x + �a)l;by (20) and (27) we haveQp;l � G+p;l(fl(0); : : : ; f (l�1)l (0))kflkW lp(�1;0) � 



 l�1Xk=0 f (k)l (0)xkk! 



Lp(0;a)kflkW lp(�1;0)� (1� 2�l)k(x+ �a)lkLp(0;a)kflkW lp(�1;0) = 1� 2�l2 ��1 + 1��pl+1 � 1�1=p= 1� 2�l2 �(1 + (pl + 1)� 1pl )pl+1 � 1�1=p= 2l � 12 l�1=(2p)p�1=(2p)�2�plppl�(1 + (pl + 1)� 1pl )pl+1 � 1��1=p� 2�l � 12 l�1=(2p)p�1=(2p)�1=p;where � = minx�2 '(x) and for x > 0,'(x) = 2�xpx��1 + (1 + x)�1=x�1+x � 1�:One can prove that � = '(2) > 1:03396 and '(x) ! 2 as x! +1. HenceQp;l � 2�l � 12 l�1=(2p)p�1=(2p) � 2�l � 12 l�1=2pe�1=(2e)� 0:4 � (2l � 1)l�1=(2p) � 0:3 � 2ll�1=(2p)and by (21) inequality (27) follows.Remark 4.2. Estimate (27) is slightly better than in [19], p. 255, and [27].Lemma 4.7. Let l 2 N, �1 < a < b < 1, " > 0. Then there existsa \cap-shaped" function � 2 C10 (R) such that 0 � � � 1, � = 1 on (a; b),supp � � (a� "; b+ ") andj�(k)(x)j � (4l)k"�k; x 2 R; k = 0; : : : ; l: (29)



26 Viktor I. BurenkovIdea of the proof. Set� = e! 
"4(l+
) � ! "2(l+
) � � � � � ! "2(l+
)| {z }l-times ��(a� "2 ;b+ "2 ); (30)where �(a� "2 ;b+ "2 ) is the characteristic function of the interval (a� "2 ; b+ "2 ),!(x) = 1�jxj if jxj � 1, !(x) = 0 if jxj > 1, e! is any non-negative in�nitelydi�erentiable kernel of molli�cation7 and 
 is a su�ciently small positivenumber. Apply Young's inequality and the equality

�! "2(l+
) � �(a� "2 ;b+ "2 )�0

L1(R) = k! "2(l+
) kL1(R):(One can �nd a detailed proof in [26] or [19] (Chapter 6).)Corollary 4.5. In the one-dimensional case 8l 2 N there exists a non-negative in�nitely di�erentiable kernel of molli�cation � such thatj�(k)(x)j � (4l)k; x 2 R; k = 0; : : : ; l:Proof. De�ne � by (30), where a = b = 0 and " = 1, and apply the equalitykf � gkL1(R) = kfkL1(R) � kgkL1(R) for non-negative f; g 2 L1(R).Lemma 4.8. There exists c2 > 0 such that for all l;m 2 N, m < l,1 � p; q � 1, �1 < a < b <1 and 8f 2W lp(a; b),kf (m)w kLq(a;b) � cl2 (b� a)1=q�1=p�� lb� a�m kfkLp(a;b)+ �b� al �l�m kf (l)w kLp(a;b)�: (31)The proof can be found in [19] (Chapters 3, 6).Corollary 4.6. If, in addition to the assumptions of Lemma 4:8, b�a � 1,then kf (m)w kLq(a;b) � c2l lm (b� a)�m+1=q�1=p kfkW lp(a;b):If, in addition to the assumptions of Lemma 4:8, b� a � 1 and q � p, thenkf (m)w kLq(a;b) � 21=q c2l lm kfkW lp(a;b): (32)7 I.e., e! 2 C10 (
), supp e! � B(0; 1) and RRn e! dx = 1.



Extension theory for Sobolev spaces 27Lemma 4.9. Let l 2 N, 1 � p � 1, �1 < a < b < 1, b � a � 1. Thereexists a linear operator T :W lp(a; b)!W lp(�1;1), such thatkTkW lp(a;b)!W lp(�1;1) � c3l ll(b� a)l�1=p0 ; (33)where c3 is a constant greater than 1.Idea of the proof. Consider the operator�T5f�(x) = �T4f�(x) �(x); x 2 R;where � is the function constructed in Lemma 4.7 for " = 1 and T4 isde�ned by (19), assuming that (T5f)(x) = 0 for x =2 (a�1; b+1), and applyCorollary 4.6.Proof. It follows by the Leibniz formula, (29), (32) and (18) thatkT5fkW lp(�1;1) = k�T4fkLp(a�1;b+1) + k(�T4f)(l)w kLp(a�1;b+1)� kT4fkLp(a�1;b+1) + lXm=0� lm� k�(l�m)kL1(�1;1) k(T4f)(l)w kLp(a�1;b+1)� kT4fkLp(a�1;b+1) +� lXm=0� lm�(4l)l�m(2c2)llm� kT4fkW lp(a�1;b+1)� �1 + (16 c2 l)l� kT4fkW lp(a�1;b+1)� 4 �1 + (16 c2 l)l� 8l (b� a)�l+1=p0 kfkW lp(a;b)� cl3 ll (b� a)�l+1=p0 kfkW lp(a;b) ;where c3 = 32 (1 + 16c2). Hence we obtain (33).Lemma 4.10. Let l 2 N, 1 � p � 1, �1 < a < b <1, b� a � 1. Thereexists a linear extension operator T :W lp(a; b)!W lp(�1;1) such thatkTkW lp(a;b)!W lp(�1;1) � cl4�1 + ll(b� a)l�1=p0 �; (34)where c4 is a constant greater than 1.Idea of the proof. Consider the operator(T6f)(x) = (T3f)(x) �(x);where � is the function constructed in Lemma 4.7 for " = b � a and T3 isde�ned by (17), and apply Lemma 4.8.



28 Viktor I. BurenkovProof. It follows by the Leibniz formula, (29), (31) and (16) thatkT6fkW lp(�1;1) = k�T3fkLp(2a�b;2b�a) + k(�T3f)(l)w kLp(2a�b;2b�a)� kT3fkLp(2a�b;2b�a)+ lXm=0� lm� k�(l�m)kL1(�1;1)k(T3f)(m)w kLp(2a�b;2b�a)� kT3fkLp(2a�b;2b�a)+ lXm=0� lm�(4l)l�m(b� a)m�l c2m�� lb� a�m kT3fkLp(2a�b;2b�a)+�b� al �l�m k(T3f)(l)w kLp(2a�b;2b�a)�� kT3fkLp(2a�b;2b�a)+ (4l)l� lXm=0� lm�c2m� (b� a)�l kT3fkLp(2a�b;2b�a)+ 4l lXm=0� lm� cm2 k(T3f)(l)w kLp(2a�b;2b�a)� �1 + (4 (1 + c2)�l �1 + ll(b� a)�l�kT3fkW lp(2a�b;2b�a)� 2 �1 + (4 (1 + c2)�l 8l �1 + ll(b� a)�l�kfkW lp(a;b)� cl4 �1 + ll(b� a)�l�kfkW lp(a;b) � cl4 �1 + ll(b� a)�l+1=p0� kfkW lp(a;b) ;where c4 = 16 (1 + 4 (1 + c2)). Hence we obtain (34).Remark 4.3. It follows from the proofs of Lemmas 4.9 and 4.10 that forall �1 < a < b <1 there exists an extension operator T such thatkTkWmp (a;b)!Wmp (�1;1) � cl5�1 + mm(b� a)m�1=p0 �; m 2 N0 ; m � l;where c5 is a constant greater than 1.Now we consider estimates from below for the minimal norm of an ex-tension operator.



Extension theory for Sobolev spaces 29Lemma 4.11. Let l 2 N, 1 � p � 1, 1 < a < b < 1. Then for everyextension operator T :W lp(a; b)!W lp(�1;1),kTkW lp(a;b)!W lp(�1;1) � 18pl�4e�l ll (b� a)�l+1=p0 : (35)Remark 4.4. We shall discuss two proofs of Lemma 4.11. The �rst of themis a direct one: as in the proof of Lemma 4.6 it is based on the choice ofa function f 2W lp(a; b), which is the \worst" for extension. The second oneis based on Lemma 3.2. In both proofs the polynomials Ql�1;p of degree l�1closest to zero in Lp(0; 1) are involved, i.e., Ql�1;p = xl�1+al�2xl�2+� � �+a0andkQl�1;pkLp(0;1) = infb0;:::;bl�22R kxl�1 + bl�2xl�2 + � � �+ b0kLp(0;1):We recall that Ql�1;1(x) = 2�l+1Rl�1(2x�1), where Rm is the Chebyshevpolynomial of the �rst type: Rm(x) = 2�m+1 cos(m arccosx). Moreover,kQl�1;pkLp(0;1) � kQl�1;1kLp(0;1) � kQl�1;1kL1(0;1) = 8 � 4�l: (36)Idea of the �rst proof of Lemma 4:11. In the inequalitykTk = kTkW lp(a;b)!W lp(�1;1) � kTfkWp(�1;1)kfkW lp(a;b)set f(x) = (b� a)l�1(l � 1)! Ql�1;p�x� ab� a�; (37)apply the following corollary of the Kolmogorov-Stein inequalitykf (m)w kLp(�1;1) � �2 kfk1�m=lLp(�1;1)kf (l)w km=lLp(�1;1); (38)where 0 < m < l and 1 � p � 1, and the relationinfh2W 1p (�1;a)h(a�)=1 khkW 1p (�1;a) � 1:



30 Viktor I. BurenkovThe second proof of Lemma 4:11. By Lemma 3.2, for every extension oper-ator T :W lp(a; b)!W lp(�1;1),kTk � kTkW lp(a;b)!W lp(�1;1) � C�((a; b); p;1; l; l� 1)C�((�1;1); p;1; l; l� 1) :It follows from (3), where 
 = (a; b); q = 1; � = l � 1 and f is de�nedby (37), and from (36) thatC�((a; b);p;1; l; l� 1) � k1kL1(a;b)(b�a)l�1(l�1)! 


Ql�1;p �x�ab�a�


Lp(a;b)= (l � 1)! (b� a)�l+1=p0kQl�1;pkLp(0;1) � 18 4l(l � 1)! (b� a)�l+1=p0 :On the other hand, C�((�1;1); p;1; l; l � 1) � p2�. (This follows(see [19], p.134) by inequality (38).) Hence, applying Stirling's formula, weget kTk � 4l�1(l � 1)!2p2� (b� a)�l+1=p0 � 18pl �4e�l ll (b� a)�l+1=p0 :Finally, we give a formulation of the main result of Section 4.Theorem 4.1. There exist c6; c7 > 0 such that for all l 2 N, 1 � p � 1and �1 � a < b �1,cl6� 1 + ll(b� a)l�1=p0 � � infT kTkW lp(a;b)!W lp(�1;1)� cl7� 1 + ll(b� a)l�1=p0 �: (39)Proof. If b � a = 1, then (39) follows from (11) and (28). If b � a < 1,then (39) follows from (33), (34) and (35).5 Classes of open setsWe say that a domain H � Rn is an elementary domain with a resolvedboundary with the parameters d, D, 0 < d <1, 0 < D �1 ifH = fx 2 Rn : an < xn < '(�x); �x 2Wg; (40)



Extension theory for Sobolev spaces 31where8 diamH � D, x = (�x; xn), �x = (x1; : : : ; xn�1), W = f�x 2 Rn�1 :ai < xi < bi, i = 1; : : : ; n� 1g; �1 � ai < bi � 1, andan + d < '(�x); �x 2W: (41)If, in addition, ' 2 C(W ), or ' 2 Cl(W ) for some l 2 N andkD�'kC(W ) � M if 1 � j�j � l where 0 � M < 1, or ' satis�es theLipschitz conditionj'(�x)� '(�y)j � M j�x� �yj; �x; �y 2 W; (42)then we say that H is an elementary domain with a continuous boundarywith the parameters d, D, with a Cl-boundary with the parameters d, D,M , or with a Lipschitz boundary with the parameters d, D, M respectively.Moreover, we say that an open set 
 � Rn has a resolved boundary withthe parameters d, 0 < d <1, D, 0 < D � 1 and { 2 N if there exist openparallelepipeds Vj ; j = 1; s, where s 2 N for bounded 
 and s = 1 forunbounded 
, such that1) (Vj)d \
 6= ; and diamVj � D,2) 
 � sSj=1(Vj)d,3) for each ball B the number of Vj intersecting B is �nite and the multi-plicity of the covering fVjgsj=1 does not exceed {,4) there exist rotations �j ; j = 1; s, such that�j(Vj) = fx 2 Rn : aij < xi < bij ; i = 1; : : : ; ngand �j(
 \ Vj) = fx 2 Rn : anj < xn < 'j(�x); �x 2Wjg;where �x = (x1; : : : ; xn�1),Wj = f�x 2 Rn�1 : aij < xi < bij , i = 1; : : : ; n� 1g,and anj + d < 'j(�x) < bnj � d; �x 2 Wj ; (43)if Vj \ @
 6= ;. (If Vj � 
, then 'j(�x) � bnj and the left inequality issatis�ed since bnj � anj � 2 d:)We note that �j(
 \ Vj) and, if Vj \ @
 6= ;, also ��j ((c
) \ Vj) areelementary domains with a resolved boundary with the parameters d, D,where ��j (x) = (�j;1(x); : : : ; �j;n�1(x);��j;n(x)).8 One can verify that the set H de�ned by (40) is a domain if, and only if, thefunction ' is lower semicontinuous on W .



32 Viktor I. BurenkovIf an open set 
 � Rn has a resolved boundary with the parametersd, D, { and, in addition, for some l 2 N all functions 'j 2 Cl(W j) andkD�'jkC(W j) � M if 1 � j�j � l, where 0 � M < 1 and is independentof j, or all functions 'j satisfy the Lipschitz condition with the same con-stant M , then we say that 
 has a Cl-boundary (brie
y @
 2 Cl) with theparameters d, D, {, M , or a Lipschitz boundary (brie
y @
 2 Lip 1) withthe parameters d, D, {, M respectively.If all functions 'j are continuous on W , we say that 
 has a continuousboundary with the parameters d, D, {.Finally, we say that an open set 
 � Rn has a quasi-resolved (quasi-continuous) boundary with the parameters d; D; { if 
 = Ssk=1
k, wheres 2 N or s = 1, and 
k, k = 1; s, are open sets, which have a resolved(continuous) boundary with the parameters d, D, {, and the multiplicity ofthe covering f
kgsk=1 does not exceed {.We call the set Vx � Vx;B = Sy2B(x; y) a conic body with the vertex xconstructed on the ball B (if x 2 B, then Vx = B). A domain 
 star-shapedwith respect to a ball B can be equivalently de�ned in the following way:8x 2 
 the conic body Vx � 
.Let us consider now the coneK � K(r; h) = �x 2 Rn : hr�n�1Xi=1 x2i�1=2 < xn < h; 0 < �n�1Xi=1 x2i�1=2 < r�:We say also that an open set 
 satis�es the cone condition with the parame-ters r > 0 and h > 0 if 8x 2 
 there exists a cone Kx � 
 with the point xas vertex congruent to the cone K. Moreover, an open set 
 satis�es thecone condition if for some r > 0 and h > 0 it satis�es the cone conditionwith the parameters r and h.Example 5.1. The domain 
 = fx 2 Rn : �1 < xn < 1� jxj
 ; jxj < 1g,where x = (x1; : : : ; xn�1), for 
 � 1 is an elementary bounded domain witha Lipschitz boundary and satis�es the cone condition. For 0 < 
 < 1 it doesnot have a Lipschitz boundary and does not satisfy the cone condition.Example 5.2. The domain 
 = fx 2 Rn : �1 < xn < jxj
 ; jxj < 1gsatis�es the cone condition for each 
 > 0. It has a Lipschitz boundary if,and only if, 
 � 1.Example 5.3. Let us suppose that 
 = f (x1; x2) 2 R2 : �1 < x2 < 1 if�1 < x1 < 0, � 1 < x2 < x
1 if 0 � x1 < 1g, where 0 < 
 < 1. Then 




Extension theory for Sobolev spaces 33is a bounded elementary domain with a resolved boundary, which is nota quasi-continuous boundary.Example 5.4. Let 
 = f(x1; x2) 2 R2 : 0 < x1 < 1; x
1 < x2 < 2x
1gwhere 0 < 
 <1, 
 6= 1. Then @
 is not a quasi-resolved boundary whilec
 satis�es the cone condition.Example 5.5. For the elementary domain 
 de�ned by (40) the Lipschitzcondition (42) means geometrically that 8x 2 @
 the conesK+x = fy 2 Rn : yn < '(�x)�M j�x� �yjg;K�x = fy 2 Rn : '(�x) +M j�x� �yj < yngare such that K+x \ cW � 
, K�x \ cW � c
, where cW = fx 2 Rn :�x 2W; an < xn <1g.Example 5.6. Let 
 = f(x1; x2) 2 R2 : x2 < '(x1)g, where '(x1) =�jx1j
 if x1 � 0, '(x1) = x
1 if x1 � 0 and 
 > 0. Then the function 'satis�es a Lipschitz condition on R if, and only if, 
 = 1, while 
 has aLipschitz boundary in the sense of the above de�nition for each 
 > 0.Lemma 5.1. If an open set 
 � Rn has a Lipschitz boundary with theparameters d, D, { and M , then both 
 and c
 satisfy the cone conditionwith the parameters r; h depending only on d;M and n.Lemma 5.2. 1. A bounded open set 
 � Rn satis�es the cone conditionif, and only if, there exist s 2 N and elementary bounded domains 
k,k = 1; : : : ; s, with Lipschitz boundaries with the same parameters such that
 = Ssk=1
k.2. An unbounded open set 
 � Rn satis�es the cone condition if, andonly if, there exist elementary bounded domains 
k, k 2 N, with Lipschitzboundaries with the same parameters such that1) 
 = S1k=1
k,and2) the multiplicity of the covering { (f
kg1k=1) is �nite.6 Pasting local extensionsWe start by reducing the problem of extensions to the problem of localextensions.



34 Viktor I. BurenkovLemma 6.1. Let l 2 N, 1 � p � 1 and let 
 � Rn be an open set.Moreover, let Uj � Rn , j = 1; s, where s 2 N or s = 1, be open sets suchthat 
 � s[j=1(Uj)�for some � > 0. If s = 1, suppose, in addition, that the multiplicity of thecovering { � {(fUjgsj=1) is �nite.1. Suppose that for all j = 1; s there exist bounded extension operatorsTj : bV lp (
 \ Uj)! V lp (Uj); (44)where bV lp (
\Uj) = ff 2 V lp (
\Uj) : supp f � 
\Ujg. If s =1, supposealso that supj2N kTjk <1. Then there exists a bounded extension operatorT : V lp (
)! V lp (Rn ): (45)Moreover, kTk � c1 supj=1;s kTjk; (46)where c1 > 0 depends only on n; l; � and {. If all the Tj are linear, then Tis also linear.2. The statement 1 also holds if one replaces the space V lp (�) by the spaceV l;:::;lp (�).3. If 
 has a quasi-resolved boundary, then the statement 1 also holds if onereplaces the space V lp (�) by the space W lp(�).4. If 
 satis�es the cone condition, then the statement 1 also holds if onereplaces the space V lp (�) by the space W l;:::;lp (�).Idea of the proof. Assuming, without loss of generality, that (Uj)� \
 6= ;construct functions  j 2 C1(Rn ), j = 1; s, such that the collection f 2j gsj=1is a partition of unity corresponding to the covering fUjgsj=1, i.e., the fol-lowing properties hold: 0 �  j � 1, supp j � Uj ; Psj=1  2j = 1 on 
 and8� 2 Nn0 satisfying j�j � l, kD� jkL1(Rn) � M1, where M1 depends onlyon n; l and �. For f 2 V lp (
) setTf = sXj=1  j Tj(f j) on Rn : (47)(Assume that  jTj(f j) = 0 on c(Uj).)



Extension theory for Sobolev spaces 35Proof. 1. Let �j 2 C1(Rn ) be \cap-shaped" functions satisfying 0 � �j � 1,�j = 1 on (Uj)�=2, �j = 0 on c((Uj)�=4) and jD��j(x)j � M2 ��j�j, � 2 Nn0 ,where M2 depends only on n and �. Then 1 � sPj=1 �2j � { on sSj=1(Uj)�=2.Further, let � 2 C1b (Rn ), � = 1 on 
, � = 0 on c( sSj=1(Uj)�=2). One canconstruct functions  j by setting  j = �j � � sPi=1 �2i ��1=2 on sSi=1(Ui)�=2 as-suming that  j = 0 on c( sSi=1(Ui)�=2).2. The operator T de�ned by (47) is an extension operator. For, letx 2 
. If x 2 supp j for some j, then  j(x)(Tj(f j))(x) =  2j (x) f(x).If x =2 supp j , then  j(x)(Tj(f  j))(x) = 0 =  2j (x) f(x). So (Tf)(x) =Psj=1  2j (x) f(x) = f(x).3. Let � 2 Nn0 and j�j = l. If s 2 N, thenD�w(Tf) = sXj=1D�w( j Tj(f  j)) on Rn : (48)If s = 1, then (48) still holds, because on c( sSj=1(Uj)�=2) both sides of (48)are equal to 0 and 8x 2 sSj=1(Uj)�=2 the number of sets (Uj)�=2 intersectingthe ball B(x; �=2) is �nite. Otherwise there exists a countable set of Ujs ,s 2 N, satisfying (Ujs)�=2 \ B(x; �=2) 6= ;. Hence x 2 Ujs , and we arrive toa contradiction since {(fUjg1j=1) < 1. Consequently, there exists sx 2 Nsuch that supp( jTj(f j)) \ B(x; �=2) 6= ; for j > sx. SoTf = sxXj=1  j Tj(f  j) on B(x; �=2):Hence,D�w(Tf) = sxXj=1D�w( jTj(f  j)) = 1Xj=1D�w( jTj(f  j)) on B(x; �=2):Therefore, by the appropriate properties of weak derivatives, (48) withs =1 follows.



36 Viktor I. Burenkov4. Let � 2 Nn0 and � = 0 or j�j = l. In (47) , for all x 2 Rn , and in (48),for almost all x 2 Rn , the number of nonzero summands does not exceed {.Hence, by H�older's inequality for �nite sums,jD�w(Tf)jp � {p�1 sXj=1 jD�w( j Tj (f j))jpalmost everywhere on Rn and consequently,ZRn jD�w(Tf)jp dx � {p�1 sXj=1 ZRn jD�w( j Tj(f j)) jp dx:5. Therefore,kTfkV lp(Rn) � M3� sXj=1 k j Tj(f j) kpV lp(Rn)�1=p;where M3 depends only on n; l and {. Since supp j � Uj , by the Leibnizformula, we havek j Tj(f j) kV lp(
) �M4 kTj(f j) kV lp (Uj)�M4 kTj k k f j kV lp(
\Uj)�M5 kTjk kfkV lp(
\Uj); (49)where M4 and M5 depend only on n; l and �. Now, as in the proof ofLemma 3.3, kTfkV lp(Rn) �M6 supj kTjk kfkW lp(
);where M6 depends only on n; l; � and {. Hence (45) follows.6. In case of the spaces V l;:::;lp (�) we obtain (49) again by the Leibniz formula.Hence, statement 2 of the lemma follows.7. In case of the spacesW lp(�) the application of the Leibniz formula requiresalso the inequality kD�wgkLp(
) �M7 kgkW lp(
); (50)where j�j < l and M7 is independent of g. (First for g =  jTj(f j), thenfor g = f j .) If 
 has a quasi-resolved boundary, then this inequality holds(see [19], Chapter 4).



Extension theory for Sobolev spaces 378. In case of the spaces W l;:::;lp (�) one needs the inequality
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Lp(
) �M8 kgkW l;:::;lp (
); (51)where k = 1; : : : ; n; m = 1; : : : ; l� 1 andM8 is independent of g. In a forth-coming paper we shall prove this inequality for open sets 
 satisfying thecone condition, using the extension theorem9 for the spaces W l;:::;lp (
) foropen sets with a Lipschitz boundary.Remark 6.1. Suppose that in Lemma 6.1 the operators Tj satisfy the ad-ditional condition f 2 bV lp (
 \ Uj) =) suppTjf � Uj : (52)In this case the operator T may be constructed in a simpler way with thehelp of a standard partition of unity f jgsj=1, i.e., Psj=1  j = 1 on 
. Weassume that Tj(f j)(x) = 0 if x 2 Uj and setTf = sXj=1 Tj(f j) on Rn :The operator T is an extension operator. For, let x 2 
. If x 2 Uj ,then (Tj(f j))(x) =  j(x) f(x), and if x =2 Uj , then (Tj(f j))(x) =0 =  j(x) f(x). Thus (Tf)(x) = Psj=1  j(x) f(x) = f(x). Note alsothat for f 2 V lp (
), because of (52), we have Tj(f j) 2 V lp (Rn ) andkTj(f j) kV lp(Rn) = kTj(f j) kV lp(Uj ).Remark 6.2. The method of pasting local extensions of Lemma 6.1 cannotbe applied to the spaces wlp(
) and wl;:::;lp (
) since estimates (50) and (51)do not hold if we replace W lp(
) by wlp(
), W l;:::;lp (
) by wl;:::;lp (
) respec-tively. In Lemmas 6.2{6.3 another method of pasting local extensions willbe described, which is applicable also to the spaces wlp(
) and wl;:::;lp (
).Lemma 6.2. Let l 2 N, 1 � p � 1 and let 
 be an open set. Moreover,let 
j � Rn , j = 1; s where s 2 N, be open sets such that 
 � 
0 � 
1 �� � � � 
s and 
� � 
s for some � > 0.1. Suppose that for all j = 1; s there exist bounded extension operatorsTj : wlp(
j�1)! wlp(
j):9 For this reason we shall not be able to apply Lemma 6.1 for the spacesW l;:::;lp (
). (We shall apply Lemmas 6.2{6.3 instead.)



38 Viktor I. BurenkovThen there exists a bounded extension operatorT : wlp(
)! wlp(
�): (53)If all Tj are linear, then T is also linear.2. The statement 1 also holds if one replaces the space wlp(�) by wl;:::;lp (�).3. The statement 1 also holds if one replaces the space wlp(�) by W lp(�),W l;:::;lp (�), V lp (�) or V l;:::;lp (�). Moreover, in this case in (53) 
� could bereplaced by Rn .Proof. We set T = Ts � � �T1. Then T is an extension operator andkTkwlp(
)!wlp(
�) � sYj=1 kTjkwlp(
j�1)!wlp(
j): (54)The second statement is proved in the same way.In order to prove the third statement, let � 2 C1(Rn ) be such that� = 1 on 
 and supp � � 
�=2, and set, for f 2 W lp(
), eTf = � Tf . Since8g 2W lp(
�), k�gkW lp(
�) � A kgkW lp(
�);where10 A is independent of f , we havek eTkW lp(
)!W lp(Rn) � A sYj=1 kTjkW lp(
j�1)!W lp(
j): (55)The case of other spaces in statement 3 is similar.The proof being quite clear, the problem is in choosing appropriate 
j .In the most simple case of the n-dimensional unit cube 
 = (0; 1)n onecan take 
j;1 = (0; 2)j � (0; 1)n�j ; j = 1; : : : ; n, and 
j;2 = (�2; 2)j �(0; 2)n�j ; j = 1; : : : ; n. Then
 � 
1;1 � 
2;1 � � � � � 
n;1 � 
1;2 � 
2;2 � � � � � 
n;2 � 
� ;where � = 1.For the general case of an open set with a Lipschitz boundary this canbe done with the help of the following statement.Lemma 6.3. Let 
 be an open set with a Lipschitz boundary, satisfyingthe de�nition in Section 5 with the parallelepipeds Vj ; j = 1; s, and with the10 This follows by the Leibniz formula and inequality (2).



Extension theory for Sobolev spaces 39parameters d;D;{ and M . Moreover, suppose11 that if Vj \ Vk \ 
 = ;,then Vj \ Vk = ;.Given 0 < d1 < d, M1 > M and 
 > 0, there exists an open set 
1with a Lipschitz boundary, satisfying the de�nition in Section 5 with theparallelepipeds V (1)j ; j = 1; s, and with the parameters d1; D;{ and M1, forwhich V (1)1 = V1; (Vj)d�d1 � V (1)j � Vj ; j = 2; s;(if Vj \ V1 = ;, then V (1)j = Vj),
 � 
1 � 
 [ (

 \ V1); @
 \ V1 � 
1;and there exists %, depending only on d; d1;M;M1 and 
, such that�
 [ (V1)d=2�% � 
1:For the case s 2 N see the proof in [12].Lemma 6.4. 1. Let l 2 N, 1 � p � 1. Suppose that for each boundedelementary domain H � Rn , de�ned by (40), with a Lipschitz boundarywith the parameters d;D and M there exists a bounded linear extensionoperator TH : fW lp(H)! W lp(V );where V = fx 2 Rn : ai < xi < bi; i = 1; : : : ; n � 1; an < xn < 1g,fW lp(H) = ff 2 W lp(H) : supp f � H \ V g and kTHk � c2, where c2 > 0depends only on n; l; p; d;D and M .Then for each open set 
 � Rn with a Lipschitz boundary12 there existsa bounded linear extension operatorT :W lp(
)! W lp(Rn ):Moreover, kTk � c3, where c3 > 0 depends only on n; l; p; d;D;{ and M .2. The statement 1 also holds if the space W lp(�) is replaced by V lp (�).11 This requirement does not restrict the generality. One can prove that given thecollection of parallelepipeds satisfying the conditions 1){4) of Section 5 withthe parameters s; d;D;{ and M , another collection of ~s parallelepipeds couldbe constructed such that the conditions 1){4) are satis�ed with some otherparameters ~d; eD; ~{ which depend only on d;D and { and the sameM , and thisadditional condition is also satis�ed. (See [12].)12 If 
 is bounded, then it is enough to suppose that kTHk <1 for each boundedelementary domain H.



40 Viktor I. BurenkovProof. By the assumptions of the lemma for all j = 1; s there exist boundedextension operatorsTj : cW lp(�j(
 \ Vj))!W lp(�j(Vj)):Let (�jf)(x) = f(�j(x)) and de�neT (1)j = �j Tj �(�1)j :We note that �(�1)j : cW lp(
 \ Vj) ! cW lp(�j(
 \ Vj)), �j : cW lp(�j(Vj)) !cW lp(Vj) and k�j k, k�(�1)j k do not exceed some quantity depending onlyon n and l. Hence, T (1)j : cW lp(
 \ Vj)! W lp(Vj)and kT (1)j k � k�j k � kTj k � k�(�1)j k � M1 kTj k;where M1 depends only on n and l.If 
 is bounded, then s 2 N and by Lemma 6.1 there exists a boundedlinear extension operator T : W lp(
) ! W lp(Rn ). If 
 is unbounded, thens =1 and by the de�nition of an open set with a Cl- or Lipschitz bound-ary each bounded elementary domain �j(
 \ Vj) has the same parametersd;D;M . Hence, by the assumptions of the lemma kTjk � c2. Moreover, inthis case the multiplicity of the covering fVjg1j=1 is �nite. Thus, Lemma 6.1is applicable, which ensures the existence of a bounded linear extensionoperator T :W lp(
)!W lp(Rn ).In case of the spaces V lp (�) the proof is similar.Remark 6.3. In the assumptions of Lemma 6.4 the condition TH :fW lp(H) ! W lp(V ) can be replaced by TH : fW lp(H) ! W lp(H
 \ V ) forsome 
 > 0, which depends only on n; d and M . This follows since one canconstruct another extension operator T (1)H : fW lp(H) ! W lp(V ) by settingT (1)H f = � THf , where � 2 C1(V ) is such that � = 1 on H , supp � � H
\Vand, for j�j � l, kD��kC(V ) � c4, where c4 > 0 depends only on l; d andM .(To do this one can mollify the characteristic function of H%=2 with step ofmolli�cation equal to %=4, where % = dist(H; @(H
)), and note that % � c5,where c5 > 0 depends only on n; d andM .) Hence kT (1)H k � c6, where c6 > 0depends only on n; l; p; d;D and M .



Extension theory for Sobolev spaces 41Lemma 6.5. Let l 2 N, 1 � p � 1. Suppose that for each bounded ele-mentary domain H � Rn , de�ned by (40), with a Lipschitz boundary withthe parameters d;D and M , for some 
 > 0, which depends only on n; dand M , there exists a bounded linear extension operatorTH : wlp(H)! wlp(H
 \ V )and kTHk � c7, where c7 > 0 depends only on n; l; p; d;D and M .Then for each open set 
 � Rn with a Lipschitz boundary13 there exists� > 0, which depends only on n; d and M , and a bounded linear extensionoperator T : wlp(
)! wlp(
�):Moreover, kTk � c8, where c8 > 0 depends only on n; l; p; d;D;{ andM .Proof. 1. If s 2 N, then by Lemma 6.3 there exist open sets 
1; : : : ; 
s withLipschitz boundaries such that 
 � 
1 � � � � � 
s, further 
s � 
% forsome % > 0 and
k � 
k�1 [ (

k�1 \ Vk); k = 1; : : : ; s (
0 � 
):Next we note that, for some rotation �k, �k(
k�1 \ Vk) is a boundedelementary domain with a Lipschitz boundary. Hence, by the assumptionsof the lemma, there exists a bounded linear extension operatorT (1)k : wlp(�k(
k�1 \ Vk))! wlp((�k(
k�1))
 \ �k(Vk)):For a function g de�ned on �k(
k�1 \ Vk), let (�kg)(x) = g(�k(x)),x 2 
k�1 \ Vk. For f 2 wlp(
k�1 \ Vk), we de�ne T (2)k f = �kT (1)k ��1k f .Since the operators�k : wlp(�k(
k�1 \ Vk))! wlp(
k�1 \ Vk);��1k : wlp(
k�1 \ Vk)! wlp(�k(
k�1 \ Vk)) (56)are bounded, the operatorTk : wlp(�k(
k�1 \ Vk))! wlp(

k�1 \ Vk)is a bounded linear extension operator. Moreover, kTkk � c9, where c9 > 0depends only on n; l; p; d;D, and M .13 If 
 is bounded, then it is enough to suppose that kTHk <1 for each boundedelementary domain H .



42 Viktor I. BurenkovFinally, for f 2 wlp(
k�1), we set (Tkf)(x) = f(x) if x 2 
k�1and (Tkf)(x) = (T (2)k f)(x) if x 2 
k n 
k�1. Clearly, the operatorTk : wlp(
k�1)! wlp(
k) is also bounded, sincekTkfkwlp(
k) � kfkwlp(
k�1) + kT (2)k fkwlp(

k�1\Vk)� �1 + kT (2)k kwlp(
k�1\Vk)!wlp(

k�1\Vk)� kfkwlp(
k�1):Hence, T = Ts � � �T1 : wlp(
) ! wlp(
�) is a bounded linear extensionoperator. However, by (54) it follows that kTk � ~c8, where ~c8 > 0 dependsonly on n; p; d;D;M and on s instead of {.2. If s = 1, one should split the in�nite collection of the parallelepipedsfVjg1j=1 in a �nite union of disjoint in�nite subcollections, each of whichconsists of disjoint parallelepipeds: fVjg1j=1 = mS�=1fVk�g1k=1, where m 2 N,Vk� 2 fVjg1j=1, fVk�g1k=1\fVk~�g1k=1 = ; if � 6= ~� and Vk�\V~k� = ; if k 6= ~k.Moreover, without loss of generality we assume that for each parallelepipedVj either Vk� \ Vj = ; or V~k� \ Vj = ; (k 6= ~k). We also note that this canbe done in such a way that m does not exceed some quantity, depending onn; d;D and {.By Lemma 6.3, applied to 
 and Vk1, there exist open sets 
k, k 2 N,with Lipschitz boundaries with the parameters d=2; D;{ and 2M and withthe parallepipeds V (k)j such that 
 � 
k1 � 
[(

\Vk1), @
\Vk1 � 
k1and, for some % > 0 depending only on d;M and 
, (
 \ (Vk1)d=2)% � 
k1.We note that V (k)k1 = Vk1. Moreover, if j is such that Vj \ Vk1 = ; (brie
yj 2 Jk1), then V (k)j = Vj , otherwise (Vj)d=2 � V (k)j � Vj . Next we considerthe parallelepipeds eVj ; j 2 N, such that eVj = V (k)j for j 2 bJk1 = N n Jk1,k 2 N, and eVj = Vj for j 2 T1k=1 Jk1, and the set 
1 = S1k=1
k1. (SincebJk1 \ bJ~k1 = ;; k 6= ~k; eVj are well-de�ned.) It follows that 
1 is an openset with a Lipschitz boundary with the parallelepipeds eVj and with theparameters d=2; D;{ and 2M . In view of the properties of V (k)j and 
k1 wehave that
 � 
1 � 
 [ �

 \ � 1[k=1 Vk1��; @
 \ � 1[k=1 Vk1� � 
1and �
 \ � 1[k=1(Vk1)d=2��% � 
1:



Extension theory for Sobolev spaces 43(We have taken into account that (A [ B)% = A% [ B%.) As was noted inthe �rst step of the proof, by assumptions of the lemma for each k 2 Nthere exists a bounded linear extension operator Tk1 : wlp(
 \ Vk1) !wlp(

 \ Vk1). Moreover, kTk1k � c9, k 2 N. We de�ne the extension op-erator T1 for f 2 wlp(
1) by setting T1f = Tk1f on 
k1; k 2 N. Since(
k1 n
) \ (
~k1 n
) = ; for k 6= ~k, the operator T1 is well-de�ned. More-over, T1 : wlp(
) ! wlp(
1) and is bounded. Indeed, if p < 1, then8f 2 wlp(
),kT1fkpwlp(
1) = �Xj�j=l kD�w(T1f)kLp(
1)�p� lnp Xj�j=l Z
1 jD�w(T1f)jp dx= lnp Xj�j=l�Z
 jD�wf jp dx+ 1Xk=1 Z
k1n
 jD�w(Tk1f)jp dx�� lnp�kfkpwlp(
) + 1Xk=1 kTk1fkpwlp(

\Vk1)�� lnp kfkpwlp(
) + cp9 1Xk=1 kfkpwlp(
\Vk1)!� lnp�kfkpwlp(
) + cp9lnp 1Xk=1 Xj�j=l Z
\Vk1 jD�wf jp dx�� lnp (1 + cp9lnp) kfkpwlp(
):Hence, for 1 � p <1,kT1kwlp(
)!wlp(
1) � ln (1 + c9ln) :If p =1, the argument is similar.In a similar way, starting from 
1, with the help of Lemma 6.3 we con-struct an open set 
2 � 
1 with a Lipschitz boundary and an appropriateextension operator T2, and so on. Thus we obtain open sets 
1; 
2; : : : ; 
mwith Lipschitz boundaries such that 
 � 
1 � � � � � 
m, and�
��1 \� 1[k=1(Vk�)d=2��% � 
�;



44 Viktor I. Burenkovand bounded linear extension operators Tk : wlp(
k�1) ! wlp(
k),k = 1; : : : ;m (
0 � 
), satisfying the estimatekTkkwlp(
k�1)!wlp(
k) � ln (1 + c9ln) :Finally, we note that
% = �
 \ � 1[j=1(Vj)d=2��% = �
 \ � m[�=1 1[k=1(Vk�)d=2��%� m[�=1�
��1 \ � 1[k=1(Vk�)d=2�� � m[�=1
� = 
m:(We have taken into account that (A \ B)% � A% \ B%.) Hence,T = Tm � � �T1 : wlp(
)! wlp(
�) is a bounded linear extension operator.Moreover, by (54) kTk � c8, where c8 > 0 depends only on n; p; d;D;Mand {.3. We also note that if s 2 N, then we can apply the same procedure asin the second step of the proof, and we shall obtain the desired estimatefor kTk, thus, improving the estimate established in the �rst step of theproof.Lemma 6.6. 1. Let l 2 N, 1 � p � 1. Suppose that for each boundedelementary domain H � Rn , de�ned by (40), with a Lipschitz boundary withthe parameters d; D and M and for each rotation � there exists a boundedlinear extension operatorTH;� : wl;:::;lp (�(H))! wl;:::;lp (�(V ))and kTH;�k � c10, where c10 > 0 depends only on n; l; p; d;D and M .Then for each open set 
 � Rn with a Lipschitz boundary there ex-ists � > 0, depending only on n; d and M , and a bounded linear extensionoperator T : wl;:::;lp (
)! wl;:::;lp (
�):Moreover, kTk � c11, where c11 > 0 depends only on n; l; p; d;D;{and M .2. The statement 1 also holds if one replaces wl;:::;lp (�) by W l;:::;lp (�) orV l;:::;lp (�). In this case 
� can be replaced by Rn .



Extension theory for Sobolev spaces 45Proof. The proof is actually the same as the proof of Lemma 6.5. The onlydistinction is that now we do not use the fact that the operators (56) wherewlp(�) is replaced by wl;:::;lp (�), W l;:::;lp (�) or V l;:::;lp (�), are bounded.14In case of the spaces W l;:::;lp (�) the same operator T is a bounded linearextension operator as T : W l;:::;lp (
) ! W l;:::;p (
�). Next let a function� 2 C1(Rn ) be such that � = 1 on 
, supp � � 
� and, for j�j � l,kD��kC(Rn) � c12, where c12 > 0 depends only on n; l and �.We set eTf = � Tf and, as in the proof of Lemma 6.3, it follows thateT :W l;:::;lp (
)!W l;:::;p (Rn ) is a bounded linear extension operator. More-over, keTk � c13, where c13 > 0 depends only on n; l; p; d;D;{ and M .The case of the spaces V l;:::;lp (
) is similar.References[1] R.A. Adams, Sobolev spaces. Academic Press, New York 1975.[2] V.M. Babich, On the extension of functions (Russian). Uspekhi Mat. Nauk8 (1953), 111{113.[3] O.V. Besov, V. P. Il'in and L.D. Kudryavtsev, P. I. Lizorkin andS.M. Nikol'skii, Embedding theory for classes of di�erentiable functions ofseveral variables (Russian). Proc. Sympos. in honour of the 60th birthdayof academician S. L. Sobolev, Inst. Mat. Sibirsk. Otdel. Akad. Nauk. SSSR,Nauka, Moscow 1970, 38{63.[4] O.V. Besov, V. P. Il'in and S.M. Nikol'skii, Integral representation of func-tions and embedding theorems (Russian). 1st ed., Nauka, Moscow 1975; 2nded., Nauka, Moscow 1996 (Russian); English transl. of 1st ed., Vols. 1, 2,Wiley, 1979.[5] Yu.D. Burago and V.G. Maz'ya, Some problems of the potential theory andfunction theory for domains with irregular boundaries. Zap. Nauchn. Semin.Leningr. Otd. Mat. Inst. Steklov 3 (1967), 1{152 (Russia); English transl.:Seminars in Math., V.A. Steklov Math. Inst., Leningrad 3 (1969).[6] V. I. Burenkov, Some properties of classes of di�erentiable functions in con-nection with embedding and extension theorems (Russian). Ph.D. thesis,Moscow, Steklov Math. Inst. (1966), 145 pp.14 If p = 1 or p =1, then (56), where wlp(�) is replaced by wl;:::;lp (�), W l;:::;lp (�) orV l;:::;lp (�), does not hold.If 1 < p <1, then it holds, but in case of the spaces wl;:::;lp (�) these operators arenot bounded. (In case of the spaces W l;:::;lp (�) or V l;:::;lp (�) they are bounded.)However, these statements, in the framework of this paper, follow from theextension theorems for the spaces wl;:::;lp (
), W l;:::;lp (
), V l;:::;lp (
) respectivelyand could not be used in the proof of this lemma.
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