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Extension theory for Sobolev spaces
on open sets with Lipschitz boundaries

VIKTOR I. BURENKOV

Contents

Introduction

Notation

Sobolev spaces

General applications of extension theorems
The one-dimensional case

Classes of open sets

Pasting local extensions

References

S Tt W

Introduction

The main aim of this paper! is to give a complete exposition of the extension
theory for Sobolev spaces for the case of open sets with Lipschitz boundaries.

Some results are known for more general open sets, and for some partic-
ular values of the parameters necessary and sufficient conditions are known
ensuring validity of the extension theorem.? However, in that case the the-
ory is not complete. On the other hand the case of open sets with Lipschitz
boundaries is, and will be, the most important from the point of view of
applications. For all these reasons we have restricted ourselves to this case.

The extension theory consists of three interconnected parts. The first,
main, part is the construction of an extension operator

TIWHQ) - WHEY), (TH@) = f), z€®, 1)

! This work was supported by the grants of European Association for Promotion
of Fundamental Research (INTAS - 881 - 94) and Russian Foundation of Basic
Research (RFBR - 96 - 01 - 01380).

2 At the recent conference “Functions spaces, partial differential equations and
applications” in Rostock I have promised to pay DM 1,000 to a mathematician
who would give a complete solution of the extension problem for all admissible
values of the parameters.
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which is linear and bounded, where WIQ(Q) is the Sobolev space and {2 is an
open set with a Lipschitz boundary. The second part is the construction of
analogous operators for the semi-normed Sobolev spaces and other variants
of Sobolev spaces. The third part is dedicated to sharp estimates of the
minimal norm of extension operators, mentioned above.

We present here only those proofs, which are related directly to the
extension procedure, and omit the proofs of auxiliary statements (giving
references, where to find them).

The exposition is based mostly on the papers of the author, his pupils
and co-authors [6], [10], [21], [11], [12], [32], [16], [28], [14], [25], [26], [27]-
A brief information about other extension methods will also be given. As
for further results, including the case of irregular open sets, for which an
extension with preservation of smoothness is impossible, we shall give a very
brief survey and references.

1 Notation

We shall use the following standard notation for sets:

N — the set of all natural numbers,
Ny — the set of all non-negative integers,
R — the set of all real numbers,
=Ny X -+ x Ny — the set of multi-indices (n is the natural number
n—times
which will be used exclusively to denote the dimension),
R*=Rx--- xR,
~—_——

n-times

B(z,r) — the open ball of radius r > 0 centred at the point z € R™.

For o € N}, a # 0, we shall write:
doat-tam f

Oxt -+ Oxp”
order o and

arttan
D31 = (g

ox]' ---Oxp”

D>f = — the (ordinary) derivative of the function f of

> — the weak derivative of the function f of
order a. b

For an open nonempty set {2 C R* we shall denote by:

C(£2) — the space of functions continuous on {2,
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C(£2) — the Banach space of functions f uniformly continuous and
bounded on (2 with the norm

I fllcce) = sup | f(2)],
TESN

CY(£2) (I € N) —the space of functions f defined on {2 such that Vo € Nz,
where |a| = a1 + -+ + a,, = 1, and Va € (2 the derivatives (D f)(z)

exist and D*f € C(2),
C'(92) (1 € N) - the Banach space of functions f € C(£2) such that

Va € Ny, where [a] = [, and Vz € 2 the derivatives (D f)(z) exist and
Def € C(£2) with the norm

||f||cl(9) = Ifllca) + Z 1D fllc(),

la|=l

c>® () = 100 C'(£2) - the space of functions infinitely continuously

differentiable on 0,
C§°(£2) — the space of functions in C°°(§2) compactly supported in 2.

Further notation will be introduced in the text.

2 Sobolev spaces
Definition 2.1. Let 2 C R™ be an open set, | € N, 1 < p < oo. The

function f belongs to the Sobolev space W) (£2) if f € L,(£2), if it has weak
derivatives DS f on {2 for all a € Nj satistying |a| =1 and

fllwice) = 1z, + D 1D% fllz, @) < oo

la|=L

1/p
L(2) = (/Q |f|pd$>

”f”L%(Q) = esssup |f($)|~
e

Here

I1£1

for 1 < p < oo and
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Remark 2.1. In the one-dimensional case this definition is equivalent to
the following: the function f is equivalent to a function h on {2, for which
the (ordinary) derivative (=1 is locally absolutely continuous on {2 and

1A llweo)y = 1fllz,0) + 1,0 = 1Bz, ) + 1R, (0) < oo
Moreover, if 2 = (a,b) is a finite interval, the limits hm h(z) and

liHbl h(z) exist and one may define h on [a,b] by setting h(a ) and h(b)

to be equal to those limits. Then (¥ s = 1,...,1 -1, exist and RU~1) is
absolutely continuous on [a, b]. This follows from the Taylor expansion

l—s—1 3
) RUsHR) (g .
@ = Y O gy

k=0
1

+ m/ (@ = w)'"* " R (u) du,

where 2,79 € (a,b) and s = 1,...,1 — 1. Since h!) € L,(a,b), hence
h® € Li(a,b), the limits limJr h(z) and lingl h(z) exist. Consequently,

the right derivatives h(*)(a) and the left derivatives h(*)(b) exist and
h$)(a) = lim+ RS (x), K (b) = 111? R(®)(x). Finally, since h(=Y(z) =
RV (z0) + f;o RO (u) du for all z,zq € [a,b] and h() € Ly(a,b), it follows
that h(=1 is absolutely continuous on [a, b].

Other variants of Sobolev spaces V/!(£2), Wh!(£2) and V}-!(2) are

also of interest. They are characterized by the finiteness of the following
norms:

L,(£2)>

11l 2) = Z D5 £

le| <1

1oty = Il yic) +

( f)
1
( f)
oz
respectively.

For a wide class of open sets with a quasi-resolved boundary (see defini-
tion in Section 5) W,(2) = V;(£2) and the norms || - [[w:(q) and || - [[v1(g)

11yt = 1Ly +

Lp(2)

j:l m=1
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are equivalent. Moreover, if {2 is a bounded domain with a quasi-resolved
boundary, these norms are equivalent to

£y = 1flleasy + Y 105 Fll, (o),

la|=l
where B C 2 is an arbitrary ball. (See, for example, [19], Chapter 4.)3

Definition 2.2. Let {2 be an open set, [ € N, 1 < p < co. The function f
belongs to the semi-normed Sobolev space wh(£2) if f € LPe(£2), if it has
weak derivatives D2 f on (2 for all a € NJ satisfying | o |= 1 and

1Nl (2) = > DS fllz, 0y < oo
|a]=l

Another variant of semi-normed Sobolev spaces wh!(12) is also of in-

terest. It is defined by the finiteness of the semi-norm

9y

ozt ),
Remark 2.2. The initial idea of S.L. Sobolev was to study the spaces
L. (£2), defined by the finiteness of the norm || - ”LL(Q)’ hence to study the
properties of functions, for which only the L,-norms of the weak derivatives

of order [ are finite, without additional assumptions such as finiteness of the
Ly-norm of f in case of the space W/ (£2) or finiteness of the L,-norms of all

n

T

Jj=1

Lp(£2)

weak derivatives of order less than [ in case of the spaces VPI(Q). One can
verify that if >, _ D% fllL,(e) < oo, then |[flz,(p) < oo for each ball
B C 2. Thus ||f|l1,(0) is added only to make the space L} () a normed
space, which is so if 2 is a domain. Moreover in this case for different balls
B C {2 the L;—norms are equivalent. (If {2 is a disconnected open set, then
| - It () is only a semi-norm.) Thus, the study of the spaces L} (£2) is
“pureiy” related to the behaviour of the weak derivatives of order [.

However, as was noted above, the spaces LL(Q) differ from the spaces
W(£2) or V}(2) only for “very irregular open sets”. For this reason usually
the spaces W/ (£2) or V}(£2) are considered, just because their definition is
simpler in the sense that an additional ball is not involved.

3 The proof is direct and is based essentially on the one-dimensional inequalities
for the norms of intermediate derivatives. Application of extension theorems in
this case is not of interest because the statement is valid for such 2, for which
the extension theorem could be invalid.
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Still more “pure” variant is the study of the spaces w;(ﬁ) However,
the fact that they are not normed spaces is sometimes inconvenient. On the
other hand in some other cases it is useful to work with semi-norms |||, ()

themselves.

As for the spaces Wl!(£2), VE--1(02) and wh!(£2), they are to a cer-
tain extent anisotropic and are particular cases of purely anisotropic spaces
Wit (02), Vive-tn () and wit!»(£2), whose definitions involve weak
derivatives of different orders [; with respect to different variables x;.
(They will not be considered in this article.) If @ is a parallelepiped
with the faces parallel to the coordinate planes, finite or infinite, then
WhH(Q) = Vi1(Q) (= V(@) for 1 < p < oo and Wh-4(Q) = WL(Q)
for 1 < p < oo, and the appropriate norms are equivalent. The first state-
ment easily follows from the one-dimensional inequalities for intermediate
derivatives (see, for example, [19]), while the second one, which is much
more complicated, follows from the Marcinkiewicz multiplier theorem (see,
for example, [56]).

If (2 is an arbitrary open set, then from the first statement it follows
that for 1 < p < o0, 3 € Iy satisfying |3| < [ and* for each § > 0,

108 Al ) < esllFllyi o, ®)

where ¢s > 0 is independent of f.

In a continuation of this paper, for open sets (2 satisfying the cone
condition (see definition in Section 5), it will be proved that W/ (Q) =
Vi iQ) (= VHQ)) for 1 < p < oo and W)HQ) = WEQ) for 1 <
p < 00, and the appropriate norms are equivalent. The proof will be based
on the fact, mentioned above, that for 2 = R™ these equalities are valid,
and on the extension theorem for the spaces W) !(£2) for open sets with
a Lipschitz boundary (see definition in Section 5).

We also note that clearly W) (£2) C wl(£2) and Wp(2) C wj'(12).
Moreover, locally these spaces coincide, i.e., for each open set G with com-
pact closure in {2, W;(Q)‘G: wé(Q)‘G and W]ﬁ""’l(())‘G: wht(02) o
In the continuation of this paper it will be proved that for 1 < p < o0
for bounded open sets satisfying the cone condition, W}(£2) = w)(£2) and
Whot(£2) = wh'(£2). (These equalities are equalities of the sets of func-
tions; the equivalence of appropriate norms and semi-norms is impossible.)
Again the proofs will be based on the extension theorems, now for the spaces
w! (2),wh+1(£2) respectively, for open sets with a Lipschitz boundary.

P P
* For 6§ > 0, we denote 25 = {z € £2: dist(z,00) > 6} and 2° =J B(z,9).

z€Ef
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Finally, we recall that, due to the closedness of the weak differentiation,
all considered spaces are complete: W) (£2), VL(£2), Wh=1(2), V-!(£2) are
Banach spaces® and w},(£2), wk!(£2) are semi-Banach spaces.

Remark 2.3. The first exposition of the theory of Sobolev spaces was given
by S.L. Sobolev himself in his book [60], later an extended exposition was
given in his other book [61].

There are several books dedicated directly to different aspects of the the-
ory of Sobolev spaces: R. A. Adams [1], V. G. Maz’ya [48], A. Kufner [45],
S.V. Uspenskii, G.V. Demidenko and V.G. Perepelkin [66], V.G. Maz’ya
and S. V. Poborchii [53], V.I. Burenkov [19]. In some other books the the-
ory of Sobolev spaces is included into a more general framework of the
theory of function spaces: S. M. Nikol’skii [56], O.V. Besov, V.P. I'in and
S. M. Nikol’skii [4], A. Kufner, O. John and S. Fuéik [46], E. M. Stein [63],
H. Triebel [64], [65]. Moreover, in many other books, especially on the theory
of partial differential equations and functional analysis, there are chapters
containing exposition of different topics of the theory of Sobolev spaces,
adjusted to the aims of those books (we do not name them here). Also
throughout the years a number of survey papers were published, containing
exposition of the results on the theory of Sobolev spaces. We name some of
them: S.L. Sobolev and S. M. Nikol’skii [62], S. M. Nikol’skii [55], V.I. Bu-
renkov [7], O.V. Besov, V.P. I'in, L.D. Kudryavtsev, P.1. Lizorkin and
S. M. Nikol’skii [3], S. K. Vodop’yanov, V. M. Gol’dshtein and Yu. G. Reshet-
nyak [68], L.D. Kudryavtsev and S. M. Nikol’skii [44], V. G. Maz’ya [48].

3 General applications of extension theorems

The existence of a bounded extension operator (1) ensures that a number
of properties of the space W) (R™) or W)(G), where G is a ball or a cube,
are inherited by the space W!(2) (in the last case 2 C G). In this section
we shall prove and discuss a series of simple statements showing possible
applications of different variants of extension theorems. We start with the
simplest possible case.

Lemma 3.1. Let l € N, g € N}, |8] <1, 1 < p,q¢ < 0. Suppose that
Vfe WIQ(R”) the inequality

105 fllz,@my < el Fllweeny. (3)

5 As usual, saying a “Banach space”, we ignore here the fact that the condition
[|f]l = 0 is equivalent to the condition f ~ 0 on {2 and not to the condition

f=0on £2.
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where ¢; > 0 1s independent of f, is valid. Let £2 C R™ be an open set such
that there exists a bounded extension operator (1).
Then there exists c > 0 such that Vf € WL(£2),

105 fllz,2) < el fllwie)- (4)

Proof. Since T is an extension operator, we have

105 fll g2y S NPT Az, < el Fllween
< allTllwio)—wi@n I fllwie) = cllfllwige)-
O

The above simple argument allows obtaining a more profound estimate
for the norm of an extension operator from below.
ForI,n € N,1 < p < 00, let®

Miny,={B,9) : 8Ny, |8 <1, 1 <g<o00and (3) is valid}

and let C*(R*,n,l,3,p,q) and C*(£2,n,l,3,p,q) be the sharp (minimal
possible) values of ¢1, co respectively.

Lemma 3.2. Letl € N, § € N}, |58] <1, 1 < p,q < 0. Suppose that
£ C R™ is an open set and that inequality (4) holds.

If inequality (3) does not hold, then a bounded extension operator (1)
does not exist.

If inequality (3) holds and there exists an extension operator (1), then

Cx(Qv n, la ﬂapv Q)
Twico)—wi(mny = sup . .
|| ”WP(Q) WP(R ) (B,0)EMi n p C*(Rnan7l7ﬂ7pa q)

Proof. Since inequality (3) is valid with ¢; = C*(R™,n, 1, 3, p, q), from the
proof of Lemma 3.1 it follows that

ID5 fliz,2) < C*(R™,n,1,5,p, DT lwr)—wr@mllfllwa)-

Hence,

C*(Q7 n, la 6ap7 q) < cr (Rn , 10, la 6ap7 q) ||T||W]£(Q)—>W}I,(R")a
and the desired inequality follows. O

5 It is well known that (8,q) € Mjnp if, and only if, 1 < ¢ < 00 if 1 < p < 0o
and |8 < {—n/porp=1land |f| <l—n, 1< ¢g<ooifl < p < ocoand
|Bl=1l—n/pand1<qg<pn/(n—pl)if 1 <p<ooand|f|>1—n/p
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Lemma 3.2 will be used in Section 4 for establishing sharp estimates for
the minimal norm of an extension operator.

Next we note that, by the properties of the spaces Lq(f2) and Wlﬁ(()),

the class of open sets in Lemma 3.1 can be widened and, starting with open
sets for which a bounded extension operator (1) exists, inequality (4) can
be proved for some open sets for which an extension operator (1) does not
exist.
Lemma 3.3. Let l € N, g € N}, |8] <1, 1 < p,q¢ < 0. Suppose that
inequality (3) is valid and let 2 = J;_, 2%, where s € N or s = 00 if p < gq
and s € N if ¢ < p, and (2, are open sets such that in the case s = oo the
multiplicity of the covering {2, }72, is finite.

Suppose that for each k = 1,s there exists a bounded extension operator
Ty : Wh(2,) — WER™). If s = o0, let also supyey || Th|| < oo.

Then inequality (4) is also valid.

Proof. By the properties of the weak derivatives D? f exists on 2. Fur-
thermore, if ¢ < oo, then by (3) and Jensen’s or Holder’s inequality for
sums,

D8l < (3 [ 102f1000)
k=1 2
s 1/q s 1/q
s(Z [ winpa) cl(Znkan;V;(Rn))
1/p
< oM, (Z T ey ) < cadt (Z I g0,

1/p
< e Mysup T3] (Z gay)

k=1

1/q

1/p

where My =1if p < g and M; = s'/971/7 if ¢ < p.
Let s be the multiplicity of the covering {(2;};_,. Then

(annwl Qk)l/p<l”(2/ P do+ ZZ/ D2 f |de)

Ja|=1 k=1

<" UP(/ |fIP dz + Z/|D“f|pdx> v

o=t

/p

<15 fllw (),

and the statement of the lemma follows. O
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Lemma 3.4. Letl e N, m € Ny, m < [, 1 < p,g < o0 and let 2 =
Ur—, 2k, where s € N and $2;, are bounded open sets for which there exist
bounded extension operators Ty : W (§2) — W)(R™).

Suppose that the embedding WZQ(Q) C Ly(Q) is compact for each cube
Q, whose faces are parallel to the coordinate planes. Then the embedding
Wl(2) C Ly(£2) is also compact.

Proof. As in Lemma 3.3, it is enough to prove that the embedding
Wi(2:) © W (£2) is compact for each k = 1,s. Let the cube Q,
whose faces are parallel to coordinate planes, be such that 2, C Q,
and Ig, and Ip, be the embedding operators, corresponding to the em-
beddings W]ﬁ(Qk) C W (Qr), WIZJ(.Qk) C W ($2) respectively, i.e., say,
Ig, - WHQk) — Lg(Qx) and Ig, f = f for f € W)(Qy). In order to prove
that the operator I, is compact we note that

W) Lo wiRD) B W Q) 15 Ly(Qr) B2 L),

where Ry, : WHR™) — W/(Qk) and Ry : Ly(Qr) — Lg({2;) are the
restriction operators. Thus,

1o, = Roplg, R Ty-

Since the operators Ty, Ri; and Ry, are bounded and the operator Ig, is
compact, it follows that the operator I, is compact. [l

Next let us define a variant of (p,!)-capacity. For an open set 2 C R
we put

cp1(£2) = WE{|| fllfy1 oy : £ € W(R), f=1on 2},

Lemma 3.5. Let 2 C R™ be an open set of finite measure and let | € N,
1 <p<oo.
Then for each extension operator (1),

1/p
cp,1(£2)
ITllwi(2)—wi@n) = (M) '
Proof. Since
&t(2) < ITW gy < IT W) w1 gy

(5) follows. O



Extension theory for Sobolev spaces 11

Inequality (5) may be applied both for establishing estimates from above
for (p,l)-capacity and for estimates from below for the norm of an extension
operator. In [51], [52], [42] it was used for obtaining sharp estimates from
below of the minimal norm of an extension operator.

Lemma 3.6. Letl € N and let 2 = UZ:1 {21, where s € N or s = 0o and

2k are open sets such that in the case s = oo the multiplicity of the covering

{02:}22, is finite and for each k = 1,s there exists a bounded extension

operator Ty, : Wl (£2) — WhHR"). If s = oo, let also sup | T%|| < 0.
1S

Then for 1 < p < oo WhH(2) = VEl(2) and for 1 < p < o0
Whl(02) = Wi(RQ).

P

Proof. Let 1 < p < o0, f € WIl]l(.Q) and let g € N} satisfy || = . By
the properties of weak derivatives D? f exists on (2. Furthermore, since (see
Section 2) Wl-!(R*) = W/(R") and the norms are equivalent, we have

ID2FIG, o <Y [ DEfrae <y [ DA P de
k=19 k=1R"

k=1,s

P
< M, sup || TP ; [FA SR

s n s alf p
—1
< Mi(n+1)7 silgllTkllp<Z/ﬂ‘|fklpdﬂf+ZZ/Q_ (@) dl")
k=1,s k=1 k j=1 k=1 k J7/ w
n alf p
<o swp |l ([ ipae+ X [ (55) [ )
k=1,s ] j=1 ] al’] w

< M. TP FIIP
< Maoe sup TPy

where M; > 0 and My = M;(n + 1)P~! depend only on n,l and p.
Hence the second statement of the lemma follows. The first statement is
proved in a similar way. (If p = oo, then the proof is simpler and there is no

necessity to suppose in the case s = oo that the multiplicity of the covering
{02:}52, is finite.) O

Lemma 3.7. 1. Let L € N, 1 < p < 00 and let 2 = J;_, 2k, where s € N
and 2, are bounded open sets such that for each k = 1,s and for some
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b > 0 there exists an extension operator Ty, : wh (2x) — wh((£2)%*). Then
Wh(2) = w,(£2).

2. The statement 1 is also valid if we replace wh(-), WL(-) by wh'(-),
Whl(:) respectively.

Proof. Let f € wh(£2). Since Ty f € wh((2%)) and 2, C ((£24)%)s,, by
(2) we have f = ka € L,(f2). Hence f € L,(£2) and the statement of the
lemma follows. O

Next we give several examples showing the advantage of constructing of
an extension operator which is bounded both as

T:Ly(2) = Ly(R*) and T :W)(R2) — W(R"). (6)

First we note that from inequality (3), where 1 <p=¢ < ooand § € N}
satisfies |3| < 1 —1, it follows that for all ¢ > 0 and Vf € W/(R")

IDS Il @ny < exe™PVEIDY £l gy + [ Fllut ey
and

1D fllz, ey < s AU Gy 11
—18l/1 (1=181/1
o= (8 )

Lemma 3.8. Letl € N, 1 < p < o0, f € N satisfy |B] < 1—1 and let
2 CR™ be an open set such that there exists a bounded extension opera-
tor (6). Then

1) there exists cq4 > 0 such that for alle >0, Vf € W]ﬁ(()),

IDS fllr, (o) < cae PVEZIED| £l1L o) + el fllwi (o),

2) for each e > 0 there exists cs = c5(eg) > 0 such that for all 0 < & < &,
Vfe W, (92),

(P2

Ly(2) S ¢ 6_|’8‘/(l_‘ﬁ|)||f||Lp(m + €||f||w;(n)7

3) there eists ce > 0 such that V.f € W(2)

l l
D5 f Nz, ) < es 1A 110 oy
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Proof. Let ||Tlo = |IT|1,(2)—L,®» and [Tl = [|Tllw12)—wi @
1) By (6) for all 6 > 0,

||D’8f||L (@) < IDE(THIIE

Ly(R™)

< 18 =0T f| 1@ + 81T Fllwsen
_ 1Bl
< e8P [T llo £, + SN 1 £l wi

Setting 6||T||; = &, we obtain that for all ¢ > 0,

1— — —
1D Fllzyq < (e TUlT IV D) =D £ )+l Fllwyo

2) Also for 0 < ¢ < &,

— — _
102 Fll (2 < (ealTlT IV DD 4 V£l () + 2l Fllas o)

(I— /(- — —
< (el TloliT V170 4 /10 ) D £, ) + €l Fllug -

3) Finally,

10512 S UDET Hllz, ey < esll DAL ITAIL ey

l l l l
< e Tl V),V IIfIIILP('?J/ £ -

Let us consider the K-functional

k(.0 = ot (ol +0F = slhwyco )

eWl(2)

where t > 0,1 € N, 1 < p < oo and {2 C R" is an arbitrary open set.
Let (L,(£2), WI(Q)) where 0 < ¢ < 00, 1 < 6 < o0, be an interpolation
space with the norm

*° d
s gion.. = [ @ ro F)

if 1 <6 < oo and

1A llz, () wi2) .y = sup (7K (t, f,92)),

0,9

1/6
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if § = co. ((Ly(£2),W)(£2))e,q is the closure of W)(£2) with respect to this
norm.)

Lemma 3.9. Let l € N, 1 < p < o0 and let 2 C R be an open set such
that there exists a linear bounded extension operator (6).
Then for all0<m <1,1<60<

T: (LP(“Q)a WZ(Q))0,m - (Lp(Rn)v W;(Rn))&m

P

and

1N (2, (2),W2(2))0.0m — (L (@), WL (R)) g < mAX([|T ][0, 1 T']]2)-
Proof. Since the operator T is linear,
K(t,TfR") <|Tglle,@ +tITf = Tgllwiwn
=T9ll, @ + 1T = Dllw@n
< Tllo lgllz, o) + ENT NN = gllwi(e)
< max(||Tlo, [|T1l:) (l9llz, 2) + tILf = gllwr(a))-

Hence,
K(t,Tf,R*) <max([|Tlo, ITI:)K(t, £, £2).
Consequently,

ITf 1L, @ wi @ < X[ Tlo, [T 1f 1z, 2),w2(2))0.0-
O

It is well known (see, for example, [64]) that (L, (R™), W/(R"))g,m, where
1 <p,0 < 00,0 <m <, coincides with the Nikol’skii-Besov space B}, (R")
defined by the ﬁnlteness of the norm

N / 145 1l e\ dh \M°
Ly(R™) " |h|m |h|n ’

where 0 € N,o0 > m and A7 f is the difference of order o of the function f
with step h € R™. If § = oo, then (f;..(-)?|h|™")d dh*’? should be replaced

by SupheR",h;ﬁO( )
The definition is easily extended to open sets {2 C R™: one should replace

- 11z, @) by | 2, ((2)mn))-

I1/1

B, (Rm) = ||f|
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Lemma 3.10. Let m > 0, 1 < p,0 < oo and let 2 C R be an open set
such that there exists a linear extension operator T which is bounded as
T : By(92) — B)4(R") and, for some | € N, | > m, is bounded in the
sense (6).

Then (Ly(£2), W)(£2))g,m = B",(£2) and the norms are equivalent.

Proof. 1. Let f € W)(£2) and ¢ > 0. Then for each g € W/(R"),
K(t, f,02) <gllz, o) + tIf = gllwi) < Ml9lle,@m + TS = gllwi@n-
Hence,
K(t, f,2) < K(t,Tf,R").

Consequently, say for 1 < 6 < oo,

oo 9dt 1/6
11l 2, w1 (2))0,0 = (/O (th(t,f, Q)) 7)

o 0 g\ 1/0
</o (th(t,Tfa Rn)) ?> =Tz, @, Wt @)
M ||Tf] Br,em) < My 1T

IN

IN

sy ()=, @ |5y, @),

where M; > 0 is independent of f.
2. On the other hand Vg € W'(£2),

/]

Bm,(2) < 1T f]

> i 0 g\ 1/
=M2(/O (t I&(t,f,lR)> 7)
oo [4 1/60
< M7l 1T ( [ (K )) 7
0

= Mo max([|T'llo, IT1) 1f1l(z,(2),w2(2))5m

B, < M || Tfll(L,@m),wi@m), ..

where My > 0 is independent of f. O
Sometimes the following corollary of Lemma 3.10 is useful.

Lemma 3.11. Let m > 0,1l € N, I >m, 1 < p,0 < oo and let 2 C R* be
an open set such that there exists a linear extension operator T bounded in
sense (6).
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If there exists a bounded linear extension operator

Ty : By(£2) — By (R"),

then also
T: B (2) — B),(R")

and is bounded.

Proof. Let f € W}(£2) C Bl'4(£2). Then by Lemmas 3.9, 3.10,

1T fllBm, ny < MyNTFll (@), w2000
< My max(||Tlo, [|T']]2) ||f|| (Lo(2) W) < M2 [ fllB1 (02):

where My, M, are independent of f. O

Finally, we give some comments about applications of extension opera-
tors which are bounded as

T:L,(2)— L,(R*) and T: wé(()) — w;(]R”). (7)

First we note that if {2 is bounded or unbounded and such that for some
ao € Ny satisfying |ag| =1 — 1, [lz*°||, (o) < oo, then operators T satisfy-
ing (7) do not exist. Indeed, if it were so, then by the same argument as in
the proof of Lemma 3.8 one could prove that

1D5 ANz, ) < ex 11 1A o) (8)

where ¢; > 0 is independent of f. Taking f(x) = 2*° (by the above assump-
tions 20 € W/(12)), we arrive to a contradiction.

The analogue of Lemma 3.7 has the form:

Lemma 3.12. Let l € N, 1 < p < o0, f € N} satisfy |5] <1 —1 and let
2 CR™ be an open set such that there exists a bounded extension opera-
tor (7). Then

1) there exists cg > 0 such that for alle >0, Vf € Wé(()),

ID2 fllz, (o) < ese VTN fl1L (o) + £l (2)

2) there exists ¢z > 0 such that Vf € W)(£2) inequality (8) is valid.

The proof is essentially the same as that of Lemma 3.8.
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4 The one-dimensional case

We start with the simplest case of Sobolev spaces Wzﬁ(a,b), in which it
is possible to give sharp two-sided estimates of the minimal norm of an
extension operator T : W/ (a,b) — W}(—00, 00).

Lemma 4.1. Let —o00 < a < b < ¢ < oo. If f is defined on [a,c] and
is absolutely continuous on [a,b] and [b,c], then f is absolutely continuous
on [a,c].

Proof. Given € > 0, there exists 6 > 0 such that for any finite system
of disjoint intervals (agl),/jgl ) C [a,b] and (« 1-2 ,/J’ ) ) [b, ] satisfying
the inequalities Z( (]) (J)) < 6, j = 1,2, the inequalities Z |f( )

(ﬂ(] )| < ¢/2, 7 = 1,2, hold. Now let (g, 3;) C [a,c] be a ﬁnlte system
of disjoint intervals satlsfylng > (B — ay) < 6. If one of them contains b,
denote it by (a*, 8*) . Then

Z|f @)= fBI< Y fl) = FB)+1f(@) = f(b)]
it (ai,0i)Cla,b]

HIO) = FB)N+ D Ifla) = £(B)]
it (a,8i)Clb,c]
< &.

(If there is no such interval (a*,3*), then the summands |f(a*) — f(8%)|
and |f(b) — f(B*)| must be omitted.) O

Lemma 4.2. Letle N, 1 <p<oo, —oo<a<b<c<oo, feWia,b)
and g € W/(b,c). Then the pasted function

L _[7 on(a)
~ g on(bo),
belongs to Wé(a,c) if, and only if,
fO0-) =g 0+), s=01,...,0-1, 9)

where £ (b—) and g (b+) are boundary values of £ and & (

mark 2.1).
If (9) is satisfied, then

IAllwi(a,e) < I llwican) + 9w, (10)

see Re-
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Proof. Let f1 and g; be the functions, equivalent to f and g, whose deriva-

tives fl(lfl), gilil) exist and are absolutely continuous on [a,b], [b, ] respec-

tively. Then f\¥(b) = £4(b—) and ¢\¥(b) = g% (b+),s = 0,1,...,1 — 1.
If (9) is satisfied, then the function

hy = {f1 on [a, b],

g1 on [b, (],

is such that hgl_l) exists and is absolutely continuous on [a, b]. Consequently,
the weak derivative A\ exists on (a,b) and

h(l) — 1(01) on (aab)v
v gg) on (b, c).

Hence, inequality (10) follows.
If (9) is not satisfied, then for any function hy defined on [a, b], coinciding

with f; on [a,b) and with g; on (b, ¢], the ordinary derivative hgl_l)(b) does
not exist. Hence, the weak derivative h{. ") does not exist on (a,c) and h
is not in WY (a, c). O

Lemma 4.3. Letl € N, 1 < p < 0o. Then there exists a linear extension
operator T : W) (—00,0) — W/ (—00,0), such that
TNt (—00,0)— Wt (—00,00) < 8" (11)

Idea of the proof. If I = 1, it is enough to consider the reflection operator,
i.e., to set

(i f)(x) = f(=x), >0, (12)

If I > 2, define (T>f)(x) for « > 0 as a linear combination of reflection and
dilations:

(T2f)(x Zak Ty f) (i) = Zakf ), (13)

where [, > 0 and «y, are chosen in such a way that
(Tof)P0+) = fD(0-), s=0,1,...,01—1. (14)

Verify that [[T2]lw:(—oo,0)0—Ww!(-cc,00) < 00 and choose Sp = k/I, k =
1,...,1, in order to prove (11). O
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Proof. Equalities (14) are equivalent to

l

Zak(—/jk)szl, s=0,1,...,1—1.

k=1

Consequently, by Cramer’s rule and the formula for Van-der-Monde’s de-
terminant,

IT Bi=8i)lg=—s

= Li<isi
‘ T (B:-5)
1<i<5<i
_ 1§I;I<k(/8i 1) k<1;[§l(_1 i) (15)
IT Bi—=8;) II (Be—5;)
1<i<k k<j<l
= 1+5 k=1,...,1
lﬁjg#k By = Pw

If Bp = k/I, k=1,....1, then

)
| < 4 %(i)

Therefore, setting y = —fx, we have

and

ITo fllwo.00) = I T2 1L, 0.00) + 1(T2 )|

l l
— I—
< (Z w15, 1“’) 11l ooy + (Z a8 1“’) 1Ol o)
k=1 k=1
l

! _ k l—l/p [
< (S ol sz <4 (3 (5) 7 (1) g e

k=1 k=1
< (8 = DI fllw (=o00)-

L,(0,00)

Hence, inequality (11) follows if we take into account Lemma 4.2. O
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Remark 4.1. It follows from the above proof that the inequalities

I T

l
w]’}l(—oo,O)—>w;;"(—oo,oo) S 8 ) m € N07 m S l7
also hold.

Corollary 4.1. Letl € N, 1 < p < o0, —0 < a < b < o0. Then there
exists a linear extension operator T : W)(a,b) — W)(2a — b,2b — a), such
that

1T W (a,0)— W (2a—b,26—a) < 2 8. (16)

Idea of the proof. Define

i apfla+ pr(a —z)) for z € (2a — b, a),

k=1
(Tsf)(x) = ¢ f(x) for z € (a,b), (17)
]
kzl apf(b+ pr(b—z)) for z € (b,2b— a),

where aj and f; are the same as in (13), observe that T5f is defined on
(2a — b,2b — a) since 0 < B <1, and apply the proof of Lemma 4.3. O

Corollary 4.2. Letl € N, 1 < p < o0, —0 < a < b < 00. Then there
exists a linear extension operator T : W) (a,b) — Wl(a—1,b41) such that

1Tl wiab)—wi(a—1,041) < 2 8'(1+(b— a)_lﬂ/pl)- (18)

Proof. Let 6 = min{1,b — a} and define

kilak,(;f(a—kéﬁk(a—x)) for z € (a — 1,a),

(Tuf)(z) = f(=) for z € (a,b), (19)
!
kglak,(;f(b—kéﬁk(b—x)) for x € (b,b+ 1),

1

where [ are the same as in (17) and a5 are such that Y g s(—06k)" =1,
k=1

s =0,...,0 — 1. Since by (14) |ays| < (b — a)~"*|ay]|, applying the proof

of Lemma 4.3 one arrives at (18). O
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In order to estimate the norm of an extension operator T : WIl)(—oo, 0) —
sz,(—oo7 oo) from below we prove the following statement, which reduces
this problem to a certain type of extremal boundary-value problems.

For given ag,...,a;—1 € R let
Gt (ag,...,a1_1) = inf Fllwio.00)-
p,l( 05 ) 1) fEW]’;(O,oo) ” ”VVP(O7 )
F(0+)=ar, k=0,....1-1
The quantity G;l(ao,...,al,l) is defined in a similar way with (—o0,0)
replacing (0, c0). Let
Q G+l(a0,a1,...,al,1)
1= sup
P aol et >0 G (a0, a1, - ai_q)
G+ aog,A14...,Q7—1
= sup p’l( LoD ; 1) . (20)
lag|+---+]|ai—1]/>0 G (ao, —a1,..-, (_1) - al—l)

The latter equality follows if the argument z is replaced by —z in the defi-
nition of G_ ;. Moreover, it follows from (20) that for 1 < p < oo,

Qp,l Z 17 l S Na Qp,l =1. (21)

Lemma 4.4. Letl € N, 1 <p < oo. Then
s\
(1+Q0) " SWEITIwy o0 wi( o) S1H Qi (22)

(If p= o0, then (1 + Q;l)l/i’ must be replaced by Qoo i)

Idea of the proof. Apply the inequality

1/p
(112 + 17 g, o)
ST fllwi(=o0,00) < N lIwi (=000 + 1T flIw1(0,00)-
In order to prove the first inequality (22) apply also the inequality
”Tf”W]ﬂ(O,oo) > G;l (ao, s 70'1*1)7 (24)

which, by the definition of G;r ;» holds for all ag,...,a;—1 and for each ex-

tension operator 7. In order to prove the second inequality (22) define,
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Ve > 0, the extension operator T. setting T.f = g. for z € (0,00), where
ge € W)(0,00) is any function, which is such that gékt),,( 0+) = fka) (0-),
k=0,...,1—1, and

l19ellw1(0,00) < Gy (F(0-), - L FED0-) + e I F W (=c0,0)- (25)
O

Proof. 1. The second inequality in (23) is trivial since
12z, (=00,00) S AL, (=00,0) + IRl L, (0,00 -

The first inequality in (23) follows from Minkowski’s inequality for finite
sums because

1/p
10l oo = (IIE, gy + RIS 0 o))

1/p

+ (IR ey + 1S, )

P

> {(nhnL,,(oo,o) 1Al 1y o)

pY /P

+ (1000 + 100000}

1/p
= (101 ooy + 1 0ny)

2. Tt follows from (23) and (24) that for each ag,...,a;—1 € R such that
|a0| + -+ |a1_1| >0,

”Tf”W]I,(foo,oo)
1T W (= o0,0)— Wi (—00,00) = sup — e T
' ' FeWL(0,00),f%0 NI fllw

( (IITfIIW,;(o,oo> )P)l/f’
> 1+ sup —_—
feW]Z,(foo,O) ||f||W11,(—oo,O)
£ (0-)=ak,k=0,...,1—-1

P 1 1/17
<1+ (G J(ao, .. ,al,l)) sup T )
0,0

fEW;(foo,O) ”f”WI(_
£ (0—)=ax, k=0,...,1—1

= <1+ (G;l(a07'-~,all)>]3>1/p
Gpl(a07~-.,alfl

and we arrive at the first inequality in (22).
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3. Given ¢ > 0, by (23) and (26) we have

lgellwio
T <1+ sup Wy (000)

FEW](=00,0),f»0 ||f||Wl ,0)

G;l(ao, .. .,al,l)

<l4+e+ sup sup
ag,.a1-1ER: FEW](=c0,0) ||f||W]€(—oo,0)
Jaol - Hlai-1l>0 poo (o) —g,, k=0,....1-1

=1+Qpi+e
and the second inequality in (22) follows. O
Corollary 4.3. Let 1 < p < oco. Then

ll%f ||T||W]}(—0070)—’W]}(—oo,oo) — 21/17.

Proof. By (22) and (21), ||T||Wz —60,0) = W1 (—o00,00) = 21/? for each extension
operator T'. On the other hand’ 1‘5 is clear that for the extension operator T}

defined by (12)7 ||T1||Wé (—00,0) =W} (—00,00) = =21/P. O

Lemma 4.5. Letl €N, 1 <p<ooand f € Wé(07oo). Then

Zf(k (0+) o

Proof. Let f € W)(0,00). Then for almost every z € (0, c0)

L=1 (k) k x
Jw (0+) 1 -
x>=k§:jo e +(l_1)!/0 (=)™ £ (w) du

where the fé,k) (0+),k=0,1,...,1—1, are the boundary values of the weak

derivatives fl(uk). (See Remark 2.1.) Hence, by the triangle inequality for each
a>0,

1l 0,00y =

Ly (0,11

< fllz,0,0)

L,(0,a)

T

! (- w)'=" £ () du
0

M

L,(0,a)
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By Holder’s inequality,

x

(- w)'=t fD (u) du

p(O,a)
2D +1 1/p'
H ( > 1PN L, 0,0)
L (O a)
(1=1)p +1) VP a7 0. 1PN L, 0.0

=) (=15 + N0 € T WPl 00-

Consequently,

!
a
<N fllz, 00 + T 1] L,(0,0)-

Ly(0,a)
Setting a = (I)'/!, we get (26). O

Corollary 4.4. Forallle N, 1 <p< o0, ag,...,a;—1 € R,

-1

g
Glilao, ... ay) > Zk, " (27)

Ly (0, (/1)

Lemma 4.6. For all ]l € N, 1 < p < > and every extension operator
T: WIQ(—OO,O) — W;,(—oo,oo),

||T||W]€(_OO,O)_’W]I,(—OO’OO) Z 0.3. 2ll71/(2p). (28)
Proof. In view of Corollary 4.3 it is enough to consider the case [ > 2. We

set

0 for —oc0 <2 < —va,
fl(x) = 1
(x +va) for —va<x<0,
where a = (I!)'/! and v = (pl + 1)), With this choice of a and v,

(va)ttt/v
O (pl+ 1)t/

(va)ttt/p

l! Up =g 2l
+ (Va) (pl-'-].)l/p

I fillws
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Since

F=(@4va) -2 >0 -1 +v) Y@ +rva)

> (1-27 (@ + va)',
by (20) and (27) we have

S fz(k) (0)z*
| Gaulf(0),.... o) i R 0
= Il fillwt (= o0,0) - [l fullw1 (—o0,0)
+ l . _ ol pl+1 1/p
> (1 —2*‘)”(33 va) iy _ 12 [(1 + l) - 1]
[ fillwi(~o0,0) 2 v

1- 27" , e
=— {(1+(pl+1)vz)?l+1—1]

2l -1 1 1/p
- Tll/@p)pl/(?p){gpl\/ﬁ{(l + (pl + 1)~ 7P+t — 1] }

-1
> 2 2 hen-/en g
- 2 )

where £ = m>1r21 ¢(z) and for x > 0,

o(z) = Q—Z\/EKl +(1+ x)‘l/z>1+x - 1}

One can prove that £ = ¢(2) > 1.03396 and ¢(x) — 2 as © — +oo. Hence

27 -1 _ 27U 1 e
Qpa 2 —5—1 1/(2p) p=1/(2p) > ——t 1/2p,—1/(2¢)
> 0.4- (2 — 1)I71/Cp) > 0.3.2~1/Cp)
and by (21) inequality (27) follows. 0

Remark 4.2. Estimate (27) is slightly better than in [19], p. 255, and [27].

Lemma 4.7. Let l € N, —00o < a < b < o0, € > 0. Then there exists
a “cap-shaped” function n € C(R) such that 0 <n <1, n=1 on (a,b),
supp?n C (a —e,b+¢) and

In™) (x)| < (41)*e™", zxeR, k=0,...,L (29)
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Idea of the proof. Set

N=0_ 2 *w_e % W *X(a 5.0+5) (30)

(1+~) N 2(1+7) 2(14+7)

l-times

where X(a—z p+5) is the characteristic function of the interval (a — 5,0+ 5),
w(x)=1—|z| if |z] <1, w(z) = 0if |z| > 1, @ is any non-negative infinitely
differentiable kernel of molhﬁcation7 and ~ is a sufficiently small positive
number. Apply Young’s inequality and the equality

! p—
” o(1+~, X(‘l E’b"‘%)) ||LM(R) - ||w9(1+~, ”L
(One can find a detailed proof in [26] or [19] (Chapter 6).) O

Corollary 4.5. In the one-dimensional case VI € N there exists a non-
negative infinitely differentiable kernel of mollification p such that

uF @) < @k, zeR k=0,

Proof. Define 7 by (30), where a = b =0 and ¢ = 1, and apply the equality
1 * gl @) = [fllz.@) - l9llL, ) for non-negative fge Ly (R). 0

Lemma 4.8. There exists co > 0 such that for all I,m € N, m < [,
1<p,g< o0, —00o<a<b<ooandVfeWl(a,b),

17 oy < b 0= )57 ()" 1l
N e e TP

The proof can be found in [19] (Chapters 3, 6).

Corollary 4.6. If, in addition to the assumptions of Lemma 4.8, b—a < 1,
then

”ft(um)”Lq(a,b) < '™ (b—a) TP ||f||Wj,(a,b)-

If, in addition to the assumptions of Lemma 4.8, b—a > 1 and g > p, then

(i ||L (ap) < < 2Maetm ||f||W,§(a,b)~ (32)

"le., &€ C§ (), suppd C B(0,1) and Jon @dr =1.
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Lemma 4.9, Letl €N, 1<p< oo, —0o<a<b<oo,b—a<1. There
exists a linear operator T : W (a,b) — W(—o0,00), such that

Cgl ll

||T||W1§(a,b)HW1§(foo,oo) < m7 (33)

where c3 s a constant greater than 1.

Idea of the proof. Consider the operator
(T5f)(2) = (Taf)(z)n(z), z€R,

where 7 is the function constructed in Lemma 4.7 for ¢ = 1 and T} is
defined by (19), assuming that (T5f)(x) =0 for z ¢ (a—1,b+1), and apply
Corollary 4.6. O

Proof. Tt follows by the Leibniz formula, (29), (32) and (18) that

175 fllw(—c0,00) = IINT4f ||, (a=1,041) + ||(nT4f)fE¢l))||Lp(a—1,b+1)

< Ty f|

1
I\
oo+ 3 (0 )10 oo NN o100
m=0

l

! —m m
<l amsarn + (3 (1) 60"t ) ITflwyiaron

m=0
< (14 (162 D)) I Tafllw(a—1.41)
<4(1+(16c20)') 8 (b— a) LY £ 1w a,p)
1 (b — a) =P I|f||W]§(a,b) ;
where ¢3 = 32 (1 4 16¢2). Hence we obtain (33). O

IA

Lemma 4.10. Letl €N, 1<p< oo, —coc<a<b<oo,b—a>1. There
exists a linear extension operator T : W(a,b) — Wl(—o0,00) such that

L e L (34
where ¢4 1s a constant greater than 1.
Idea of the proof. Consider the operator
(T f)(@) = (Tsf)(x) n(x),

where 77 is the function constructed in Lemma 4.7 for ¢ = b — a and T3 is
defined by (17), and apply Lemma 4.8. O
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Proof. It follows by the Leibniz formula, (29), (31) and (16) that

1 T6f w1 (—o0,00) = 1MT3f| L, (20—b,26—a) + I T30 2, (20— 20—a)
< | Tsf]

L,(2a—b,2b—a)
l
l —m m
30 () e T 2000
m=0

< ||T3f||LP(2a b,2b—a)
l

+ Z ( ) (an)i-m b—a)m—lch<<m>mllTsf|

b—a l—m
+< ) 1(T5f)¢ ||Lp(2a b,2b— a))

L,(2a—b,2b—a)

l

ST fln,(2a—b,20—a)
!

s (X (1 )em) 0= Il asanea

m=0
l

l
+4 Z <m> ' ||(T3f)’(ul1)||Lp(2a—b,2b—a)

m=0

! _
1+ @ (1+e) 1+ b-a)) 175 fllwi(20—b,26—a)
! _
(1+ @1 +e) 8 (1+10=a) ) llwias
< (T+10=a) ™) llwiap < € (1 +1'(b - a)—z+1/p') Al ap) »

<
<2

where ¢4 = 16 (1 4+ 4 (1 + ¢2)). Hence we obtain (34). O

Remark 4.3. It follows from the proofs of Lemmas 4.9 and 4.10 that for
all —oo < a < b < oo there exists an extension operator 7' such that

m

! _m
Iy ey < 5 (1 i

), m e Ny, m <1,
where ¢5 is a constant greater than 1.

Now we consider estimates from below for the minimal norm of an ex-
tension operator.
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Lemma 4.11. Let 1 € N, 1 < p < o0, 0 < a < b < oco. Then for every
extension operator T : W(a,b) — Wl (—o00,00),

1 /4\' i
1T W (a,)— W (—00,00) 2 8—\/i<g> I (b—a) /7, (35)

Remark 4.4. We shall discuss two proofs of Lemma 4.11. The first of them
is a direct one: as in the proof of Lemma 4.6 it is based on the choice of
a function f € W/(a,b), which is the “worst” for extension. The second one
is based on Lemma 3.2. In both proofs the polynomials ¢;_1;, of degree [—1
closest to zero in L,(0,1) are involved, i.e., Q; 1., = 2 1 4+a; 222+ -+aq
and

1Qi-1:pll2,0,1) = b, ...ilbl,f;oeR ' + b2z 4+ bollz, 0,0)-

We recall that Q;—1.c0(7) = 27" R;_1 (22 — 1), where R,, is the Chebyshev
polynomial of the first type: R, (x) = 27 ™" cos(m arccos ). Moreover,

1Qi-1:pll2,0,1) S NQ1-1:00llL,00) < Q- 1300/l 0,y =8-47".  (36)
Idea of the first proof of Lemma 4.11. In the inequality

||Tf||Wp(7oo,oo)

ITH = 1T w0y W (o000 =
A= Wa (=000 = T 0

set

e 37)

apply the following corollary of the Kolmogorov-Stein inequality
m 1— m 1 m/l
1S 2 -oorm) € FIANE T o) IF I e (38)
where 0 < m <[ and 1 < p < o0, and the relation

inf ||h||W1(7oo,a) > 1
hEW]}(—oo,a) r
h(a—)=1
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The second proof of Lemma 4.11. By Lemma 3.2, for every extension oper-
ator T : W)(a,b) — W(—o00,00),

C*((av b)apv 00, lv l— 1)
T|=|T .
” || ” ||W11,(a,b)—>W]l)(—oo,oo) = C*((—OO,OO),p7OO7l7l— 1)

It follows from (3), where 2 = (a,b),q = 00, =1 — 1 and f is defined
by (37), and from (36) that

1> 110 £ e (at)
U=ty (VoM 1,p( )

=
> ézﬂ(z — 1)l (b= )"

C*((a,b),p,00,1,1 —

Lp(a,b)
(I =1)(b—a)H
1Qi-1:pllz,(0,1)

On the other hand, C*((—o0,),p,00,l,l — 1) < +/2x. (This follows

(see [19], p.134) by inequality (38).) Hence, applying Stirling’s formula, we

get

()
2427

4

l
! 1 ,
1711 > b= (-) (b a)

e

Finally, we give a formulation of the main result of Section 4.

Theorem 4.1. There exist cg,cr > 0 such that for alll € N, 1 < p < o0
and —oo < a < b < oo,

It .
¢ ( 1+ m) < inf TNl w (a,6)— Wt (—00,00)

a)
! '
§c7<1+ (b—a)l—l/l">'

Proof. If b — a = oo, then (39) follows from (11) and (28). If b — a < o0,
then (39) follows from (33), (34) and (35). O

(39)

5 Classes of open sets

We say that a domain H C R" is an elementary domain with a resolved
boundary with the parameters d, D, 0 < d < 00, 0 < D < o0 if

H={zeR": a, <z, <p(T), T€ W}, (40)
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where® diam H < D, z = (2,7,), T = (v1,...,Zpn_1), W = {z € R* ! :
a; <z; <b,i=1,...,n—1}, —o0 < a; <b; < o0, and

an +d < ¢(Z), zeW. (41)

If, in addition, ¢ € C(W), or ¢ € C!(W) for some | € N and
[ D*ollcwy < M if 1 < |a] <1 where 0 < < 00, or ¢ satisfies the
Lipschitz condition

S

lo(@) =@ < Mlz -7,  T,§€W, (42)

then we say that H is an elementary domain with a continuous boundary
with the parameters d, D, with a C'-boundary with the parameters d, D,
M, or with a Lipschitz boundary with the parameters d, D, M respectively.
Moreover, we say that an open set {2 C R™ has a resolved boundary with
the parameters d, 0 < d < oo, D, 0 < D < oo and » € N if there exist open
parallelepipeds V;, j = 1,s, where s € N for bounded 2 and s = oo for
unbounded (2, such that
1) (Vj)a N2 # 0 and diam V; < D,

2 2¢ UV

3) for each ball B the number of V; intersecting B is finite and the multi-
plicity of the covering {V;}3_; does not exceed s,
4) there exist rotations \;, j =1, s, such that

/\](‘/3) = {.IER”Z(L;]‘ < x; <bij,2': 1,...7’[1}
and
ANV ={zeR": an; < zp < 9;(T), T € W,},

where z = (z1,...,2p1),W; ={Z2 € R" 1 a;; <z <bjj,i=1,...,n—1},
and

anj +d < p;(T) < bp; —d, T eW;, (43)

ifV;nonN # 0. (If V; C 2, then ¢;(Z) = by, and the left inequality is
satisfied since b; — a,; > 2d.)

We note that \;(£2 NV;) and, if V; N 902 # 0, also )\;((Cﬁ) NV;) are
elementary domains with a resolved boundary with the parameters d, D,
where A7 () = (Aj1(2), -+, Ajn—1(2), = Ajn(2)).

8 One can verify that the set H defined by (40) is a domain if, and only if, the
function ¢ is lower semicontinuous on W.
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If an open set 2 C R™ has a resolved boundary with the parameters
d, D, > and, in addition, for some I € N all functions ¢; € C'(W;) and
1D*¢jllcwr,) < M if 1 < |a| <1, where 0 < M < oo and is independent
of j, or aﬁ functions ¢, satisfy the Lipschitz condition with the same con-
stant M, then we say that {2 has a C'-boundary (briefly 952 € C') with the
parameters d, D, », M, or a Lipschitz boundary (briefly 42 € Lip1) with
the parameters d, D, », M respectively.

If all functions ¢; are continuous on W, we say that 2 has a continuous
boundary with the parameters d, D, s.

Finally, we say that an open set 2 C R has a quasi-resolved (quasi-
continuous) boundary with the parameters d, D, s if 2 = |J;_, 2%, where
s € Nor s = oo, and {2, k = 1, s, are open sets, which have a resolved
(continuous) boundary with the parameters d, D, s, and the multiplicity of
the covering {(2; };_, does not exceed .

We call the set V, = Vo.p = U,cp(2,y) a conic body with the vertex x
constructed on the ball B (if € B, then V, = B). A domain {2 star-shaped
with respect to a ball B can be equivalently defined in the following way:
V& € (2 the conic body V, C (2.

Let us consider now the cone

h n—1 1/2 n—1 1/2
K=K = R": — 2 n ? )
) (r, h) {xe T(Z%) <z, <h 0< (Z%) <r}

=1 =1

We say also that an open set {2 satisfies the cone condition with the parame-
ters T > 0 and h > 0 if Vo € (2 there exists a cone K, C {2 with the point z
as vertex congruent to the cone K. Moreover, an open set (2 satisfies the
cone condition if for some r > 0 and h > 0 it satisfies the cone condition
with the parameters r and h.

Example 5.1. The domain 2 ={z e R": -1< z, <1-17|7, |7| < 1},
where T = (z1,...,2,-1), for v > 1 is an elementary bounded domain with
a Lipschitz boundary and satisfies the cone condition. For 0 < v < 1 it does
not have a Lipschitz boundary and does not satisfy the cone condition.

Example 5.2. The domain 2 = {z € R* : -1 < z, < |7|7, |F|] < 1}
satisfies the cone condition for each v > 0. It has a Lipschitz boundary if,
and only if, v > 1.

Example 5.3. Let ussupposethat 2 = {(z1,22) € R? : -1 <ay <1 if
—1<21<0, —1< 2y <2} if0< a2 <1}, where 0 < v < 1. Then 2
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is a bounded elementary domain with a resolved boundary, which is not
a quasi-continuous boundary.

Example 5.4. Let 2 = {(z1,22) € R : 0 < 27 < 1, 2] < 2y < 22}
where 0 <y < 00, v # 1. Then 942 is not a quasi-resolved boundary while
(2 satisfies the cone condition.

Example 5.5. For the elementary domain {2 defined by (40) the Lipschitz
condition (42) means geometrically that Vo € 92 the cones

Ki ={y e R": y, <o) - M|z — 7]},
Ky ={y eR": ¢(T) + M|z — 7| < yn}

are such that K n W c 0o, K;n W C <02, where W = {z € R :
TeEW, a, < x, <00}

Example 5.6. Let 2 = {(21,22) € R? : 22 < (1)}, where p(z1) =
—|zy " if 21 <0, p(x1) = 2] if 1 > 0 and v > 0. Then the function ¢
satisfies a Lipschitz condition on R if, and only if, v = 1, while 2 has a
Lipschitz boundary in the sense of the above definition for each v > 0.

Lemma 5.1. If an open set 2 C R™ has a Lipschitz boundary with the
parameters d, D, > and M, then both £2 and {2 satisfy the cone condition
with the parameters v, h depending only on d, M and n.

Lemma 5.2. 1. A bounded open set 2 C R* satisfies the cone condition
if, and only if, there exist s € N and elementary bounded domains (2,
k=1,...,s, with Lipschitz boundaries with the same parameters such that
2 =Ui_, .

2. An unbounded open set 2 C R™ satisfies the cone condition if, and
only if, there exist elementary bounded domains 2, k € N, with Lipschitz
boundaries with the same parameters such that
1) 2= Uiozl 2,
and
2) the multiplicity of the covering s« ({£2x}32,) is finite.

6 Pasting local extensions

We start by reducing the problem of extensions to the problem of local
extensions.
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Lemma 6.1. Let ]l € N, 1
Moreover, let U; CR*, j =
that

p < oo and let 2 C R* be an open set.
, 8, where s € N or s = o0, be open sets such

2 C O(U]),s

for some 6 > 0. If s = oo, suppose, in addition, that the multiplicity of the
covering » = x({U;}52,) is finite.
1. Suppose that for all j = 1,5 there exist bounded extension operators

1; - Vi nUy) — ViU)), (44)

where V;(QHUJ) ={fe€ Vpl(QﬂUj) s supp f C 2NU;}. If s = oo, suppose
also that sup;en [|T5|| < oo. Then there exists a bounded extension operator

T:VH2) — VIR). (45)
Moreover,
1Tl < e sup || T5]], (46)
Jj=1,s

where c1 > 0 depends only on n,l,6 and s. If all the T; are linear, then T
1s also linear.

2. The statement 1 also holds if one replaces the space Vlf(~) by the space
Vpl""’l(').

3. If 12 has a quasi-resolved boundary, then the statement 1 also holds if one
replaces the space V() by the space W/(-).

4. If £2 satisfies the come condition, then the statement 1 also holds if one
replaces the space V() by the space W'(-).

Idea of the proof. Assuming, without loss of generality, that (U;)s N 2 # 0
construct functions ¢); € C*°(R™), j = 1, s, such that the collection {w]? }j.zl
is a partition of unity corresponding to the covering {U; }j-:l, i.e., the fol-
lowing properties hold: 0 < ¢; < 1, supp¢); C U;, 325_, ¥7 =1 on 2 and
Va € N} satistying |a| < I, || D %HL @n) < M, where M1 depends only
on n,l and é. For f € VPZ(Q) set

Tf= Zq/;] (fy;)  on R, (47)

(Assume that ;T;(f;) =0 on “(U;).) O
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Proof. 1. Let n; € C*°(R™) be “cap-shaped” functions satisfying 0 < n; < 1,
n; =1 on (Uj)s2, m; = 0 on °((Uj)s/s) and |D°‘77]( )< Myslol a e Ng,

where Ms depends only on n and a. Then 1 < Z 73 < »xon U (Uj)s)2-

Further, let n € C;°(R*), 7 =1 on 2,7 =0on °(J (Uj)§/2). One can
=1
s jl/? s
construct functions v; by setting 1; = n; 1 ( > nf) on |J (Ui)s)z as-
=1

=1
suming that ¢; = 0 on C(CJ (Ui)s)2)-
2. The operator T deﬁrllg(li by (47) is an extension operator. For, let
x € . If x € suppep; for some j, then ;(x)(T;(f¢;))(x) = ¥F(x) f(x).
If & ¢ suppdy;, then ¥;(2)(ZL;(f ¥;))(z) = 0 = ¥} (x) f(x). So (Tf)(z) =

> =1 Y3 (@) f(z) = f(@).
3. Let a € N} and |a| =1. If s € N, then

D(Tf) = ZD“ (V; Ti(f;))  onR". (48)

If s = oo, then (48) still holds, because on “( |J (Uj;)s/2) both sides of (48)

=1

are equal to 0 and Vzx € U (Uj)s/2 the number of sets (Uj)s/, intersecting
=1
the ball B(xz,¢/2) is finite. Otherwise there exists a countable set of U;_,

s € N, satisfying (Uj,)s/2 N B(x,6/2) # 0. Hence x € Uj_, and we arrive to
a contradiction since »({U;}52,) < oo. Consequently, there exists s, € N

such that supp(¢;T;(f1;)) N B(x,6/2) # 0 for j > s,. So
Tf= Z v Ti(f;)  on B(x,5/2).
Hence,

Dg(Tf) = ZD“% (f15)) ZD% (fv;))  on B(z,6/2).

Therefore, by the appropriate properties of weak derivatives, (48) with
s = oo follows.
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4. Let a € Ny and a =0 or |a] = 1. In (47) , for all x € R?, and in (48),
for almost all x € R™, the number of nonzero summands does not exceed .
Hence, by Holder’s inequality for finite sums,

DA (TP < 51 Y |D5 (5 Ty (fui)IP
j=1

almost everywhere on R"” and consequently,
[opsanpas <t Y [ ps Tise) P
Rn = e
5. Therefore,
s 1/p
Il < M (3 15T W)
j=1

where Ms depends only on n,l and s. Since suppv; C Uj;, by the Leibniz
formula, we have

195 T (f5) lvicay < Mal| T5(f45) v,y
< My ([ T5 115 llvecanu;) (49)
< Ms 1T f v ;)

where My and Mj; depend only on n,l and 6. Now, as in the proof of
Lemma 3.3,

||Tf||v,g(Rn) < Mg sup || 5| ||f||WPI(Q)7
J

where Mg depends only on n,l,é and s. Hence (45) follows.

6. In case of the spaces V/!(-) we obtain (49) again by the Leibniz formula.
Hence, statement 2 of the lemma follows.

7. In case of the spaces W;,() the application of the Leibniz formula requires
also the inequality

I1D5gllr, ) < Mz lgllwi(e), (50)

where |8| < I and M7 is independent of g. (First for g = ¥;T;(f;), then
for g = f;.) If 2 has a quasi-resolved boundary, then this inequality holds
(see [19], Chapter 4).
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8. In case of the spaces W;,l() one needs the inequality

"9
oy )

where k =1,...,n,m=1,...,l—1 and Mg is independent of g. In a forth-
coming paper we shall prove this inequality for open sets {2 satisfying the
cone condition, using the extension theorem? for the spaces W/ (£2) for
open sets with a Lipschitz boundary. O

< Ms ”g”W;, ----- L) (51)
Ly(£2)

Remark 6.1. Suppose that in Lemma 6.1 the operators T satisfy the ad-
ditional condition

feviQnU;) = suppT,f C Uj. (52)

In this case the operator T may be constructed in a simpler way with the
help of a standard partition of unity {1/)]-};:1, ie, > 51 %; =1on 2. We
assume that T;(f;)(z) =0 if x € U; and set

Tf=> Ti(fv;) onR".

Jj=1

The operator T is an extension operator. For, let x € 2. If z € Uj,
then (T(f4;))(x) = ¢;(z) f(z), and if © ¢ Uj, then (Tj(f¢5))(x) =
0 = ¢j(@) f(2). Thus (Tf)(x) = ;- ¥;(x) f(z) = f(x). Note also
that for f e V/!(£2), because of (52), we have Tj(fy;) € V}(R") and
1T (f45) vy = 1 T (F3) v,

Remark 6.2. The method of pasting local extensions of Lemma 6.1 cannot

be applied to the spaces w}(£2) and wh!(£2) since estimates (50) and (51)

do not hold if we replace W(£2) by w},(£2), W}'(2) by wh(£2) respec-
tively. In Lemmas 6.2—-6.3 another method of pasting local extensions will

be described, which is applicable also to the spaces w! (£2) and wl*(12).

Lemma 6.2. Let [ € N, 1 < p < oo and let 2 be an open set. Moreover,
let 2; CR™, j =1,5 where s € N, be open sets such that 2 = 2y C {1 C
<o C 02, and 2° C 02, for some § > 0.

1. Suppose that for all § =1, s there exist bounded extension operators

Tj : w;(Qj_l) — w;(Q])

9 For this reason we shall not be able to apply Lemma 6.1 for the spaces
Wy!(£2). (We shall apply Lemmas 6.2-6.3 instead.)
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Then there exists a bounded extension operator

T: wé(Q) — wé(Q‘S). (53)
If all T; are linear, then T is also linear.
2. The statement 1 also holds if one replaces the space w}(-) by wh'(-).
3. The statement 1 also holds if one replaces the space w;() by Wzl)( ),

Wht(), V() or V(). Moreover, in this case in (53) 2° could be
replaced by R™.

Proof. We set T'=1T,---T,. Then T is an extension operator and
”T”w’(ﬂ —wl (£29) < H ||T ”wl 2;_1)—wk(£2;)- (54)
7=1

The second statement is proved in the same way.

In order to prove the third statement, let n € C*°(R™) be such that
n=1on 2 and suppn C 2°%/2, and set, for f € sz,(Q)7 Tf=nTf. Since
Vg € Wé(()‘s),

Ingllwz(esy < Allgllwe (s,

where'® A is independent of f, we have

I Tlwi @ —wi@n < A TTITlwice,——wie,)- (55)
j=1
The case of other spaces in statement 3 is similar. [l

The proof being quite clear, the problem is in choosing appropriate {2;.

In the most simple case of the n-dimensional unit cube 2 = (0,1)" one
can take 2;1 = (0,2)7 x (0,1)" 7, j = 1,...,n, and 2,2 = (—2,2)7 x
(0,2)"77, j=1,...,n. Then

2 C 0171 C 92’1 c---C Qn’1 C 0172 C QQ’Q c---C Qn’g ) Qé,
where § = 1.

For the general case of an open set with a Lipschitz boundary this can
be done with the help of the following statement.

Lemma 6.3. Let 2 be an open set with a Lipschitz boundary, satisfying
the definition in Section 5 with the parallelepipeds V;,j = 1,s, and with the

0 This follows by the Leibniz formula and inequality (2).
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parameters d, D, > and M. Moreover, suppose! that if V; NV, N 2 = 0,
then V; NV, = 0.

Given 0 < dy < d, M1 > M and v > 0, there exists an open set {24
with a Lipschitz boundary, satisfying the definition in Section 5 with the
parallelepipeds Vj(l),j =1, s, and with the parameters di, D, » and M, for
which

viV=w, V)eawcvVcv, =25
(if V; nVi =0, then V) = V),
RCcHCcRU NN, 82NV C (2,

and there exists p, depending only on d,dy, M, My and v, such that
(2U (V)42)¢ C 1.

For the case s € N see the proof in [12].

Lemma 6.4. 1. Let I € N, 1 < p < oo. Suppose that for each bounded
elementary domain H C R™, defined by (40), with a Lipschitz boundary
with the parameters d, D and M there exists a bounded linear extension
operator

THZWl

(H) — W,(V),
where V.= {z € R* : a; < z; < bj,i =1,...,n—1, a, < z, < 00},
Wi(H) ={f e WL(H) : supp f C HNV} and ||Tull < ¢, where ¢ > 0
depends only on n,l,p,d, D and M.

Then for each open set £2 C R™ with a Lipschitz boundary'? there exists

a bounded linear extension operator
T:Wh(2) - Wi(R").

Moreover, |T|| < c3, where cs > 0 depends only on n,l,p,d, D, > and M.
2. The statement 1 also holds if the space W(-) is replaced by V}(-).

1 This requirement does not restrict the generality. One can prove that given the
collection of parallelepipeds satisfying the conditions 1)-4) of Section 5 with
the parameters s,d, D, > and M, another collection of s parallelepipeds could
be constructed such that the conditions 1)-4) are satisfied with some other
parameters d, 5, s which depend only on d, D and s and the same M, and this
additional condition is also satisfied. (See [12].)

12 1f 2 is bounded, then it is enough to suppose that ||T|| < oo for each bounded
elementary domain H.
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Proof. By the assumptions of the lemma for all 7 = 1, s there exist bounded
extension operators

Ty : Wy ((20V5) = W (05(V5).
Let (A4;f)(z) = f(A;j(x)) and define
T = A, 1A,

We note that A\ : WHQ N V;) = WL (20V)), 4, 1 WEA(V;) —
Wh(V;) and || A; ||, || Agfl) || do not exceed some quantity depending only
on n and [. Hence,

TV W2 V) — WAV
and
T < A I T5 - 1A ) < My T3 )

where M; depends only on n and .

If 2 is bounded, then s € N and by Lemma 6.1 there exists a bounded
linear extension operator T' : W) (£2) — W)(R™). If £ is unbounded, then
s = oo and by the definition of an open set with a C!- or Lipschitz bound-
ary each bounded elementary domain A;(£2 N'V;) has the same parameters
d,D, M. Hence, by the assumptions of the lemma ||T}|| < c¢2. Moreover, in
this case the multiplicity of the covering {V;}32, is finite. Thus, Lemma 6.1
is applicable, which ensures the existence of a bounded linear extension
operator T : WL(£2) — WE(R™).

In case of the spaces V() the proof is similar. O

Remark 6.3. In the assumptions of Lemma 6.4 the condition Ty

W)(H) — W)(V) can be replaced by Ty : W)(H) — W)(H” nV) for
some 7 > 0, which depends only on n,d and M. This follows since one can
construct another extension operator TI(} ) W(H) — W)(V) by setting
Tg)f =nTgf, where n € C=(V) is such that n = 1 on H, suppn C H'NV
and, for |a] <, ||D°‘77||C(V) < ¢4, where ¢4 > 0 depends only on I, d and M.
(To do this one can mollify the characteristic function of H¢/? with step of
mollification equal to /4, where ¢ = dist(H,9(H")), and note that o > cs,

where ¢5 > 0 depends only on n, d and M.) Hence ||T1(11)|| < ¢g, where ¢g > 0
depends only on n,l,p,d, D and M.
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Lemma 6.5. Let [ € N, 1 < p < co. Suppose that for each bounded ele-
mentary domain H C R"™, defined by (40), with a Lipschitz boundary with
the parameters d,D and M, for some v > 0, which depends only on n,d
and M, there exists a bounded linear extension operator

Ty :wé(H) — wé(H”’ nv)

and ||Tx| < ¢7, where ¢z > 0 depends only on n,l,p,d, D and M.

Then for each open set £2 C R™ with a Lipschitz boundary'® there exists
6 > 0, which depends only on n,d and M, and a bounded linear extension
operator

T :wh(£2) — wh(£2°).
Moreover, |T|| < cs, where cg > 0 depends only onn,l,p,d, D, and M.

Proof. 1. 1f s € N, then by Lemma 6.3 there exist open sets (21, ..., {2 with
Lipschitz boundaries such that 2 C 21 C --- C {2, further 2, O 22 for
some o > 0 and

Qe C U] 0V, k=1,....5s (£ =10).

Next we note that, for some rotation Ay, Ap(£2x—1 N V) is a bounded
elementary domain with a Lipschitz boundary. Hence, by the assumptions
of the lemma, there exists a bounded linear extension operator

T s wh (M (25m1 N Vi) = w0l (A (25-1))Y 0 A (Vi)

For a function g defined on Ap(2k—1 N Vi), let (Akg)( ) = g(w(@)),
x €2, 1NV For f € wh(2 1 NVy), we define T V= kT(l)A L,
Since the operators

Ap tw (/\k(Qk lka)) I(Qk 1ﬁVk)7

! (56)
/1,c (Qk 1NV) = w ()\k(Qk 1N Vi)

are bounded, the operator
Ty :w (/\k(Qk 1N Vk)) 1(0271 N Vk)
is a bounded linear extension operator. Moreover, ||Tk|| < co, where ¢g > 0

depends only on n,l,p,d, D, and M.

13 1f (2 is bounded, then it is enough to suppose that || T || < oo for each bounded
elementary domain H .
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Finally, for f € w(2x1), we set (Txf)(z) = f(x) if = € 25

and (ka)( ) = (Tk(,z)f)(x) it @ € 2 \ 2,-1. Clearly, the operator
Ty, : wh (25—1) — wl(£2%) is also bounded, since

2
1Tk Fllus ) < M Flwt s + 1T Flus 2z ,om
2
< (14182 agcomsoveragcoq v ) Wl

Hence, T = T,--- Ty : wh(2) — wl(£2°) is a bounded linear extension
operator. However, by (54) it follows that ||T'|| < és, where ég > 0 depends
only on n,p,d, D, M and on s instead of .
2. If s = oo, one should split the infinite collection of the parallelepipeds
{V;}52, in a finite union of disjoint infinite subcollections, each of which
consists of disjoint parallelepipeds: {V;}52, = U {Vip}32,, where m € NN,
u=1

Vku € {V}}j’;l, {Vku}gilﬁ{Vk,;}zil = (Alfu # [and V;WHV;W =0ifk #* k
Moreover, without loss of generality we assume that for each parallelepiped
Vj either Vi, NV; =0 or Vi nV; =0 (k # k). We also note that this can
be done in such a way that m does not exceed some quantity, depending on
n,d, D and z.

By Lemma 6.3, applied to {2 and Vj;, there exist open sets {2, k € N,
with Lipschitz boundaries with the parameters d/2, D, >c and 2M and with

the parallepipeds V*) such that 2 C 21 C 2U(27NVi1), 82N0Via C Qi
and, for some ¢ > 0 depending only on d, M and v, (20 (Vi1)a/2)? C 1.
We note that Vk(lk) = Vi1. Moreover, if j is such that V; NV = 0 (briefly
J € Jr1), then Vj(k) =Vj, otherwise (Vj)q/2 C Vj(k) C Vj. Next we consider
the parallelepipeds V;,j € N, such that V; = V¥ for j € Ji = N\ Ju1,
k €N, and V =V; for ] € NMie; Jr1, and the set 21 = [J;—; 21. (Since
Ju N Tz =0, k # k,V; are well-defined.) Tt follows that £, is an open
set with a Lipschitz boundary with the parallelepipeds ‘7] and with the

parameters d/2, D, >z and 2M. In view of the properties of Vj(k)

have that

ncrzlcrzu<mm<UVk1)>, 8QH<UVM> C
k=1

k=1

and (2,1 we

and

(o0 (D)) .

k=1
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(We have taken into account that (AU B)? = A2 U B®.) As was noted in
the first step of the proof, by assumptions of the lemma for each k € N
there exists a bounded linear extension operator Tjy; : wé((l N Vi) —
wh (27 N Vip). Moreover, | Tia|| < co, k € N. We define the extension op-
erator Ty for f € wh (1) by setting Ty f = Tr1 f on 241, k € N. Since
(e \ 2) N (25, \ 2) = 0 for k # k, the operator T} is well-defined. More-
over, Ty : wh(2) — wh(21) and is bounded. Indeed, if p < oo, then
Vf e wh(02), :
I3y 0y = (3 IDEE DN

e|=t

<y / |DE(Ty f)|P dx

|e|=t

=17y (/ |De f |de+2/ |DS T,df)|de>
.le k9]

=l

lex
lnp (”f”p () + Z ||Tk1f||fullj(97ﬂvk1)>
lnp (”f” L(2) + Cg Z ”f”u;’ QOVU))
<[ ||f||fv’ @t chimr Z Z |D2 f|P dx)

k=1|a|=t ¥ ?NVi1
<1 L+ S I, )
P
Hence, for 1 < p < o0,

71 llwt (2) ot () < " (1 + col™).

If p = o0, the argument is similar.

In a similar way, starting from (21, with the help of Lemma 6.3 we con-
struct an open set {25 D (2, with a Lipschitz boundary and an appropriate
extension operator 75, and so on. Thus we obtain open sets (21,25, ..., 2
with Lipschitz boundaries such that 2 C 21 C --- C {2,,,, and

S Q
(Vku)d/2>> C 2,

(30

k=1
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and bounded linear extension operators Ty : wh(f2x 1) — wh(§2),
k=1,....,m (20 = ), satisfying the estimate

1Tkl (20 1)~ (20) ST (1 + col™).

Finally, we note that

e _ (m (D(V})m))g _ (rm (O D(Vku)%))g

7=1 pn=1 k=1

cl (nM n (U(VW d/2>> U 2, =02,
p=1 k=1

(We have taken into account that (A N B) C A¢ N B¢.) Hence,
T =T, T :w,(2) — w,(2°) is a bounded linear extension operator.
Moreover, by (54) ||| < cs, where cg > 0 depends only on n,p,d, D, M
and .

3. We also note that if s € N, then we can apply the same procedure as
in the second step of the proof, and we shall obtain the desired estimate
for ||T||, thus, improving the estimate established in the first step of the
proof. O

Lemma 6.6. 1. Let | € N, 1 < p < oo. Suppose that for each bounded
elementary domain H C R™, defined by (40), with a Lipschitz boundary with
the parameters d, D and M and for each rotation X\ there exists a bounded
linear extension operator

Tir : why > (A(H)) — wh

and ||Tra | < c10, where c19 > 0 depends only on n,l,p,d, D and M.

Then for each open set 2 C R™ with a Lipschitz boundary there ex-
ists 6 > 0, depending only on n,d and M, and a bounded linear exrtension
operator

T :wh ' (02) — w =H(029).

p

Moreover, ||T|| < c11, where ¢;1 > 0 depends only on m,l,p,d, D, s
and M.

2. The statement 1 also holds if one replaces w =) by Wl A or
Vl(+). In this case £2° can be replaced by R™.
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Proof. The proof is actually the same as the proof of Lemma 6.5. The only
distinction is that now we do not use the fact that the operators (56) where
w () is replaced by wh'(-), Wh!(-) or V-!(-), are bounded.'*

In case of the spaces WIl]l() the same operator T' is a bounded linear
extension operator as T : Wj!(£2) — Wh(£2°). Next let a function
n € C*(R") be such that » = 1 on 2, suppy C 2% and, for |a| < I,
[ D*nllc@n) < c12, where ¢1o > 0 depends only on n,[ and 6.

_ We set ff = nTf and, as in the proof of Lemma 6.3, it follows that
T : Wkt () - W) (R") is a bounded linear extension operator. More-

over, ||f|| < ¢13, where ¢13 > 0 depends only on n,l,p,d, D, s and M.
The case of the spaces V!(£2) is similar. O
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