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THEORY OF MULTIPLIERS IN SPACES OF DIFFERENTIABLE FUNCTIONS

AND ITS APEFLICATIONS

V. G. Maz’ya
Leningrad, USSR

"... and then the different branches
of Arithmetic - Ambition, Distraction,
Uglification, and Derision."
"I never heard of ‘'Uglification'",
Alice ventured to say. "What is it?"
Lewis Carrol, "Alice’s Adventures
in Wonderland"

By a multiplier, acting from a functional space S1 into another
one, S, , we mean a function which defines a linear mapping S1 into
S by pointwise multiplication. Thus, with the pair of spaces S1
S we associate a third one - the space of multipliers M(S:l — S

2

’*)
2 )4

2

Multipliers appear in various problems of analysis and theory of
differential and integral equations. Their usefulness can be illustra-
ted, for example, by the following most simple observation: The Schré-
dinger operator

. -2
A+ y(X)I : w’;‘-——»w’;

is bounded if and only if y € M(Wg — Wg-z) .

In this way, it is reasonable to consider the coefficients of dif-
ferential operators as multipliers. The same concerns the symbols of
pseudodifferential operators. Multipliers also appear in the theory of
differentiable mappings preserving the Sobolev spaces. Solutions of
boundary value problems can be sought in classes of multipliers. Be-
cause of their algebraic properties, multipliers are suitable objects
for a generalization of the basic facts of the calculus (theorems on
superposition, on implicit functions etc.).

The aim of the present lectures is to give a survey of the theory
of multipliers in pairs of Sobolev, Slobodeckii, Bessel potential,

*) Since a multiplier cannot "beautify" 81 (modulo annulling its
elements on a set), the Mock Turtle’s term "uglifier" is not quite

senseless, either.
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spaces etc. *). Regardless of the subst4ntiality and numerous applic-
ations of this theory, it attracted rel#tively little attention until
lately. Among first papers concerning our subject, let us mention the
one due to Devinatz and Hirschman [1], 1959, about the spectrum of the
operator of multiplication in the space Wﬁ » 2|£] <1, on the unit
circumference, two papers by Hirschman [2], 1961, and [3], 1962, which
also deal with multipliers in Wg and ﬁinally, a study of multipliers
in the space of Bessel potentials due t¢ Strichartz [4], 1967.

The lectures mainly include resulté of the author and Mrs. T. O.
Shaposhnikova obtained in the years 1979 - 1980 (see [5] - [13]) and
compiléd in the monograph "Multipliers in spaces of differentiable
functions", which is just being printed.

For lack of space, we restrict our exposition to the formulation
of results. The only exception is Secti@n 1.1, which includes proofs.
The contents of our lectures is as follows:

1. Description of spaces of multiplieré
1.1. Multipliers in pairs of Sobolév spaces
1.2. Multipliers in pairs of Bessel potential spaces
1.3. Multipliers in pairs of Slobodeckii spaces

2, Some properties of multipliers
2.1. On the spectrum of a multiplier in Hé
2.2. On functions of multipliers
2.3. The essential norm in M(Wg — wé)
2.4. Completely continuous multipliers
2.5. Traces and extensions of multipliers in wﬁ

3. Multipliers in a pair of Sobolev 5p§ces in a domain

4. Applications of multipliers |

4.1. Convolution operator in a pair of weighted spaces L2

4.2. Singular integral operators with symbols from spaces of
multipliers

4.3. On the norm and the essentiall norm of a differential opera-
toxr

4.4. Coercive estimates of solutions of elliptic boundary value
problems in spaces of multipliers

4.5. Implicit Function Theorems

4.6. On (p,¢)-diffeomorphisms

4.7. On regularity of the boundary in the Lp—theory of elliptic

*)

At the same time, we omit the Lp-theory of Fourier multipliers.
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boundary value problems

References

1. Description of spaces of multi-
pliers

1.1. Multipliers in pairs of Sobolev spaces

We start with studying the spaces M(wm wl) , where Wk is
the Sobolev space ) in R® , i.e. the completion of C; with
respect to the norm ||Vku]|L + ]|u||L ),

P

Let € M(W® wl u. — u in W and u, v in WL

Y ( b p) > uy b Y i b
Then there exists a sequence of positive integers {nk k21 such that

u (x) —ux) , y®u (%) ~ v(x)
k k

almost everywhere. Consequently, Vv = yu almost everywhere in rR"
and the operator wm 3 u — yu € P is closed. Since it is defined
on the whole Wm > Closed Graph Theorem implies that it is bounded.

As the norm in the space M(Wm - W ) we introduce the norm of

the operator of multiplication:

vt = sup{][yu|| Ilull s 1}
ME® - wh wi
P P
We shall write briefly ng instead of M(W? — Wﬁ) .
By Wﬁ,loc we denote the space

{u: un € Wﬁ for all n € C;}

Evidently, M(wg — wﬁ) C wﬁ,loc .
In what follows,
= n . — =
Q (x) {y e R" : |y-x| < o}, Q, =19 (0) .
We introduce the space

W unse = (0 ¢ sup [lngall < =)

with nz(x) =n(x-2) , ne€eC,, n=1 on 01 . Let

*
) If no domain is indicated in the symbol for the space, then the

domain is understood to be R" .
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sup,

[ull
wt €R

p,unif

In precisely the same way as above
and Sunif
the forthcoming considerations.

for any other functional sp

It is evident that the norm in Wé

norm
sup_ ||y; @, ) || , |
x ERP 1 wlp;

Let us present some auxiliary ass#

lngall o -
W

]
S which may appear in

we introduce the spaces loc

ace

unif is equivalent to the
E]

rtions, which serve as a base

for the proof of a theorem on necessary and sufficient conditions for

a function to belong to the space M( .

In the next lemma, the symbol cap

of a compact e C R® induced by the no

cap(e,wg) = inf{||u||P &
W

P
Replacing here Wg by any other £
cludes C. , we obtain the definition g

0
is a number of papers devoted to the st

—

wh)

> 1 .
P P

(e,Wg) stands for the capacity
rm of the space Wg , that is,

u € C; , uzl on e} .
unctional space S which in-
f the capacity cap(e,S) . There

udy and applications of such

set functions (see, e.g., [14] - [16] and others).

LEMMA 1.1. Let p € (l,4=) , m = 1,2,

n

in R . Then the exact constant in the

a.n JlulPau < cllal|B, o u e

is equivalent to the quantity

sup —ule) N
e cap(e,w§>

where e <©s an arbitrary compact with

For p =2 m

[171, 1962.

’

The proof
of the norm in wg H

fcap(nt.wg)d(tp)
0

(1.2)

1 this lemma wa

< cllul|®?

“?3

%.. and let y be a measure
| tnequality

©

0

C

a positive capacity cap(e,Wg).

s established by the author in

of Lemma 1.1 is baped on the following property

153



where N_ = {x : |u(x)| 2 t} . The validity of inequalities of the
type (1.2) was established in the author’s paper [18], where (1.2)
(and even a stronger inequality, in which the role of the capacity of
the set Nt was played by the capacity of a condenser Nt\N2t ) was
obtained only for m =1 and m = 2 . Later, Adams [19] proved (1.2)
for all integers m . Inequalities analogous to (1.2) were obtained
for Slobodeckii and Besov spaces and for spaces of poten-

tials (see [20] - [22]).

The estimate (1.2) being established, Lemma 1.1 can be proved
very easily. By definition of Lebesgue integral we have the identity
J!ulpdu = fumt)d(tp) .
0
Hence

[ulPay < sup —ule) Icap(N sWd Py
I | e cap(e,Wg) 0 e

which together with (1.2) implies the desired upper bound for C .

Minimizing the right-hand side of the inequality (1.1) on the set

fuec, :uzx1 on e} , we obtain

0o°
C 2 sup ——M.?l.____ .
e cap(e,W))

LEMMA 1.2. [5] The ezact constants C C in the inequalities

0 ’
JUm a1« 1uPa < ol lul 1B,
(1.3) P
[larPau < cllaliB,,

p

where' m > £ , u € C; , are equivalent.

Proof . The estimate C0 < cC is evident. Let us prove a

converse estimate. Let X — ¢ be a smooth positive function on the
half-axis [o,m) that equals x for x > 1 . An arbitrary function

3

u e C0 can be written in the form

u = (—A)z[c(-A)]-zu + T(-a) ,
where T is a function from C:[O,m) . As

4 20

£ - 2!
= (-1~ L b™" ,
laj =L ol

(-4)
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we have
-2
JlelPas < ccy (117, o1 ™ al By + [Imal 7))
P p
By Michlin’s theorem [23] on multipliers of Fourier transform in Lp,
the right-hand side cannot exceed 01C0||u||§m_z . The proof is com-
P

plete.
This lemma implies

COROLLARY 1.1. Let y e L

0 *
The exact constant C <in the inequality

p,loc °* p e (1,») and let u be an arbi-
’

trary function from C

Hyvgully, + llvally, < cllufl
P P

%

ig equivalent to the norm ||y|| -2 *)
M(w‘; + L)

.
In the following lemma we denote by Yh the mollification of y
with radius h , that is,

Tp(X) = h’“]x(iﬁi)v(c)da ,

where K€C, , K>0 and ||K||]; =1 .
0 = L1

LEMMA 1.3. The following estimate hold :

(1.4) vyl = il s Lim ||y || .
M(vf;)‘+w§) M(w‘;»wf)) h>0 M(w‘;-»w;';)

Proof . Let ue€ Cg . Minkowski inequality yields
-n.
Ilvj,xfh K(£/h)y (x-§)u(x)ag| ILP <

- i/p
< [ixem (1o Brwug-o]1Pa) ™ ae
with j = 0,£ . Hence

- . 1/p
Ilvhullvé s IIvHM(W,g . W‘;)jh nK(E/h)‘[(JIVm,y a(y-¢) |Pay)  +

*
) Two quantities a , b are said to be equivalent (notation:

a~b), if their ratio is bounded and separated from zero by positive
constants.
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([1ate-6 1Par) ac < 11411 I

+ u(y-¢ y J £ < |l u .
o -yl

This implies the left-hand inequality in (1.4). The right-hand inequa-

lity in (1.4) follows from the relation

[lyal| p = Lim ||yul] , < Lim ||y, || Huall o -
wﬁ B0 - wﬁ h~0 M(Wg > Wé) WE

LEMMA 1.4. If v € MWD — Wf;’ nmw’;“ — L) . P €, , then
D“y € M(Wg — Wg-'“') for any multiindex o with a positive order
la] 2 £ . We have the estimate

[1D%|] - =

MR - Wl

(1.5) P P
s el vl - +c(e)f|vl]

Mt L) ue® - wh

P P P P

where ¢ 18 an arbitrary positive number.

Pr oo f . Using the identity

up®y = L c DB(yDa-Bu)
a>8>0

with <, constants, which is easily verified by induction, we obtain

8

<

a : =8
| lup Y’le'lul = ca>§>0!’YD ul|w£'|a|+|8| .
P = P

Consequently, it suffices to prove (1.5) for |a| =1, 2 21 . We
have

IIHVYlIWL_l < IIUYIIWA + IIYVuI!wl_l <
(1.6) P P P
+ vl

3 (IIYHM(W,E,)1 R Wé) M(Wg_l R wé'l))llullwm .

P
The interpolation property of the Sobolev space (see [24],[25]) implies
the inequality

a.n iyl

l(ﬁ‘j)/l IlYllj/Z
M )

(wg > wh M(wg“ + L)

. < cllv]
SRR
nagd - e

Estimating the norm in (1.6) by means of the

IIY!lM(Wg—l N Wé-l)

last inequality we arrive at (1.5).
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Now we are able to establish both-sided estimates for the norm
in M(Wg - Wz) , formulated in terms of the spaces M(w; —_ Lp) .
Let us start with the lower bound.

LEMMA 1.5. Let vy € M(W’; — wf)) . Then

(1.8)  [|vpv]| + vl 2 zcllvll .
M(w‘;», ) M(W‘; + L) M(w‘géwé)

Proof . First, let us assume that vy € M(wg_z — Lp) . It
is evident that

B
yopully = livl] el g+ e £ |10yl s
reealla, < 1y s 1l ™ e p

(1.9) p P B#0
(1 £H [ Yl ul]
< v +c5 V.y s u .
= o 3 ~L+3
M(W;‘—»W;) 3=1 M(w‘;,l > L) w’;
By virtue of Lemma 1.4,
[1v vl : < ellvll +
3 ar BTN -2
M(W‘; L) zvx(w’l‘_f,l L)
+c(e)||v]|

- £+ 3

M > W

( b p)

Using the inequality (1.7) for estimating the last norm on the right-
hand side, we conclude that

oyl + e lvl]

H
~2+3 < elly! -2 .
MW L MW L
(U + L) (GRS M(Wg N wﬁ)
We substitute this inequality in (1.9). Then
Hyvpully < (ellvll oo +
£, M(Wgz-»Lp)

(1.10)
+ el
M

Mlull , -
o - W g

At the same time,

(1.11) [yully = vl [l .
Ly Ma® - wh ”w’“
P P P

Adding (1.10), (1.11) and using Corollary 1.1, we find the estimate

[yl ] ") s ellvl] -2 + c(e)||vl]
M(w;‘ » L) M(WI; > L)

Consequently,
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(1.12) vl s clivll

-£
M(W‘; M(w: > Wﬁ)

P
It remains to dispose of the assumption vy € M(Wg-t —_ Lp) . Since yeg

€ MW — W) , e have [ty s elinll

, where n € C;(Qz(x)) ,

W

n=1 on Ql(x) , X being an arbitrary p01nt in R" . Consequently,
sup |ly; Q|| <=
. 1 Lp

and for every k = 0,1,... there exists such a constant N that
]kah| 2 ¢y ‘holds. As the function Yh is bounded together with all
its derivatives, we conclude that Yh is a multiplier in wk for
every k =1,2,... and, a fortiori, Yh € M(Wm > Lp) . Hence

HYhII -£ iclthH
M(W‘; > Lp) M(W’; > W:)

Lemma 1.3 makes it possible to pass here to the limit as h — 0 , and

we obtain (1.12) for all y € M(W) — wf;) )

Let us estimate the first summand on the left-hand side of (1.8).

We have
[Tavey|ly < vl fluf|  +e¢ L |[p%apfy|], =<
L, ME® - wh W lai + 181 =2 Lo
a#0
(1vl] R )1 ]ul|
< Y +c 5 v.y u
= = j -L+3
M(Wg - wf;) =0 M(W‘;‘ > 1) w’;

which together with Lemma 1.4 and the inequality (1.12) yields

[ uv (vl Pyl e Hull s
ety £ U gy * T g )1

sc |yl [lal] o -
Mw® » wh We
p P P
This immediately provides the estimate
Hvprl] < clivll .
M(W‘; > L) M(wg > Wg)

Our lemma is proved.

The following lemma represents the conversion of our last result.

LEMMA 1.6. The following inequality holds:
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Y s c(llvpvl +
HHM(Wm-»WI') (17 I1\4(‘»1’“—»1.)

) -

0’

+ vl -
M(W‘;£+L

Proof . It is sufficient to assume that the right-hand side
of the inequality (1.13) is finite.

Lemma 1.5 together with the inequality (1.17) imply the estimate

V.y P 2L
7 ”M(w““""”J + L)
(1.14) P )4
5/L 1-3/% .
< ellvl 3/ lyl12737¢, R S 2
M(W;: > wﬁ) M(W’; > Lp) :

Let u € C; . We have

+ L)

y2
Hypowily, =eX || lvgvllv_sulll < e(llv,v]] +
L Lp =0 j £-3 kp ¥4 M(wg o

vl Z-ll! H
+ ¥ _ + % V.y
M(w'l‘)‘£+1.) =1 3

P flafl . -
YT et NS )) W
p p P

P

Hence and from (1.14) we obtain

HogGwlly g eyl LA 11 S F A Y A
Now we only have to observe that
Hyally < Hyll [Hall .
= Wit Wit
P M( b > Lp) b

Lemma 1.6 is proved.
Combining the formulations of Lemmas 1.5? 1.6, we obtain a result,

which was established in [5].

THEOREM 1.1. Let m , L be integers, p € (1,») . A funetion y be-
longs to the space M(wg — Wé) if and only ©if «y € b, loc * Ve €
€ M(WI; —~ L,) and yE€ M(w‘;'l — L) -
Moreover, we have the relation
~
||YHM(W§ s IIV,LYIIM(W,;+ . ||Y”M(w;;-£ cny
It is apparent that the problem of describing'the space M(Wg g Lp),
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p > 1, is solved by Lemma 1.1. In particular,
Hyselly,

~ sup T
3
M(wg >l e [cap(e,wglj

vl

This relation enables us to transcribe Theorem 1.1 in another form.

THEOREM 1.2. [5] A function ~y belongs to the space M(Wg — Wﬁ) s

p € (1,») , 2f and only <f vy € Wé 1oc and any compact eCRn sa~-
t]
tisfies

IIVLY;ellgp s c cap(e, W) ,
[lvsell? zc cap(e,wg'z) .
p

Moreover, the following relation holds:
Ilvlv;eIle [Tvselly

(1.15) [BE2R v osup i7 + ] .
( P _p - 1/p
M(#; i Wf)) e [cap(e,W’;)] [:canp(e,W’;‘)l 4]

Let us point out an important special case of Theorem 1.2 with m=£ .

COROLLARY 1.2. A function <y belongs to the space Mwﬁ s PE(1,=) ,

if and only 1f Yy € and any compact e C R satisfies
p,loc

==

|lvly;e[|€ < c cap(e,Wﬁ) .
P

Moreover, the following relation holds:
19pvselly,

(1.16) vl g~ o0 ————20 & Il
P [?ap(e,W§)]

REMARK 1.1. When formulating Theorem 1.2 and Corollary 1.2 we can
restrict ourselves to compacts e satisfying the condition
diam(e) < 1.

If pm>n, p > 1 , we can avoid the notion of capacity when
describing the space M(Wg — Wﬁ) . Indeed, we have

THEOREM 1.5. If pm>n, p€ (1,%) , then MG — wﬁ) = wﬁ,unif .

Pr oo £ . The inequalities
cap(e.wg) <c, cap(e,wg'l) <c
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hold provided . diam(e) < 1 , and thus (1.15) implies

”YHM(WI;»W;)LCHY”WC .

p,unif
In this way, w;,unif C M(W'; — Wé) .

We shall show that the converse inclusion holds as well provided
pm > n . To this aim we need the following known estimates of the ca-
pacity:

(1.17) cap(e,wg) > c provided pk >n and e # ¢ ,

(1.18) cap(e,W];) > c(mesne)l-pk/n

provided pk < n ,

n -pP

c(log(2 /mesne)) provided pk = n and
diam(e) < 1 .

v

(1.19) cap(e,wl;) >
By virtue of (1.17), we have
Hvgvselly
{e;aiiﬁlfe);l} [cap(e,#;)jl p S © S IIVN;Qi(x)HLP .
Analogously, for p(m-£) > n we obtain
HY;elle

sup s c sup_ ||y;Q (x)HL .
{e:diam(e)<1} [cap(e,vfl‘)"l)]llp x e R 1 o

The estimates (1.18) and (1.19) imply that for p(m-£) < n the
left-hand side of the last inequality does not exceed
c sup_ |]y;Q,(x)]] where
xGRn I 1 L

g =n/(m-£L) for p(m-£) <n ,
q>p for p(m-£) =n .

Now, by noticing that W;(Ql) C Lq(Qi) for pm > n we comi:lete the
proof.

We have deduced the identity M(W“; — WL) = W‘e unif by means of
’
Theorem 1.2. Nonetheless, it is easy to establish it directly.

The capacity is not necessary for the description of the space
M(w';l — Wg) , either. The following assertion, which was proved by the
author in [26], represents the analogue of Lemma 1.1 for p =1 .

LEMMA 1.6. Let m and L be integers, m > £ > 0 . The exact cong-
tant in the inequality

[lalaw < cltul uec

’ 0
i
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18 equivalent to the quantity

SUP rm_nu(Qr(x)) .
X€ER ,re (0,1)

THEOREM 1.4. (1) If m2n , m2> £ , then
Y v~ sup ||ysQ, )| , -
I T,
(ii) If £ <n, then

£-n
y” ~ sup r HV ¥;Q (x)l + Y | .
H wa xeR%,re (0,1) £ lL1 vl Lw

(iii) If £ <m <n , then

Hvl

n-n
o sup r V,73Q (%) +
MW > wf) x€ RH,r>o Hvgrsoy HL1

+ sup. |[y;Q, (x)
x € R® 1 ”L1

Provided mp < n, p > 1, we can give upper and lower bounds
for the norm in M(W’;"l — w‘;) , Which do not coincide but, on the other
hand, do not involve the capacity. Theorem 1.2 together with the esti-
mate of capacity of a ball immediately yields

COROLLARY 1.3. The following estimates hold:

m-n/p .
c sup r V,v;Q..(x) +
r xe R, re (0,1) (i £ ”Lp

+r-£|h;Qr(X)||L) , if pm<n, p>1,
P

il mop 2

M(W W) (p-1)/

PP c sup (log 2/r) vpysQ )] ], +
xeR,r €(0,1) Wrerse, p

-~

+ r-L”'V;Qr(x)HL) s ¢f pm=n, p>1.
P

On the other hand, Theorem 1.2, Remark 1.1 and the estimates
(1.18), (1.19) imply

COROLLARY ‘1.4. The following estimates hold:

Hvgrvselly
c sup — + sup_||v;Q, (x)|] ] ,
[(ezdiam(e);n (mes _e) /PNy gg" 1 Ly
ol if pm<n, p>1, £<m ,
Y = -
M(w“‘»w% c[ sup log (2" /mes_e) (P 1)/pl [v,vsel| +
P P {e:dia-ln(e)f_l}( n ) ¢ L

+ sup_||v;Q, (x)]] ] s, tf pm=n, p>1, £<m .
xeRrD 1 L,
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If m= L , then these estimates are -valid after replacing
sup | ]v;Q, () [| by vl -
x€ R® 1 Lp L,

Sometimes, Corollaries 1.3 and 1.4 enable us to easily verify
conditions for inclusion of individual functions in the space
M(wg —_ Wﬁ) . Let us give two examples of this type.

EXAMPLE 1.1. Let u-> 0 and

Y(x) = n(x) exp(i|x|™") ,
where n € C; , n(0) = 1 . Evidently,

19r o] o x| TEOHD
when x — 0 . Consequently,

v € W €n > pLantl) .

By Theorem 1.3 the same inequality is both a necessary and sufficient
condition for y to belong to the space M(Wg — wﬁ) for pm > n .

Let us assume that mp < n . Then
-€(u+1
Hogvseplly ~ 11 1xI780* 50
P P
and for m < £(u+1) ,

. m-n :
lim r /p||V£y;Qr||L = o ,
r+0 P

According to Corollary 1.3 this means that YA¢ M(Wg — Wﬁ) for m <
< L(u+1) . If m > £L(u+l) , then

_L(u+1);e”L < (mes_e)
= n
P

for an arbitrary compact e , diam(e) < 1 .

This together with Corollary 1.4 implies that y & M(Wg — wé) . Hence
for mp <n ,

-2 (u+1)+
Hvgvselly, <cll Ix] (u+1)+n/p
P

ye Mol - wh) e m 2 o)
In this same way we verify that

v e M(WI; — wé) & mo> L(u+l)
for mp =n .

EXAMPLE 1.2. Let u, v >0, n¢gCi(@) , n(0) =1 and

137V -1y
y(x) = n(x)(log|x| ") exp(i(log|x|™") ) .
Evidently,
- . Eu=1)=v
|77 |~ clx| ™ (10g]x| ™) :
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By an analogous argument as in Example 1.1, we obtain from the
last relation and from Corollaries 1.3 and 1.4 that

y € wﬁ & L(u-1) < v-1/p ,

Y€ Mwé > L(p-1) 2 v-1
provided £p =n .

1.2. Multipliers in pairs of Bessel potential spaces
For an arbitrary real u we set
A = e+ 2 = F L)) %
where F is the Fourier transform in R .

We introduce a space o (1<p<», m>0) , which is obtained by

completing the space C, with respect to the norm

0
m
[all g = 11"l
p P
If m is an integer, then HT = W. . It is well known (cf. [27]) that
u € Hg if and only if u = A—mf , where f € L_ . In other words,

each element of the space Hg is the Bessel potential with a density
belonging to LP .

Let (S u)(x) = |Vmu(x)[ for an integer m > 0 and

- b
(Spw) (x) = ([[J |%m3u(x+0y) - %m]u(x)ldejzy 1 Z{N}dy]
0

Q
1
provided m > 0 is non-integer.

According to Strichartz’s theorem [4], we have
Hamally ~ Hsgully + Tlhally
L L L
P ™ P
The following theorem providing a characterization of the space
M(H‘; — uﬁ) is proved in [11].
THEOREM 1.5. A function vy belongs to the space M(H‘; — Hé) , PE

€ (1,») , 2f and only if vy € and for any compact e C R" ,

£
Mp,loc

. p
llngre‘le s ¢ cap(e,H)) ,

ia

Ilysel B c cap(e,Hl %)
P

holds.
Further, we have the relation

164



llspr:ellLp Hyselly

~ sup [ + B }.
M(H;‘-rﬂé) e [cap(e,Hg)] 1/p [:cap(e,ﬂ"; l)] i/p

On the right-hand side, the restriction diam(e) < 1 may be added.

Hvl

In particular, for m = L we have

[1spyselly, :
FIvll oo sup + iy -
MH; {e:diam(e)z1} [cap(e,Hp)]l P L,
Another equivalence relation for the norm in the space

£ ,
M(H: — Hp) i8

Hivll ~
M(Hm+HL)
P P
[ lysell [1spvsell
. sup [ fom/m-p) T T )
{e:diam(e)<1} [cap(e,HE)](m_l)/mp [cap(e,Hg)ll/p

This immediately implies that for pm >n , p € (1,») , the

space M(Hg — Hé) coincides with H . The identity MHé =

p,unif

= Hﬁ unif Was established by Strichartz [4].
2

We can also prove one-sided estimates for the norm in
M(Hm — Hz) which do not involve capacity and are analogous to those
forgulated in Corollaries 1.3 and 1.4. The upper bounds yield various
sufficient conditions for functions to belong to the class
M(Hg —_ Hﬁ) , formulated in terms of well known functional spaces. Let
us present two theorems of this type.

THEOREM 1.6. (i) If 4Lp <n and vy € H
and the estimate

il g s eflivl] + 11y, |
i B/ unit L,

£ £
n/L,unif r‘Lw » then v € MHp

holds.

(ii) If mp<n, £ <m and vy € He

e ? n/m,unif then v ¢
€ M( b — Hp) and
vl e, = cllvl] 2 .
M(Hg*ﬂp) Hn/m,unif
In the next assertion, B* is a space of S. M. Nikofskil,

which consists of functions in ’Rn with a finite norm
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sup_ |n| 1] |a + | lvl]

v
h € R h [“JVHLq Wév] :
where Ahv(x) = v(x+h) - v(x) . ‘
THEOREM 1.7. [13] Let q 2 p , {£} >0 .
(i) If n/gq >2, {n/q} >0 and y € Bg/g unif ('\L°° , then y g
€ Mﬂé . The following inequality holds:
Flvll 3
MHL
P {n/q}
=in
sof s T e el + Tl ) -
xeRn,hte q °
(i1) If n/g>m, uw=n/g-m+l , {u} >0 and vy € ¥ then

q,e,unif
Y € M(Hg — Hé) and the following inequality holds:

[yl <

MER1t)
P P

< c( sup |h|—{“}!IAthuJY;Ql(X)IlL +
xeR“,heQ1 9

+ sup Il 0y, | -
x € R? >¥1 Lq

Hirschman [3] obtained the following sufficient condition for
to belong to the class ng on a unit circumference C : y 4is bounded
and has a finite g-variation Varq(y) for some q, 2 <q< 1/2 .

Here the g-variation is understood to be the quantity

m-1

q 1/
(1.20) Varq(Y) = sup ( =0[y(tj+1)—y(tj)| ) ,

J

the supremum being taken over all partitions of the circumference C
by points tj .

Theorem 1.7 immediately yields a sufficient condition for a func-
tion to belong to the class MHé(Rl) , which for p = 2 coincides

(after replacing R1 by € ) with Hirschman’s condition.

Let us introduce the local g-variation of a function vy given

1 by (1.20) with the supremum being taken over all choices of
a finite number of points tO < t1 < ... <ty considered in an arbit-
rary interval ¢ of unit length. Since evidently

on R
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le(t+h)-y(t)lth < cln| [var (1)]¢
o

we arrive at

COROLLARY 1.5, Let n=1, qzp and L9 <1 . If y €L, and
Varq(y) < o , then y € Mﬂé and the estimate

IIYIIMHLS.C(HYIIL + Var (n) .
P

holds.

1.3. Multipliers in pairs of Slobodeckil spaces

We introduce the function
i/p
_ -n-p{L}

(D, pu (x) = (Ilvf£1u<x+h> - v PR ) T
where p € (1,») and {£} > 0 . The space of functions with a finite
norm ||Dp olly * llull, is called the Slobodeckil space

’ P P

and denoted by Wﬁ .

The next theorém gives a characterization of the space
M(W: — wé) with {m} >0, {£} >0, p € (1,=) .

THEOREM 1.8. [10] A function vy belongs to the space MW" — wl)
(m and £ non-integers, m > £ , 1 <p<w) <if and only if vye€

ewt

b, loc and for every compact e C R® .

Ile lY;eIIE s const cap(e,wg) s llvsel|} < conmst cap(e,Wg-l) .
t] p p
Further, we have the relation
oy gvselly, [lyselly,
o]

~ sup + —E
vl IM(W’;-rwf,) e [[catp(e,l'l'];‘)]i/p [cap(e,w’r',1 £)]1/pj

Here again we can restrict ourselves to compacts satisfying the condi-
tion diam(e) < 1 .

From this result we can easily deduce that M(Wg — wé) = wﬁ,unif

provided m , £ are non-integers, p € (1,») and pm > n .

The next result deals with the case p = 1 . We shall use the
norm ”'-;Qr|”w£ , which is defined by
1
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-2
Musa il , = "1 lwe ], + [vpuoll
T Wf r L1 L7 %r L1
for L integer and by
-2 dxd
Mrase lil g = =" lwsaplly + J [ 19 a3 o] ";;_Tn%{‘[}'
1

Qr Q
for £ non-integer.

THEOREM 1.9. [10_] A function Yy belongs to the space M(Wx; — W‘,f) s

mx>4L20, 2f and only if vy € and

1,loc

llvso Golll ¢ < const =™
1

holds for any ball Qr(x) , 0 <r <1 . Further, we have

vl sup e ol , -
Wy

we N
MOy R re (0,1)
For m > n the last relation is equivalent to
vl oo v osupy s o lll p v vl .
M(WT—»W’%) x€R Wf wf,unif

Let us collect some embeddings representing sufficient conditions

for a function to belong to the space M(Wg — wé) .

THEOREM 1.10. Let p € (1,=) and {m}, {2} > 0 .
(i) If w=n/qgq~-4L and {p} > 0 , then
u
L, N B} . unie C MWE .
(ii) If n/g>m>2, pw=n/g-m+ 4L and {u} > 0 , then
u a
BY,m,unig C MG — W)
(iii) If pL <n and p 2 2, then
£
Le n Hn/t,unif c Mwﬁ °
(iv) If m>2£, {m}>0, {£} >0, pm<n and p > 2 , then
L . £
B /m,unif c M(Wg - wp) .
The embeddings (iii) and (iv) fazl 2f p < 2 .
) If q € [n/8,») for pt <n or q € (p,=] for pfL =n, then
L
L, N Bq,p,unif = Mwé '

(wi) If m>4L, q¢ [n/m=] for pm<n or q € (p,») for
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pm =n , then

L
Bg,p,unif © M(w’; - WIE) :

The symbol Bq P in (v) and (vi) stands for the Besov space
which consists of functions with a finlte norm

p -n-p{s}
([113p7¢ 0112 I an)”’ EIC
q
where {s} >0, g, p>1.

The assertion (i) implies the following result, which is analo-
gous to Corollary 1.5.

COROLLARY 1.6. Let m=1, qzp and Lg <1 . If y € L, and
Varq(y) < o , then y € Mw£ and the following estimate holds:

vl 'Mw"— s cllvlly + Vargm)
P

Putting g = « in (v) and (Qi), we obtain a simple criterion for
a function <y to belong to the class MWL (and hence, a fortiori,
to M(wg — Wﬁ) ), in terms of the modulus of continuity « of the

vector function Vft] ;
w(t) P
f[{}+1]dt<w.
0

By means of lacunary trigonometrical series it is not difficult
to prove that in a certain sense even this rough sufficient condition
cannot be improved.

To amend points (i), (ii) of Theorem 1.10 we present the follo-
wing result concerning the case pm = n .
THEOREM 1.11. [13] Let {m} , {£} >0, p > 1 and

-{£}
<y> = sup sup |h| log(1/|h|) | ]2, 9 pqviQ, (] -
yeR“heol/z h'[e3¥> %1 Ly

1) If Zp=n, y e L, and <y> < « , then y € ng and the
inequality
“Y“MW‘Z g oler+ 1l )
P
holds.
2) If mp=n, ye¢ Lp,unif and <y> < = , then y €
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€ M(W$ — wﬁ) for £ < m . Further, the inequality

[o] +
IIY,IM(W$+W£) s c(<y> IIYIILp’unif)

holds.

Since the norm of a function in the space Bi is equivalent
«©
to the norm ’

s
sup R7||Fu;Q, -\ Q + ||u ,
gup B 2Nl * M

where F is the Fourier transform (see Triebel [25]), the points (i),
(ii) of Theorem 1.10 imply

COROLLARY 1.7. 1) lLet 1<pg2, n/2>2, {£}>0.If ye€L,
and (Fy)(£) = o((1+|€|D™™) , then vy e MW; .
2) Let 1 <p<2, n/2>m, {m}, {£} >0, m> L . If

@) = o(+[eD™ER) |, then yeual — why
It is easily seen that the norm

-{2}
sup sup |h| log(1/|h|) | |84,9F pqusQ, (||, + |]u
yeRn hte/z h'Cel 1 L2 | HL2

is equivalent to the norm

va
sup R™ log R Fu;Q,,\ Q + u .
R>2 HEus 2R R”L2 3y HL2

Hence and from Theorem 1.1 we obtain
COROLLARY 1.8, If 2£ =n, y € L_ and

0

Fy(g) = o(]e|™@og [ehH7Y) ,
for |E| 22, then Y € ng ;

2, Some properties of mul¢tipliers

2.1. On the spectrum of a multiplier in Hﬁ

Let us start with the following simple property of multipliers
in Hl .

P
LEMMA 2.1. The following estimate is valid:

(2.1 Iy < vl .
Hy,_ | it
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Pro 6 £ . For any N =1,2,... and an arbitrary function u
from c; we have
1/N

N N_,1/N
HyTafly = [lyull ;HYH Hull .
Lp H£ l HL
P
Passing to the limit for N — « , we conclude (2.1).

We shall need another lemma on the composition of a function of one
variable and a multiplier, We will consider this problem once more in
Theorem 2.2.

LEMMA 2.2. Let y € MH; and let o be a segment on the real axis

such that y(x) € ¢ for a.e. x € R" . Further, let £ € CELJ'i(o) .
Then £(y) € MH; and we have the estimate

f(i) <CZ £ 50 Y ’

where k = L+1 provided L <i8 integer and k = [£]+1 provided
{£} > 0 .

Proof . Let us consider the less trivial case, {£} > 0 .
Let £ € (0,1) . Then

w11 s eIy as) Iy + Hagwlly, | -
p

Since

Sz(uf(Y))

in

|u|SLf(y) + ||f(Y)HLnsgu 2

iA

lal [E 50l ]y, Sgy + £ [y, Spu s
we have
e[ g < Qg Hsgrlly o HE@TIE ) Tull -
© > ) L H
P P P P
This together with Theorem 1.5 implies the estimate

£(y) £’ + £(yv)
ED e  SUIE T [l e HED)

Now it only remains to proceed by induction on Uﬂ

From Lemmas 2.1 and 2.2 we immediately conclude

COROLLARY 2.1. If vy € MHg and ||y"M|, <=, then yl¢ MH:;
and we have the estimate ©
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1

-1 k+1 k
It L2y

L= cl |y e
H MH
P P

where k 18 the same number as in Lemma 2.2.

We shall say that a complex number A belongs to the spectrum
of the multiplier vy ¢ Mﬂé , if the operator of multiplication by y=2A
has no bounded inverse.

Taking into account the embedding of Mﬁé

ately obtain from Corollary 2.1

into L°° , we immedi-

COROLLARY 2.2. A number ) belongs to the spectrum of a multiplier
y € MHp if and only if (y—A)_i £ L_ or, equivalently, if for any
positive number e the set {x: |y(x)-A| < e} has a positive n-di-

mensional measure.
For p=2, 2¢ <1 this result was obtained in [1].

A number A is called an eigenvalue of a multiplier y ¢ MHL N

if there exists a nonzero element u € Hﬁ such that (y=-\)u =0 .

It is clear that the set of eigenvalues is contained in the
spectrum. Let us introduce a condition which is necessary and suffi-
cient for 2\ to belong to the set of eigenvalues of a multiplier.

We shall need some definitions.

o
Let H£(QG) be the completion of the space CE(QG) ( Q6 being

the open ball) with respect to the norm of the space HP .

§/2 ° is said to be an Hé-nonessential
peL < n , if

A Borel set E, ECQ

subset of the ball 05/2 .

o
. va n-pl
capr,HP(QG)) 2 cy8 pe

where Co is a small positive constant that depends only on n , p ,
£ . If pf > n , then we define that the only Hp—nonessential set is
the empty set.

Let A be a Borel subset of R . The lowest upper bound of all
numbers § for which the set

. ; £_
{QS/Z(X)' Qs/z(x)\ A is a Hp nonessential subset of QG/Z(X)}

is nonempty, will be called the Hé
by d(A;Hﬁ) .

-inner diameter of A and denoted

Obviously, for pf > n this definition leads to the usual inner
diameter of the set A .

172



We have

THEOREM 2.1. A number ) s an eigenvalue of a multiplier y € Mﬂz

if and only if the #i-inner diameter of the set {x: v(x) = A} de
positive. €If pl > n then this means that the set {x: y(x) = A}
possesses interior points.)

2.2. On functions of multipliers

According to Hirschman [2], the composition ¢(y) of a function
¢ € c0»° , p e (0,1] and a multiplier y 4in the space Wé , L€
€ (0,1) , represents a multiplier in Wg , where r € (0,£p) provided
p <1 and r=4£ for p =1 .

Let us give a generalization of this result, which was obtained
in [10]. ; ’

THEOREM 2.2. Let 'yeM(Wm-—>W§)), n>4£, 0<2<1, p>1.
Further, let ¢ be a function defined on R1
C1

that

Zf Imy =0, or on
if y <8 a complex-valued function. Assume that ¢(0) =0 and

lo(t+t) = o(t)| £ Alx]®
with p € (0,1] .

Then ¢(y) € r*x(w'l‘)"’l+r — W) with T € (0,80) provided p <1,
and with r = L provided p = 1 . The following estimate holds:

He 1l oper o5 cA(llv]1° + 1lvl] ).
CTU N M(WDE) !

P

2.3. The essential norm in M(Wg — Wé)

Let p>1 and let both m and £ be simultaneously either
integers or non-integers, m > £ > 0 .

Let us denote by
ess ||v]|
M (Wt
( b p) ;
the essential norm of the operator of multiplication for the function
y € M(Wg — Wﬁ) , that is, the number

inf ||y-T|| Wt
5 W Wy
where (T} is the family of all completely continuous operators

W — Wt
P

P
The following theorem gives both-sides estimates of the essential
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norm (see [10]).

THEOREM 2.3. Let vy € M(wm — wp) ., m>4 >0, and let both m and

4 be stmultaneously ezther integers or non-integers.

(1) If p>1 and mp < n , then
yselly
ess ||v]| A~ lim sup [ B, +
M(w’;‘-»wé) 5+0 {e: d:.am(e)<6} [cap(e,wxl')l f'):] 1/p

oy gvselly,
. )
[cap(e,Wg)] P
vielly [y, pvselly,
? P

b N .
[cap(e,w’;'l)] /e [cap(e,w’;)] UP]

+ lim sup
e {eC Rn\Qr:diam(e);l}

In particular,

[1Dy pvselly
ess IIYHMwl n HYHL + tlxg ror dl::‘(e)d} [cap (e, W )]1 p *
[1pg pvselly,
+ lim s i
= {eCR"\erzlziam(e);n [caP(e'Wf,)]l P

i) If m<n, then

ess ||vy]]| a
AT
. ~n -2
~ lim §°0 sup (6 ") vsQex)]] + |Ip, ,vsQ x|, ) +
5+0 x € R} 8 Ly 127776 Ly
+ TIim sup rm—n[r_l'

[lvsQ .|, + |1D, ,vse ], ) -
Ix{+» r € (0,1) r Ll 1.t x L1

In particular,

T £-n
ess ||y]] vyl + Timosup, 67 | [Dy LviQ(x) ||+
ng Lo §50 x€ R 1,£7°%8 Ly

+ Iim sup 0 D, v )| .
Ixj+> re (0,1) 1,2 r Ly

(iii) If mp>n, p>1 or m>2n, p=1, then

ess ||v]] v Tim |y G0 o2 for m> £,

MOTWD) rxie W

ess [|v[| o~ vl + Tim [{y;Q )] 5 -
sz L X} 1 Wf)
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2.4. Completely continuous multipliers

o
Let us denote by M(W® — wl) , m> £ , the family of such func-
tions y that the operator of multiplication by y is completely conti-
nuous as an operator from Wg into Wﬁ .

[s]
Evidently, vy € M(Wg — wg) if and only if

ess ||v]|

M(Wg+wﬁ)

Consequently, Theorem 2.3 implies the follow1ng necessary and suffi-
cient conditions for a function vy ¢ M(wm - W ) to belong to the

class M(Wm — wl) .

0
COROLLARY 2.3. (i) If pm<n , p > 1, then vy € M(WI; — wf)) if
and only if

HY;eHL HDP’[Y;eHL
lim [ —Lp 17 + 13 ] =0,
5§+0 {e: dlam(e)<6} [cap(e,wg )] p [cap(e,wg)] P
[1vsell [Ip_ ,v;ell
lim sup ;;p 75 * B.t ?g ] =90 .
T [cap(e,wg ]1+/P [cap(e,wg)j p

{ec R“\Qr:diam(e);l}

o
(ii) If pm>n, p>1 or m=n, p=1, then y ¢ M(wg — wﬁ)

if and only ©f vy g and

p,unif
(2.2) m | |y;Q.(x)|| , =0
lxi-m 1 wf)

o
(iii) If m < n , then the inclusion «y € M(Wg — wé) i8 valid if
and only <if the identity

m-n
lim ¢ sup_ ||]v;Q, (x) || =0
50 x €R® T8 wf

<8 valid simultaneously with (2.2).

The next theorem offers still another characterization of the

space M(Wm Wz) .

THEOREM 2.4. The space M(Wm Wl) is the completion of C with

2 0
respect to the norm of the space M(Wm — wp) .

For the case m = £ we have the following result, which strengt-
hens Lemma 2.1.
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THEOREM 2.5. For £ >0 , 1<p < o, the following estimate is va-
lid:
[vlly =zess [Ivl] , -
L, Mwé
o
In accordance with Theorem 2.4, let us denote by sz the comp-
letion of the space C: with respect to the norm of Mwﬁ. The following

theorem, together with Theorem 2.5, shows that the essential norm in

o
Mwé is equivalent to the norm in L_ .

(]
THEOREM 2.6. If y e MW, 220, P21, then
ess ||v]] zcllvl]
wwt L,

P
is valid.

2.5. Traces and extensions of multipliers in wﬁ

Let R = {z = (x,y): x € %, y € R"] and let W; B(Rn+m) be

n+m
)

the completion of the space C;(R with respect to thé norm

[ J ly[PP(]9,0/P + |u|P)az Ve
Rn+m

As is well known [28], [22], the space Wi for non-integer
£ represents the space of traces on R® of functions from

Wk (Rn+m) , where g = k-£-m/p . Moreover, .wg(Rn) is the space of

p)s
traces on R® of functions from w§+m/p(Rn+m)

We will formulate two theorems which demonstrate that an analogous
situation occurs for the corresponding spaces of multipliers.

Following Stein [27], we introduce an operator of extension of

functions defined on R to the space g by means of the identity

(2.3) (Ty) (x,y) = f:(t)v(X"‘lYlt)dt ,

where the function ¢ is subjected to the conditions

k .
-9 Jarix® L s frgel(sfx)lax=c <o,
j=o aQix; )

(2.5) J;(x)dx =1,

[x“;(x)dx =0, 0<|a| = [€] .
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THEOREM 2.7. [6] Let {&} > 0, & <k , where k <& an integer,

re ka RO, g = k-£-m/n and y(x) = I'(x,0) . Then we have the
esttmates
- +
e, C Y |y ;R |r; RO

1

H Hrir™ M
e < T e < e,

An assertion analogous to Theorem 2.7 is valid even for the space

of multipliers ng 8(Riﬁ'l) , where Rn 1. {z = (x,y): x € R", y > 0}
’
while Wk (Rn+1) is the completion of C (Rn+1) with respect to

the norm

1/p
n+1
[ J ypBle,zUlpdz] + ||u;RY |[Lp .

n+1

Ry

THEOREM 2.8. [6] (i) Let {£} >0 , T ¢ ka R g = k-2-1/p
k > £ and y(x) = r(x,0) . Then
n+1||

(IR, < el|rsRy .
ul = MW
p,8
(ii) Let {£} >0, p21 and V_y € MWe(Rn . Further, let Ty be
the extension of y to R:+1 , defzned by the formula (2.3), where
the function 1t 1is& subjected only to the conditions (2.4), (2.5).
Then
+1 n
v (my)s RY ] < cCllvgy: R ,
s gk s mwt
p,>8 P

where k > £ and B = k-£-1/p .

THEOREM 2.9. Let {£} >0, 1 <p <o, T € ngm/p(R“““) s ¥(x) =
= I'{x,0) . Then we have the estimates

LN . ph+m
IIW,L,,,‘,/p s vk ”MWL 2 c,lIrsR IIwa_J,m/p .
P P P

1l|TY;Rn+m

3. Multipliers in a pair of Sobolevw
spaces in a domain

Let @ be a bounded domain of class 00’1 , m and £ integers,

m>£2>0, p21. We.will formulate a theorem expressing the possi-
bility of extension of multipliers from @ to R" . The symbol E
will denote the operator of extension of E. M. Stein (see [27], Chap.
6), which performs the extension w;(n) — W;(Rn) .
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The following result is proved in [7].

THEOREM 3.1. Let vy ¢ M(Wg(n) — Wé(n)] » 1 <p<».Then Ey €
€ M(Wﬁ(Rn) — Wﬁ(Rn)) and the inequality

| |Ey;R™ | cllysall

<
holds. -

Hence and from Theorems 1.2 - 1.4 we obtain the following equi-
valent norms in the space M(Wg(n) — wﬁ(n)] .

THEOREM 3.2. [7] (i) If p > 1 , mp'; n , then

|IV£Y;e|ILp [yselly

P
75 * )
[eap (e, W) Lcap(e.W’;‘"m“)n”"]

[lysal ~ sup [

I
M(w‘S-»wﬁ) ecq
(ii) If p>1, mp>n or p=1, m22n, then

[lysell v~ ysell o, .
M(w’“+w£) wt
PP p

(iii) If m < n , then

m-n

I DM s

Iysall sup

j-2
~ u o p” TllvsvsQ () Noally -
malwl)  zespe (0,1) j 3T Ly

0
Let us formulate a theorem on the essential norm of functions
y € M(W;(Q) — wﬁ(n)) , where m and £ are integers, Q is a

bounded domain of class Co’1 .

THEOREM 3.3. (i) If p > 1 and mp < n , then Iysell
> L

+
[eap (e, W) 5] i/p

ess ||y;ql]| A~ lim sup [
MOWISHE) 60 (e c a:diam(e)<s)

,Ile;ellL
+ : ]
[cap(e,ws)] /P
In particular,
[vpvselly
ess ||y;el| ~ | lysell; + lim sup .
Mwé Lu §+0 {ec Q:diam(e)<s} [cap(e, p)]l p

(ii) If m < n , then
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— m- -2
ess ||y;a]] v Tim 6™ sup (67| |v;0. ()N @], +
M(w‘;‘q»wf) 640 zeq 8 Ly

+ [Vgv304(2) N n||L1) .

In particular,

ess [lvsall o |lvsally +Tim st swp |17pvi0(2) 0 oy,
L - ze

1, then

(iii) If mp>n, p>1 or m3n,

ess ||y;el|] =0 for m > £ and
Mwhy
P P
ess ||v;al| v fysell for m=2¢ .
ng L,

This theorem immediately yields

COROLLARY 3.1. A funetion vy ¢ M(Wm(ﬂ) > w‘(n)) m > £ , belongs to
the subspace (Wm(ﬂ) — wl(n) of completely continuous multipliers
if and only <f

[lTyselly [vpvselly,
75 1137}
[cap(e, W] ] /P [cap(e,w';)] P

provided p > 1 and mp < n ;

lim sup {
§+0 {ec q:diam(e)<s}

lim 6™ ™ sup G_LIIY;Q (z) Nall; + [1v,v:50.(N all; ) =0
§+0 Ze® ( 8 Ly £77%s Ly

o
provided m < n . Finally, M(W‘;(Q) — Wg(n)) = M(W‘;(Q) — W’é(ﬂ))

provided either mp >n , p>1 or m>n, p=1.

4. Applications of multipliers

4.1. Convolution operator in a pair of weighted spaces L2

Let K : u-— k * u be the convolution operator with a kernel
k . The results of the preceding section can be regarded as theorems
on properties of K considered as an operator from L, ((1+|x[2 m/2]
into L ((1+|x] 1/2) , m>22 >0, with

1/2
2 2,x
[ lal| = (j|u| (+ix]HTax) .
2

L, ((1+]x]HF/?)

Let us give a simple example. The operator K is continuous if
and only if its symbol, that is, the Fourier transform Fk , belongs
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to the space M(W? — wf) . According to Theorem 1.8, this is equiva-

lent to Fk € W and

2
2,1loc

Ile’zdx < const cap(e,w?-L) s J|D2’£(Fk)|2dx < const cap(e,wg)
e ' e
for all compacts e in R" .

Moreover,
|le;eHL2 |ID2’£(Fk);eHL2

2l

K sup — +
HEl e \[cap(e,W] 41172 [jcap(e,W’Q")]l/2

If 2m > n , then

K[

4

sup Fk;Q, (x) + D (Fk);Q, (x) N
XERn (H 1 H:[.,2 H 2,8 1 HLZ)

4

[ ¥k ] .
2,unif

For p = 2 the results of Sec. 2.3 give both-sided estimates of
the essential.norm, as well as conditions of the complete continuity
of the operator K .

Theorem 2.2 describes properties of functions of an operator K
mapping Lz((1+|x|2)m/2) continuously into LZ((1+|x(2)L/2)
ticular, let 0 < £ <1 and let ¢ be a complex valued function of

In par-

the complex variable, ¢(0) = 0 . By ¢(K) 1let us denote the convo-
lution operator with the symbol ¢(Fk) . If the function ¢ satisfies
the uniform Lipschitz condition, then the operator ¢(K) is conti-
nuous in the same pair of spaces as the operator K .

Replacing the Lipschitz condition by a weaker one, |[¢(t+1) - ¢(t)]| <
< A|T|° , where |r| <1 and , e (0,1) , we obtain continuity of
the operator
-2+ n r
6 (K): Lz(Rn;(1+|x|2)(m £ r)/z) — L, (R ; (1+]x]%) /2)
where r € (0,£p) -

According to Corollary 2.2, a number A belongs to the spectrum
of .an operator K , which is continuous in LZ((1+|x|2)£/2] , if and
only if (Fk-A)"' ¢ 1L_ .

By virtue of Theorem 2.1, A is an eigenvalue of the same opera-
tor if and only if the (2,£)-inner diameter of the set {5: (Fk) (g) =
= A} is positive.
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4.2, Singular integral operators with symbols from spaces of multi-
pliers

Assertions formulated in this section (cf. [9]) show the useful-

ness of the spaces Mwé and ﬁwﬁ for developing the calculus of sin-
gular integral operators acting in the space b (1 <p<w, £=1,2,
«++). (The basic facts of the theory of such operators are found in
the monographs [23], [27], [30].)

Let us introduce the space Cm(MWﬁ,aql) of infinitely differen-
tiable functions on the sphere an with values in Mwﬁ .

In the same way we introduce the space C (Mwl aQ ) . In what
follows, A , B, C stand for singular integral operators in R"
with symbols a(x,8) , b(x,0) , c(x,0) , where x ¢ rR? , 0 ¢ aQ1 .

THEOREM 4.1. Let AB be a singular operator with a symbol ab
A¢* B =~ the composition of operators A , B .

If a € Cw(MW§,an) and there is such a function b_ e c“(aol)
o]
that b-b_ € c”(mwﬁ,aol) , then the operator AB - A°*B <s completely

continuous in b *

The next theorem gives condition for the operator AB -~ A+ B

to have order -1 in Wﬁ .

THEOREM 4.2. If a € c”(mwﬁ*l,aol) and Vb € c“(mwﬁ,aol) , then

the operator AB - Ao B maps Wﬁ continuously into W§+1 . Here AB
18 a singular operator with the symbol ab , while A+ B <s the com-
posttion of operators.

In the conclusion of this section we give two immediate conse-
quences of Theorems 4.1 and 4.2, concerning the regularization of a
singular integral operator.

COROLLARY 4.1. Let there exist a function a_ € c”(aol) such that
a-a_ € C (MWL 8Q,) . Further, let c = 1/a e L_(R" x 9Q,) . Then ce

€ C (wa aQ ) and c-c € C (MWL an » where c_ = 1/a_ . Moreover,
the operators A°eC~-1I and CoA - I are completely continuous in

p

COROLLARY 4.2. Let a ¢ L, (R" x 3Q,) and V,a € c”(mwﬁ,aol) .
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Further, let c = 1/a € Lm(Rn x aol) . Then ch € CN(MWé,aol) and
the operators AeC - I and C°A - I map wﬁ continuously into

wC+1
P

4.3. On the norm and the essential norm of a differential operator

Probably the simplest application of the space M(wg — wl) to
the theory of differential operators is that given in the following
assertion.

PROPOSITION 4.1, The operator

“4.1) P(x,Dx)u = ¥ a, (x)D u, XE€ R? .

|a|<k

represents a continuous mapping Wh Wg‘ , h>k , Zf a €
€ M(Wh lel Wh k) for any multzzndex o . We have the estimate

P <c a .
Il ng*wh_k se L Il cL|iM(W]?_,(,,W,;_,c)

p

For some values of p , h , k , even the converse estimate holds.
Namely, we have

PROPOSITION 4.2. If p=1 or p(-k) >n, p>1, then the follo-

wing relation ie valid:

el x " Z ||aall -la -
> (IR k
W.p Wp layzk M(Wg w; )

The essential norm of the operator P possesses analogous pro-
perties:

PROPOSITION 4.3. (i) We have the estimate
ess ||P]| k<S¢ I ess|laf] -
wg*wg k lop <k a M(Wg '“'+W2 k)

(ii) If p=1 or pCt=k) >n, p>1 and if P maps W:
continuously into Wg_ , then the following relation holds:

ess ||P]| k* L ess||a |
R o Wi lel yhk
PP o) <k MW, W )
Finally, let us mention that the estimate

n n-1
P.s R" X S < ess P
1EN g, el
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holds, where P
P .

0 is the principal homogeneous part of the operator

4.4. Coercive estimates of solutions of elliptic boundary value
problems in spaces of multipliers

It is well known that the solutions of elliptic boundary value
problems satisfy coercive estimates in Sobolev spaces. It appears
that similar estimates are valid even for norms in classes of multi-
pliers acting on a Sobolev space.

In the half-space R2+1 = {(x,y): x € R®, y > 0} 1let us consider

the operator of a boundary value problem {P,Pl,...,Pk} » where P is
a differential operator of order 2k while Pj are the operators of
boundary conditions, induced by differential operators of orders kj .
We assume the coefficients of operators P , Pj to be constant and
such that the operators generate an €lliptic boundary value problem.

THEOREM 4.4. [8] Let vy e wg 1oc B N L R™Y) | where h is an
integer, h > 2k . Further, let Py € M(Wg(R2+1) — thZk(R2+1)) ,
- -k:-1/p
Povloy €M YPRY w3 T @RY) L Then vy e il (RY*Y)  and
37 ly=0 P p
+1 n+1
NP 4 < e(lipyrT k.t
P ' L Lt
P PP
Rl L)
PRt L h-1/p  h-k.-1/p iRy Mg
3 MW >w, 3
P P
n+1

Notice that the norm of the function <y in L, (R ) cannot be

omitted on the right-hand side, even in the case when ker{P,Pj} =0 .

Theorem 2.8 is the basis for the following theorem on the first
boundary value problem:

(4.2) P(u=0 for y >0, odu/ayd = ¢; for y =0, 0gjgk-1 .

THEOREM 4.5. [6] Let P be a homogeneous differential elliptic ope-
rator of order 2k with constant coefficients. If

Vk—l-j¢j € Mwﬁ(Rn) », 0<L£ <1, 1<p<w,
then there exists one and only one solution of the problem (4.2), such
n+1 . . . s
that V1Y € MWt r-£-1/p( ) , ¥ >1 . This solution satisfies

the estimate
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n+1H

k-1
Vo usRy scl ||Vk 1 6. 3RV | .
- =c.L -1-3%3
LS i

Let us present a theorem of the same character for the elliptic
operator

in an arbitrary bounded domain Q C R® with coefficients from Lw(n).
Let us assume that the matrix of coefficients is symmetric and positive
definite.

Let us consider the Dirichlet problem

o1
Lu=0 in g, u-g € W,() ,

where g € w%(a) . This problem is uniquely solvable.

THEOREM 4.6. [8] If g € MW%(Q) , them u € MW%(Q) . Moreover, u-g g€

¢ [+]
su[w%(o) — w;(n)) and we have the estimate

Hlusel| 4 <ellgsel] 4 -
MW2 MW2
REMARK 4.1. Let Q be a bounded domain with a boundary of class
¢ 1 | By Theorem 2.8, ng(Rn—l) is the space of traces on R™ © of
functions from MW%(R?). Hence it easily follows that any function ¢
from the space sz(an) has a extension g on Q from MW%(Q) N
such that

1

Hasall o~ [lesee]] o -
MW MW
2 2
This together with Theorem 4.6 implies the unique solvability in the
space MW%(Q) of the Dirichlet problem

Iu=0 in ¢ ,

ulyg = ¢ € MHIGoR) .

4.5. Implicit Function Theorems

The next assertion, formulated in terms of multipliers, represents
an analogue of the classical Implicit Function Theorem.

n-1

THEOREM 4.7. [7] Let G = {(x,y): x € R" , y > ¢(x)} , where ¢ sa-
p=1 Further, let u be

tisfiee the uniform Lipschitz condition in R
a function in G satisfying the following conditions:
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(i) grad u € Mwé—l(G) , where L is an integer, L 2 2 ,
(11)  u(x,¢(x)+0) =0 ,
(iii) inf(du/dy) (x,¢(x)+0) > 0 .

Then grad ¢ € MWé—l_l/p(Rn_l)

Close to this result is the next theorem on implicit mappings.

THEOREM 4.8. [7] Let £ and s be integers, n > s > n-(£-1)p 2 0 .

Further, let X € RS s Y € RS , 2z = (x,y) and let u : R? » Rn—s’

¢ R® » R"7% e mappings satisfying the conditions
. -1,.n

1wy emi@®Y

(ii u(x,¢(x)) = 0 for almost every Xx € RS .

(iii) the matriz [u;(x,¢(x))]_1 exists and its norm is uniformly
bounded.

Then ¢! € M p'l'(n's)/p .

Local variants of Theorems 4.7, 4.8 are valid as well.

4.6. On (p,£)-diffeomorphisms

Let U be an open subset of the space R® . In the present sec-
tion we study the space wﬁ(U) not only for £ = 0,1,... but for
£ > 0 non-integer as well. In this latter case,

[wsO] ] p = [1wsul] oy *
WP wP
(2] e 1/p
+ .Z [I J|Vju(x)-vju(y)[p | %=y | n P{udxdy] .
=0 ¢

Together with U we consider an open set V C R® and introduce
a Lipschitzian mapping x : U — V such that the determinant det «’
has a constant sign and is separated from zero. If the eléments of the
Jacobi matrix «’ belong to the space of multipliers Mwl—l(U) .
px21, £ 3>1, then by definition the mapping «k is a diffeomorphism.

We give a theorem on properties of the (p,£)-diffeomorphisms.

THEOREM 4.9. [7] (i) Let u € W‘g(V) , £ >1 and let x : U — V be
a (p,L)-diffeomorphism. Then Uuoex € Wﬁ(U) and we have the estimate
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Haexs Ul , < cflusvi] , .
wt = W
P P

(ii) If x <Zs a (p,L)-diffeomorphism, then 1 gs a (p,&)-
-diffeomorphism as well. /

.

(iii) Let vy € MWé(V) s, £ >1 and let «x be a (p,L)-diffeo-

morphism. Then yeo x € Mﬁ(U) and we have the estimate

llyol(; UJ'szfscll‘Y;vllMWL'
P

P

(iv) Let U , V and W be open subsets of R® , let Kq f U —
— V and Ky 3 V — W be (p,L)-diffeomorphisms. Then their composi-

tion Kpoky : U —>W t8 a (p,L)-diffeomorphism as well.

Let P be a differential operator of the form (4.1) on U ,
a (p,f)-diffeomorphism U — V , £ >k , and let Q be a differential
operator on V introduced by the identity Q(u ox 1y = (Pu) ox~1,
By virtue of Theorem 4.9, (i), (ii), the operator Q maps Wl(V)
continuously into Wﬁ—k(V) if and only if the operator P mgps

Wﬁ(U) continuously into wﬁ'k(U) .

£,k
Denote by Op loc

satisfying p, € M(WL

(U) the class of operators of the form (4.2)

lal

loc(U) — WL -k (U)) for any multiindex a ,

s loc
Jal <k .

£,k

PROPOSITION 4.4. An operator P belongs to the class Op loc(U) if
’
. £,k
and only 2if Q € op,loc(v) .
By virtue of Theorem 4.1, the condition Q € Oé’?oc(U) is suffi-
: -k
cient for the operator P to map wﬁ,loc(U) into Wl loc In

each of the cases p =1 and p(£-k) > n , the inclusion P €

£,k
€ opzloc
4.2).

(U) represents a necessary condition as well (see Proposition

In terms of (p,&)-diffeomorphisms we can in a standard manner
define the class of n~dimensional "(p,£)-manifolds", both with or with-
out boundary.

Let £ be an integer, £ > 2 , and N a (p,£)-manifold. If

p(£-1) < n we add the assumption that the (p,£)-structure on R is
of class C1 . Then Theorem 4.7 on implicit functions yields that the
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(p,£)-structure on M induces the (p,£-1/p)-structure on 3N .

As an example of a (p,£)-manifold with boundary we can consider
a domain in R® with a compact closure and a boundary having a local
explicit description by a Lipschitzian function with a gradient from

Mwé—l-i/p(Rn—l)

The class of (p,£)-manifolds is well suited for developing on
them the Lp—theory of elliptic boundary problems. Without caring about
full generality, we shall show in the next section that this is in-

deed the case with the boundary value problems in a subdomain of R" .

4.7. On regularity of the boundary in the Lp~theory of elliptic

boundary value problems

This settion deals with the apblication of the theory of multipliers
no elliptic boundary value problems in domains with "non-regular boun-
daries".

We consider the operator {P’Pl""’Ph} of a general elliptic
boundary value problem with smooth coefficients in a bounded domain
QC R® . We assume that ord P = 2h <&, ord Pj = kj <2, 1<pc«<

< o

It is well known that, provided the boundary is sufficiently
smooth,
h 2-k.-1/p
(4.3)  {p;P.} : w‘(sz) —»w By x pw_ 37 Geny
J j=1 P
is of Fredholm type, that is, it has a finite index and a closed range.
In particular, we have the following apriori estimate for all u €
€W (@) : \

JEII [ [usal |y gy +
P P

(4.4)

* S]] e + lwall |

p 1

where the last norm on the right-hand side can be omitted provided we
have uniqueness (see [25]).

The proof of these assertions of the "elliptic Lp—theory" is based
on an investigation of a boundary value problem with constant coeffi-
cients in Rf » and on a subsequent localization of the original prob-
lem by means of a partition of unity and a local mapping of the domain
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onto a half-space.

The smoothness of coefficients (and, consequently, of the solu-
tion) of the resulting boundary value problem in Rﬁ is determined
by the smoothness of the surface 099 .

We will characterize the boundary of the domain in terms of spa-
ces of multipliers. Then, using the above mentioned. technique of loca-
lization of the boundary value problem, we can apply theorems on tra-
ces of multipliers on the boundary (cf. Sec. 2.5). This approach ena-
bles us to weaken the well known requirements on the domain Q , which
guarantee validity of the Lp—theory.

Let @ Dbe a bounded domain of class CO’1

, that is, for every
point of the boundary 8@ there is a neighbourhood in which Q can
be described (in a certain Cartesian system of coordinates) by an ine-

quality y > ¢(x) with a Lipschitzian function ¢
If ¢ e wﬁ'l/P(R"'l) , then by definition, @ € wé'l/P .
Further, let us formulate the requirement on the domain @ ,
which in what follows will be called the condition Ng—i/p, p(L-1) <
< n : For every point O € 32 there exists a neighbourhood V and a

domain G = {(x,y): x € R}, y > ¢(x)} such that V Ng = VNG and
[

IIV¢I,MWL—1_1/P(Rn_1) 28
P

Here § is a constant, which depends on values at the point O of
the coefficients of the principal homogeneous parts of the operators
P’Pl"" Py in the system of coordinates (x,y) . For £ = 1 , the
role of the last inequality is played by the estimate ||V¢;Rn_1||L <
©

6.

The following result was established in [12].

THEOREM 4.10. Let a domain Q satisfy the condition Né—i/p for
p(2-1) < n and belong to the class Wé_l/p for p(L-1) > n . Then
(4.3) 2s a Fredholm operator.

It can be shown that the condition Nﬁ_llp is equivalent to the
inequality
1D, p-1/p€4:9250. 1,

lim { sup

B+ llvese lly | <6,
>0 lecQ [cap(e,wf) =175 =1y y]17P elln 0

where § is a sufficiently small constant, and

0
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1/p
-n+2-
Do, 2-1/p(#3Q) = “ |94 8 (x+h)=7, 4 (x) |Pn|T"*47P dh]

Q

€

Hence we easily find that the condition Né—l/p follows from the con-
vergence of one of the integrals

_p(n-1) v
I [(Dp £~1/p¢)(x)]p(£_1)—1 dx for p(£-1) <n ,
kn-l .

-1
[ L@, ps)p$ TP M08, 4 s 00 0]IPT ax for pU-1) = n .

R

n-1

Notice that for p(£-1) > n , the condition from Theorem 4.10

has the form

[1]
L 2]
[3]
[ 4
(5]
Cel

L7]
[ 8]

[10]

p ®
J 1E(Dp’£_1/p¢)(x)J dx < .
R
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