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RECENT DEVELOPMENTS IN THE THEORY OF FUNCTION SPACES AND 

LINEAR RĽGULAR ELLIPTIC DIFFERENTIAL EQUATIONS 

Hans Triebel 

1. Historical background 

It is the opinion of the author that the history of the theory 

of function spaces can be divided in three periods. ("Function spaces" 

means always normed or quasi-normed spaces of functions and distri-

butions.) The first period starts at the beginning and ends in the 

mid-thirties of our century. In this time the classical basic spaces 

L of p-integrable functions and C of m times differentiable 

functions were thoroughly investigated. (Here m = 0,1,2,...; we set 

0 s 

C = C .) The Hölder spaces C ,where 0 < s -4 integer, and the 

Hardy spaces H ,where 0 < p < °° (it is convenient for our purpose 

to mark these spaces with a dot, in contrast to the usual notation), 

belong to that period and anticipate the second period. Originally 

at that time the Hardy spaces were introduced in order to characteri-

ze the boundary values of analytic functions in a disk of the complex 

plane. The close connection of the Hardy spaces with the Fourier ana-

lysis was clear from the very beginning. The second period, the "con-

structive period", starts with S. L. SOBOLEVs papers (1935-1938), 

where the nowadays so-called Sobolev spaces W with m-0,1,2.... 

were introduced. A new tool, the theory of distributions, was disco-

vered and new techniques and results (e.g. imbedding theorems) were 

used successfully in order to investigate partial differential equa-

tions. The second period is characterized by more or less speculative 

constructions of a lot of new spaces with the help of explicit norms 

on the basis of the above classical spaces. This period had a culrai-

nation point at the end of the fifties and in the sixties, and flou-

rishes also in our time. First of all we must note the direct des-
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cendants of the above-mentioned -classical spaces (including the Hòlder 

spaces, the Hardy spaces, and the Sobolev spaces). These are the so-

-called isotropic spaces defined on the Euclidean n-space R (or 

on domains in R ) : (i) the Zygmund spaces ífs , which are extensions 

of the HБlder spaces to indices s which are integers (A. ZYGMÜND, 

1945), (ii) the spaces WS with 0 < s ф integer (L. N. SLOBODECKIJ, 

N. ARONSZAJN , E. GAGLIARDO, 1955-1958), (iii) the Lebesgue (or 

Bessel-potential or Liouville) spaces H
S
 (N. ARONSZAJN, K. T. SMITH, 

A. P. CALDERÓN, 1961), (iv) the Besov (or Lipschitz) spaces } ^ S 

p э q 

(0. V. BESOV, 1959-1961; it should be emphasized that the special 

case A » sometimes denoted as Nikoľskij spaces, was discovered 
p , 00 

by S. M. NIKOĽSKIJ, 1951), (v) finally, the space BMO of functions 

of bounded mean oscillation (F. JOHN, L, NIRENBERG, 1961), which 

(as we know nowadays)* is related to the real variable version of the 

n-dimensional Hardy spaces H (E. M. STEIN, G. WEISS, 1960). Beside 

these spaces, which have become classical nowadays, many extensions, 

generalizations and modlfications have been treated extensively : 

anisotropic spaces, weighted spaces, spaces with dominating deriva-

tives, Lorentz spaces, Campanato-Morrey spaces, Orlicz spaces, Or-

licz-Sobolev spaces etc. The third period, the "systematic period", 

starts in the sixties and is overlapping heavily with the contructive 

period. The inflation of spaces asks for simple and far-reaching 

methods which enable us to deal with function spaces (or at least 

vwith the hard core of tћe theory of function spaces, i.e. in our opi-

nion, the theory of isotropic spaces in the sense of the above-men-

tioned spaces) from tћe point of view of few general principles. 

The first remarkable success has been achieved in the framework of 

the abstract interpolation theory of Banacћ spaces and its applica-

tions to function spaces (E. GAGLIARDO, J. L. L Ю N S , E. MAGENES , 

J. PEETRE, A. P. CALDERÓN, 1 9 6 0 - 1 9 6 4 ) . Starting with simple spaces 

(L -spâces, Hölder spaces, Sobolev spaces), one obtains on the basis 
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of general abstract procedures (interpolation methods) a lot of new 

spaces (e. g. H or Л ) in a systematic way. The disadvantage 

of this method is that one needs starting spaces. At the end of the 

sixties and the Ueginning of the seventies new methods (and essenti-

ally improved old methods) of the Four.ier analysis and of the theory 

of the so-called maximal inequalities provided a new impetus in the 

theory of function spaces (J. PEETRE, E. M. STEIN, C. FEFFERMAN, 1967-

1975). With the help of these far-reaching new powerful techniques 

one can deal with all the function spaces marked in Fig.1 from a uni-

fied point of view and on the basis of very few general principles. 

All these spaces are contained in two scales B and F of 

j p»q p,q 

spaces, which are defined in the framework of the methods of the 

Fourier analysis. 

B
p,q'
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The aim of this paper is to give an up-to-date description of 

some aspects of the theory of function spaces, where we restrict our­

selves to isotropic unweighted spaces defined on R and on domains 

in R , in the framework of the Fourier analysis. Furthermore, we 

deal with some applications to regular elliptic differential opera­

tors. Section 2 contains a description of the "constructive spaces" 

(i.e. all the spaces mentioned in Fig.l except of B S and FS ) . 
p.q p»q 

In Section 3 we try to discuss in somewhat heuristical terms some 

ideas, principles and methods for spaces defined on R . The defini-

tion of the spaces B and F and a description of some funda-
p»q p»q 

mental properties is given in Sections 4 and 5. Again in somewhat 

heuristical terms we discuss in Section 6 further principles which 

are necessary for a successful investigation of the corresponding spa­

ces on domains. In Section 7 we describe some further properties and 

consider distinguished spaces. Finally, Section 8 deals with applica­

tions to regular elliptic differential operators. 

The theory of the constructive spaces (and also of the basic spa­

ces) has been treated extensively from several points of view in the 

books [l, 2, 4, 5, 7, 8, 9 ] . Systematic treatments of the spaces under 

consideration in the framework of the interpolation theory and the 

Fourier analysis may be found in the books [6, 9, 10, ll]. We do not 

quote the original papers and refer to the bibliography in the above 

books. In particular, this paper leans on [ll]. However, there are 

also some new results, points of view and interpretations which (so 

we hope) justify this paper. On the other hand, for the sake of com­

pleteness, we take over some considerations of [ll] in a modified and 

shortened way. 
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2. Spaces on R 
—-*- n 

The list of constructive spaces given below coincides essential­

ly with the corresponding lists in [ lo] , 2.5.1 and [11] , 1.3. Let R 

be the n-dimensional real Euclidean space. Let 

Da = " :— be the usual abbreviation of derivatives, 

ax*1... 3xan 

.« n 

n 
a = (op...,a ) a multi-index, a. > 0 integers, | a | = T a . . 

1 n 3 j=l J 

Furthermore, all functions and distributions are complex. 

(i) The spaces Cm(R ) . If C(R ) is the set of all bounded uni-
£ n _ n 

formly continuous functions f(x) on R and 

II-IIC(R ) = S"P l f ( x ) l ' n xe R n 
then, for m = 0,1,2,... , 

Cm(R ) = {f |Daf e C(R ) for all |a| 4 m} , 

M f M m - I l | D a f | | c ( R ) 
c (Rn) |-*|<m n ' 

Here C° (R ) = C (R ) . 
n n 

(ii) The spaces L ( R ) . If 0 < p < °° , then 

L (R ) = {f|f(x) Lebesgue-measurable on R , 

1 

l f И L (R ) " [ f | f ( x ) | P d X ] P < - } , 
P
 " 

J 
I 

n 

L^ (R ) = {f|f(x) Lebesgue-measurable on R , 

M f M T (K \ = e S S S U p | f ( x ) | < °°} . 
™K nJ xeR 

n 

(iii) The Holder spaces C (R ) . If s is a real number, then we put 

s = [ s] + { s} , [s] integer, 0 <_' { s} < 1 . 

If 0 < s ^ integer, then 

C S ( R ) = { f| f e J S l (R ) , n n 

i i f i i s - i i f i i M + , i r , - » P | p a , f ( x ) - / s ( ( y ) | < -}• 
C S ( R n ) C L s J ( R n ) l a l ^ s j x ^ y | x - yl { s i 

9J n 
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of the Hardy spaces. We shall not give the definition of the classi­

cal Hardy spaces in the framework of the complex function theory, 

which may be found in [l4], VII.7, cf. also [3, 7, 8 ] . 

Proposition 1. (i) If 0 <• s ?- integer, then CS(R ) = <£S (R ). 

Ui) If 1 < p < «, and m = 0,1,2,... , then Wm(R ) = Hm(R ) . 
4 p n p n 

Uii) If 1 < p < « and 0 < s 9- integer3 then W p( R
n ) = As ( \ ) . 

REMARK 2. These are well-known assertions, cf. e. g. [4, 5, 9 ] . 

Hence we may restrict our attention in the sequel to Zygmund spaces, 

Lebesgue spaces, Besov spaces, Hardy spaces, and BMO. (As we shall 

see, L (R ) , L (R ) with 0 < p 4 1 , and Cm(R ) with m=0,l,2,... 

are not "good" spaces in the sense of our criterion below.) 

3. Criterion and Principle 

In [ll], 1.1 and 1.2, we have given a rather extensive heuristi-

cal discussion of criteria, principles, and methods yielding the spa­

ces B S (R ) and Fs (R ) . We recall briefly some arguments and 

p,q n p,q n 

refer for a more detailed version to [ll]» 1.1 and 1.2 . Furthermore, 

we want to modify here 'some of the considerations in [ll]. 

We are concerned with quasi-Banach spaces A(R ) which are 

subspaces of s'(R ) (topological imbedding). A space A is said to 

be a quasi-Banach space if it has all the properties of a Banach spa­

ce except for the triangle inequality which is replaced by 

W*l + a 2 l l A ^ c ( M a i M A + M * 2 M A > 

for all a1 c A and all a_ € A (here c is independent of a, 

and a„ ). L (R ) with 0 < p < 1 is an example of a quasi-Banach 

space which is not a Banach space (of course, Banach spaces are spe­

cial quasi-Banach spaces). We are looking for spaces having "good" 

properties. Our point of view is that a space has good properties if 

it is useful in the theory of partial differential equations. If 

A2 (R ) denotes the space of all f € S (R ) such that Daf € A(R ) 
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Civ) The Zygmund spaces ^ (R ) . If s is a real number, then we 

put 

s = [s]~ + {s} , [s]~ integer, 0 < {s} <̂  1 . 

Furthermore, if h e R , then 

CAn f)Cx) = fCx + h) - f(x) , A* = A* A^""1 if £.=2,3,... 

If s > 0 , then 

<es(Rn) = {f |f € C-S] CRn)}, 

l | f | U ^ = l | f | 1 r i ~ + l SUP l h l " { ' > + H ^ a f H c c i ) < - > . 
« C V ctS] (Rn) |a| = [s]- 0^heRn 

Cv) The Sobolev spaces Wm(R ) . If 1 < p < «> and m • 0,1,2,..., 

then 

wm(R ) = { f | f e s ' ( R ) , | | f | | 
P n n M Hwm(R } 

P n 

, ï И D a f I І L < R ) < - >• | a | <m p v n 

where S' (R ) denotes the set of all tempered distributions on R . 

W°(R ) = L (R ) • p n P n 

Cvi) The Slobodeckij spaces W
s
(R ) . If 1 < p < °° and 0 < s i in­

teger, then 

P n p n - ' " -
W
»

C R
 ) 

w*CR„) = {f|f e wJ
s
l(.R

n
), ||f 

fц ľ , м I I l- t t f<*>-p B f/зUlpd.dУl 
P n' 

1 
P 1p 
dxdy < °° } 

(vii) The Besov spaces (= Lipschitz spaces) A (R ) . If s > 0 

1 < p < oo and T _< q < « , then 

A
8
, (R ) = {f |f € wj>] ( R ) , ||f|l - ||f|| + 
p,q n i p n ' ' ' ' s , . r«l" 

Ap,q(Rn) w]SJ (Rn) 

| a | I [ s r l R I i M - t s > > i ^ i i 2 p ( V ^ < » » 

and if s > 0 and 1 < p < oo , then 
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0
(R ) = {f |f є W

L S
J (Д ), 1*11 „ - llfll Г.ţ-

A P . - < V - £ J (v 

+ ,}• sup |h|- t s } ||A? Daf||L < - } . 
<4l-[s] OrteR h Lp°V 

(viii) The Leb'esgue spaces (= Bessel potential spaces - Liouville 

spaces) H (R J__. If s is real and 1 < p < «> , then 

HS(R ) = {f|f « ^ (R ) , 
p n n s 

I If 11 - I I P - M U + | 5 l V F f I L < - ) . 
H»dn) W 

Here F and F denote the Fourier transform and its inverse trans 

form on S'(R ) , respectively. 

tlx) The Hardy spaces H (R ) . If <j)(.x) is an infinitely diffe-

rentiable function on R with compact support and <j>(0) = 1 , and 

if 0 < p < co y then 

W • <flf * S" <V« Nf
llй (R. 

p n 

= | |sup| (F~
1
[

!
j)(t.)Ff(.)])(x)| ||

 ( R
 < « } . 

t>0 p ir 

Cx) The space IMP . If f(.x) is a locally Lebesgue-integrable 

function on R and if Q is a cube in R , then 
n
 x

 n ' 

f
n
 - -i- f f(x) dx 

Q IQI i 

is the mean value of f(x) with respect to Q . 

BMO = {f|f(x) locally Lebesgue-integrable in R , 

N
f
H
B
MO " ТтЫ|£(х) Q !Q| - — V ^ < ~ i • 

(the supremum is taken over all finite cubes in R ). 

REMARK 1. Comments may be found in [ll]» 1 . 3 . The above defi­

nition of H (R ) which is due to C FEFFERMAN and E. M. STEIN ( [3 

p n
 L 

1972, p. 183) corresponds to the n-dimensional real variable version 
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for all a with |a| 4 2 , then it would be desirable for the ellip­

tic differential operator - A + E (here E is the identity) to 

2 
yield a one-to-one mapping from A (R ) onto A(R ) . We discussed 

this situation in some detail in [ll], 1-1. As an almost direct con­

sequence we obtained the following assertion. 

Criterion. The space A(R ) should satisfy the following weak 

Miehlin—Hormander multiplier property: If m(x) is a complex—valued 

infinitely d-ifferentidble function on R such that 

sup (1 + ICI>'3'|D6m(?)| < » 

for all multi~indices g 3 then there exists a number c .> 0 such 

that 

I !*->(.HFf)(.)]||A(R } < c||f||A(R , 

n n 
for all f £ A(R ) . 

Proposition 2.- (i) The spaces <£s (R ) (with s > 0),, Hs (R ) 

(jjith -00 < s < 00 and 1 < p < 00 )_, A S (R ) (with s > 0, 1 < p< «, 
P > ^ n 

and 1 ^ q <̂  00 ) 3 H ( R ) (with 0 < p < «>) and BMO satisfy the 

Criterion. 

(ii) The spaces L,(R ) , L (R ) and Cm(R ) with m = 1,2,... ) 

do not satisfy the Criterion. 

REMARK 3. The spaces L (R ) with 0 < p < 1 cannot be trea-
v p n r 

ted as subspaces of S (R ) . Hence, by Proposition 1,covers all 

spaces described above which are subspaces of S' (R ) . Again we 

refer to [ll]. 

After the criterion has been established, we are looking for ge­

neral principles. We skatch some ideas, which can be found at least 

partly in more detail in [ll], 1.2. However, here are also some es­

sential modifications in comparison with [ll]« The weight (l+|gj ) 

in the definition of the Lebesque spaces H (R ) , cf. 2 (viii), ex­

presses the differentiability properties of the functions or distri-
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butions belonging to R ( R R ) . If one uses the Hilbert space version 

of Proposition 2 or a theorem of Littlewood-Paley type for L (R ) , 
J J f p v n ' *« 

1 < p < oo 9 then one can prove the following assertion (for a detai­

led proof we refer to [9], p. 177-78). If {<j>. (x) }?=() C S (R ) is a 

smooth resolution of unity, i.e. 

supp <|>o c {y| |y| 4 2} , (1) 

supp ^ C { y ^ 5 * 1 < |y| < 2 j + 1} , j = 1,2,3,... , (2) 

for any multi-index y there exists a constant c such that 

|DY^(x)| 4 cY2-
jH (3) 

and for all x e. R we have ~ <£ . ix) = 1 , then 
n j-0 J 

H S ( R ) =- if |f £ S»(R ), M f M * 
P n n HS(R ) 

P n 

- Il( I l ^ V 1 ! * . . Ff ] ( . ) | 2 )^ | | . (R < ~> -
j=0 j W 

Here -00 < s < °° and 1 < p < oo . in other words, the original weight 

2 ~2 

(1 + Ĵ | ) , expressing the differentiability properties of the ele­

ments of H (R ) is decomposed into weights 2"5%.(0 and an 

^2-norm comes in. One can give a more suggestive argument (at least 

for p =- 2) if one uses spectral analysis in Hilbert spaces, cf. [ll], 

1.2.In any case the above result shows clearly our intention : 

A decomposition of differentiability properties of distributions with 

the help of smooth resolutions of unity, and a measurement of the 

decomposed distribution in appropriate spaces, e.g. in the above case 

L (R ,il2) with 1 < p < oo . if p"-a 2 then, of course, L (R ,£2) 

can be replaced by £2(L (R )) . In any case, decompositions of the 

above type, sequence spaces, and L -spaces are involved. It seems 

reasonable to fix the above decomposition of differentiability pro­

perties and to measure these decompositions in the more general spa­

ces L (R ,1 ) and & (L (R )) and to investigate the spaces ob-

p n' q q v p v n / 7 & r 

tained in this way. As we shall see such an attempt is successful 
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for 0 < p <_ °° and 0 < q <_ °° (except p = « in the case L (R , % )), 

At the first glance it seems to be somewhat surprising that also va­

lues p with p < 1 are admissible. However, by the Paley-Wiener-

-Schwartz theorem and the Plancherel-Polya-Nikol'skij inequality, 

F" [<p. Ff] € L (R ) r\ S' (R ) is an entire analytic function and be­

longs to all spaces L (R ) with p <_ r <_ °° (cf. [lO], Chapter 1). 

In order to overcome the difficulties with the spaces related to 

L (R. ,£ ) we modify the above approach slightly. Let again 

1 < p < oo and -oo < s < «> . if one uses again the Hilbert space ver­

sion of the multiplier theorem contained in Proposition 2, one can 

prove that 

H p ( R n ) = { fl 3 { fj }j-0 C L p ( R n ) S u c h t h a t 

<4> 
||( I |2^Sf A.)\2)h\\L (R ,<« and t-M I F " 1 ^ Ff I > . 

j-0 J p u n ; s j=0 J J 

Furthermore, 

inf||( £ |2*'f (->|V||L , 
j=0 J p v n ; 

. < 
where the infimum is taken over all admissible systems {f.} , is an 

equivalent norm in H (R ) . Of course, this is also a description of n P n 

spaces via a decomposition method. One can ask for generalizations, 

where L (R , £„) is replaced by L (R ,£ ) or I (L (R )) . The p n* 2' K J p N n' q q p n 

disadvantage is that p must be restricted to p __ 1 . This seemingly 

more complicated approach has a famous counterpart, the charactriza-

tion of BMO with the help of L ^ R )-f unctions, cf. [3], p. 145. We 

summarize our considerations as follows. 

Triyiciple. The space A(R ) should be treated by measuring the 

decomposition (F~ [<l).Ff]}._0 of the differentiability properties 

of £ c S" (R ) (or the above-described modification with the help of 

appropriate quasi-norms of type L (R ,£ ) or I (L (R )) . 
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(5) 

(6) 

4- The Spaces B (R ) and F (R ) c p , q-̂ —n- p , q-—n— 

Let A C be the set of all systems <J> = {<J>.(x)} c S (R ) with 

(1), (2) and (3). Let A be the set of all systems T € .A° with 

the additional property \ $ .(x) - 1 for all x € R (smooth resolu-
j=0 J n 

tion of unity) .If 0 < p <, °° and 0 < q .< °° , then we put 

" • J
| l s ( v * - > " " ( J - o l ^ ( - ) | , ) i , l s < v 

with the usual modification for q = °° . 

Definition 1. Let -°° < s < °° and 0 < q < «> . 

(i) If 0 < p < » j then 

. Bp,q(Rn> - {fif * S' (V • (y) 

llfll* -I^V^+.FfllL (L (R „< - for all *<= jf} . 
BS (R ) J q ^LpKn)} 

p.q n 

(ii) If o < p < » , then 

* ; . q < V = { f i f e S ' < V - llfll*p8 
P , q < V ( 8 ) 

| | 2 S J F _ 1 [ < l > j F f ] I l L ( R > £ } <« f o r a l l cj> e AC} , 

F S (R ) = { f | f € s ' (R ) , 3<J> e .A0, 3{ f . } * c L (R ) s u c h t h a t °°,qv ny i v n / . r , ^ J = 0 ^ n . . 

< 9 > 
||2 S Jf || (R ,£ ) < - and f = I F " 1 ^ Ff ]} . 

J L«> v- n' q; S' j=0 J J 

REMARK 4. These are the spaces in the sense of the above Prin­

ciple. We used the modified decomposition in the sense of (4) only 

in the case of the spaces F (R ) , formula (9). Of course, one 
co , q n 

could try to use this modified decomposition also in (7) and (8). As 

we remarked above, in that case one must restrict p to p ̂  1 . One 

can prove that spaces of type B (R ) and F (R ) defined with 
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the help of modified decompositions in the sense of (4) and (9) coin­

cide with B S (R ) and Fs (R ) , respectively, if 1 < p < °° and 

p , q n p , q n ' J r J * r 

1 < q < op , cf [ll], 2.5.1. Hence the modified decomposition in the 

sense of (9) seems to be of interest mainly for limiting cases. Maybe 

spaces with p = 1 are also of some interest, but this is not yet 

clear at this moment. On the other hand, if one extends (8) to p - «> 

then the resulting spaces do not satisfy the above Criterion and do 

not coincide with Fs ( R R ) from (9), cf. [ll], 2.1.4. (How these 

spaces are quasi-normed will be explained below.) 

REMARK 5. B S (R ) and Fs (R ) are isotropic non-homogene-p,qv n' p,qv n' F 

ous spaces. In the same way one can define isotropic homogeneous spa­

ces. AC is the set of all systems <f> = {<f> . (x) }T=_0O C S (R ) with (2) 

and (3) for all j - 0, + l,±2,... . Furthermore, * e A0 if <J> * AC 

and I <j> . (x) = 1 for all x 6 R - {0>. In (5) and (6) one. must 

replace Y by Y Then B s (R ) and Fs (R ) can be defi-
j=0 j*-« P , q p , q 

ned similarly as in (7), (8) and (9) (j - 0,1,2,... must be replaced 

by J = 0,+l,+2,... ) . Because the origin plays a peculiar role, there 

are some not very serious technical difficulties, cf. [ll], Chapter 3. 

Theovem 1. (i) If -oo < s < <» ̂  o < p 4 °° and 0 < q 4 « , 

then Bs (R ), equipped with the quasi-novm | | f | | ̂  , <j> e ,4 , 
P' q " Bp,q ( Rn) 

•is a quasv-Banach space. All these quasi-novms ave mutually equiva­

lent. ( B s (R ) is a Banach spaces if 1 4 p 4 °° and 1 4 q 400.) 

(ii) If -00 < s < 00, 0 < p < 00 and 0 < q ̂  00 _, then Fs (Rn) , 

equipped with the quasi-novm M M ' S ' 9 § G JL 3 is a quasi-
Fp,q ( Rn ) 

Banach space. All these quasi-novms ave mutually equivalent. 
(F q (

R
n ) is & Banach space if 1 4 P < °° and 1 < q < «.) 

Uii) If -00 < s < 00 ana> 1 < q ^ co j t}ien Fs^q(Rn) 3 equipped 

with the novm inf||2 f.||L ,R 1 \> wheve the infimum is taken ovev 

all admissible vepvesentations3 is a Banach space. 
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(iv) All the spaces from (i)3 (H)3 and (Hi) satisfy the Criterion 

from Section 3, 

REMARK 6. The theorem remains valid if one replaces B (R ) 

by B s (R ) and Fs (R ) by Fs (R ) , respectively. However, y P-q n' p,q v n' y p,q v n y ' y y 

some technical modifications in comparison with the non-homogeneous 

spaces are convenient, in particular, S' (R ) should be replaced by 

another set of distributions. We shall not go into detail here and 

refer to [ll], Chapter 3. 

Theorem 2. (i) If s > 0 then £ s(R n) = B
s (Rfl) . 

(ii) If s > 0, 1 < p < * and 1 < q < » 3 then A s (R ) = B s (R ). 
= n = P,q " P,q n 

(Hi) If -°° < s < oo and 1 < p < » , then HS(R ) -= Es (R ) . J r p n p , 2 n 

(£t>) J / 0 < p < «, then H (R ) = F° 9(R ) . 

(V) BMO « F2,2(Rn ) ' 

REMARK 7. By Proposition 1 and Proposition 2, Theorem 2 covers 

all the constructive spaces for which the Criterion is satisfied. 

Proofs of both the theorems can be found in [,111 • In particular, in 

[11], Chapter 3, interpretations of (iv) and (v) are given. 

5. Equivalent Quasi-Norms in the Spaces B (R ) and F (R ) 

The main bulk of [ll] deals with properties of the spaces 

B (R ) and F (R ) . Of peculiar interest are equivalent quasi-
P,q n' p,qv n' v

 H H 

-norm in those spaces. In this section we describe some new equivalent 

quasi-norms (partly hitherto unpublished, partly taken over from [12J, 

cf. also the appendix in [ll]). 

Theorem 3. (i) Let 0 < p <= °° J 0 < q < = ° ° and s ,> n + 5 + — . 

If Z is a natural number3 Z > s 3 then 

l l f l l + i f - " 8 q l l 1 - y p l < - i » < « ) I N ? / , . - f l ' <10> 
Lp(Rn) J

0 l h | < r h L p < V r 

(its modification if q = °° ) is an equivalent quasi-norm norm if 

p > 1 and q >. 1) in B s (R ) . 
p, q n 
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(ii\ Let 0 < p < a > , 0 < q < » and s > n + 5 + „*„/* .,\ - --"/ * 
*"* — m i n vj>, q ) 

is a natural number, V > s , then 

I l f I I + I I lj ,--( sup I <*» 0. W|,* f ] «| I ( UD 
p n I n J < r p n 

0 

(its modification if q = oo) is an equivalent quasi-norm (norm if 

p ,> 1 and q > 1 j tn F s ^R
n^ * 

REMARK 8. A proof of this theorem will be published elsewhere. 

The restrictions s .> n + 5 + — , s >. n + 5 + —-—7 c- are some-
— P min(p,q) 

what artifical. They depend on the maximal technique used. The most 

striking assertion of the theorem is the fact that there is no essen­

tial difference between p >, 1 and p < 1 . Furthermore, we mention 

that Ia , ' £ 

IQf = F^Cl + |f | 2 ) 2 Ff , 

where —» < a < °° , y ie i .d . s an isomorphic mapping from B s (R ) (with 
P >q " 

s—0 
- o o < s < o o 9 0 < p < =

c o and 0 < q < » ) o n t o B (R ) , and f rom 
• p > q --

F s (R ) ( w i t h - » < s < ~ , 0 < p < » and 0 < q <. °° , o r w i t h 

.i.00 < s < 00 9 p - 00 a n < j 1 < q <_ °° ) o n t o Fs~" (R ) , r e s p e c t i v e l y . 
p, q n 

Hence, with the help of I_ , (10) and (.11) , one obtains "explicit" 

quasi-norms for all spaces B s (R ) and Fs (R ) (with p < °° in H F p»q 1- , p>q n7 * 

the case of the F-spaces). 

Theorem 4. (i) Let 

either 1 4 p 4 " , 0 < q < ° ° and s > 0 

or 0 < p < l , 0 < q < = o o and s > n ( 1) . 

If I is a natural number, i > s , then 

11*11, ( . , * [ I i - i - q i i A « « i i 2 . ( » ) i S - ] ' <»•> 
p n R' p n |h| 

n 
(its modification if q = °°) is an equivalent quasi-norm in& (R ) " - p, q n 

(ii) Let 1 4 P < °° , ! < <1 1 * a " d s ^ n + 5 + — 7 — j ^ — y If 

I is a natural number, £ > s , then 
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i i ' i i i ( R ) + nr i-i-qK-h
l«(.)i»-jfe-]*ii as) 

P n R> |h| L (Rn) 
n r 

{its modification if q «• °°J is equivalent norm in Fs (R ) . 
p > q n 

REMARK 9. A proof of this theorem will be given in [12]. (12) 

with l < p < ° ° , 1 ̂  q £ °° and s > 0 is well-known, cf. e.g. [5, 9]. 

It would be desirable to extend (13) to values p < 1 . 

6. Spaces on Domains and C -Manifolds, Principles 

Again we proceed in a somewhat heuristical way. As has been de­

scribed in Section 3, our leitmotif for treating spaces on R are 

"good" properties which are closely connected with applications to 

partial differential equations (in particular, elliptic differential 

equations). So it seems reasonable (and in a certain sense necessary) 

to extend this point of view to spaces defined on domains in R * * n 

Since all the quasi-norms I IfI I , $ € SL axe mutually equi-
BS (R ) 
p»q --' 

valent, we write simply I If I I . Similarly, I |fI I 
B S (R ) F S (R ) 

p,q n p,q n 

Definition 2. Let & be a bounded C -domain in R 

(i) If ~ o o < s < « > J 0 < p < = « > and 0 < q < =° > then B s (ft) is 

the restriction of B c, (
R
n) to Si ^ equipped with the quasi-norm 

M f M s - - inf||g|| s 
Br „<G> B^ „(Rn> 
p»q p»q gn 

where the infimum is taken over all g € B q(
R
n) with, f -a g in ft 

(in the sense of distributions D'(ft) ). 

Hi) If either -°° < s < ̂  0 < p < « and 0 < q 4 » or 

- o o < s < o o j P = oo an<^ 1 < q 4 °° j t h e n F
 q(

fi> is the restriction 
of F a^Rn> ^° Q * equipped with the quasi-norm 

11*11 8 = inf||g|| q 
FS (Q) FS (R ) 
P , q P , q n 

where the infimum is taken over all g c F q (
R
n ) with f = g £n ft 

fin t h e sense 0/ distributions D" (Q) j". 
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REMARK 10. The spaces of Definition 2 are quasi-Banach spaces 

(Banach spaces if p >_ 1 and q >. 1 ) . This follows from Theorem 1. 

furthermore, since Q is a bounded smooth domain, in the cases descri­

bed in Theorem 2 (i), (ii), and (iii), the above definition coincides 

with well-known other definitions, cf. [9], Chapter 4. 

We are interested in properties of the spaces B (ft) and 
P»<1 

FS (ft) . Our goal is to apply these spaces to linear regular ellip-
P > Q 

tic boundary value problems'(extension of the well-known L -theory, 

1 < p < oo , and the corresponding theory in Holder spaces, cf. e. g. 

[SI], Chapter 5 ) . If A(R ) is a quasi-Banach space on R with 

A(R ) C S'(R ) , then A(R ) and A(ft) denote the restriction of 

A(R ) to R •* {x|x > 0} and to the bounded C -domain ft , res­

pectively. If we want to replace the space L with 1 < p < *> by a 

space A in the theory of regular elliptic boundary value problems, 

then a detailed examination of the L -theory (cf. e. g. [9], Chapter 

5) shows that such a space A should satisfy a few basic principles : 

Multiplier Property. A(R ) has the multiplier property if the Crite­

rion from Section 3 is satisfied. 

Multiplication Property. A(R ) has the multiplication property if 

there exists a positive number p such that f -» gf (pointwise 

multiplication) yields a linear and bounded mapping from A(R ) into 

itself for all g * ^ p (Rn) . 

Diffeomorphism Property. Let y = ip(x) be an infinitely differenti-

abTfe one-to-one mapping from R onto itself (diffeomorphism) such 

that 4»(x) = x for large values of |x| . A(R ) has the diffeomor­

phism property if f (x) -»-f(^(x)) (in the sense of distributions) 

is a one-to-one mapping from A(R ) onto itself. 

Extension Property. A(R ) has the extension property if there exists 

a linear and bounded extension operator from A(R ) into A(R ) (i.e. 

a linear and bounded operator S from A(R ) into A(R ) such that 

the restriction of Sf with f € A(R ) to R coincides with f ) . 
n n 
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REMARK 11. These are the main basic principles which seem to be 

indispensable if one wants to deal with regular elliptic boundary 

value problems in the framework of the spaces A(ft) . Of course, for 

a successful attempt, one needs further properties, and also a detai-5 

led knowledge about traces of functions belonging to A(ft) on the 

boundary 3ft of ft (cf. Theorem 6 below). 

Theorem 5. (i) If - « > < s < « » , 0 < p < _ « > and 0 < q <_ «> , 

then Bs (R ) has the multiplier property, the multiplication pro­

perty, the diffeomorphism property and the extension property. 

(ii) If - o o < s < « > , 0 < p < « > and 0 < q <_ «> , then F s (R ) 
p, q n 

has the multiplier property, the multiplication property and the dif­

feomorphism property. 

REMARK 12. Proofs of these assertions may be found in [ll] and 

[12]. It is not clear (but probably true) whether Fs (R ) has also 

the extension property (in the cases H (R ) = F _(R ) with r r J P - i p , 2 n 

1 < p < «> this is known, cf. [9j , p. 218). In other wor^s, the consi­

deration of regular elliptic boundary value problems must be restric­

ted to the spaces B (ft) at this moment. 
p»q 

REMARK 13. If a space A(R ) satisfies the multiplication pro­

perty and the diffeomorphism property, then one can apply the well-

known method of local charts (local coordinates). In particular, if 

one has a compact (n-l)-dimensional C -manifold then one can define 

the corresponding spaces A on this manifold by standard prodedures. 

If dti is the boundary of a C°°-domain ft in R , then by Theorem 5 

one can introduce B (3ft) (where - « > < s < « > 0 < p < _ « > and 

p,q — 
0 < q < «> ) and FS (3ft) (where -«*» < s < «> , 0 < p < «: and 

~ p»q 

0 < q < » ) . For details we refer to [9], p. 281, and[l2]. 
Since we intend to apply the above spaces B (ft) to boundary 

P»<! 

value problems (cf. Remark 12) we need an information about the tra­

ces of functions belonging to those spaces. As far as the spaces 
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A
S
 (ft) (with 1 < p < * and 1 < q < » ) and H

S
(ft) (with 1 < p <*») 

p, q — — p 

are'concerned we refer to [9], p. 330. Let ft be again a bounded 

C°°-domain in R and let v be the (outer) normal with respect to 

9ft (boundary of ft). 

Theorem 6. Let r - 0,1,2,... J/ 0 < p <
s
< » , o < q <

=
« > and 

s > r + ~ + max(0,(n~l)(~ - 1)) then R , 

Rf - <fi . M i 4 - S | > • ( 1 4 ) 

|dft 3 v l 9 Q 9v I9~ft 
yields a linear and continuous mapping from B

s
 (ft) onto 

i P » q 
r ,-i-J 
n B_ ! (Jn) • 

j - о p»q 

REMARK 14. A proof of the theorem with R instead of ft may 

be found in [H]» 2.4. The imbedding on the boundary has to be under­

stood in the same sense as in the usual theory of Sobolev-Besov spa­

ces. The restrictions for s (in particular if p < 1 ) are natural, 

and cannot be improved. One can also prove the corresponding theorem 

s + + 
for the spaces F (R ) . The possibility to replace R by ft is 

p, q n n 

based on Theorem 5 and the method of local coordinates, cf. [-•-]» 

Section 3. Furthermore, one can prove that there exists a linear and 

r s-1-3 
continuous operator S from II B (90) into B

s
 (ft) such 

j-0
 p , q

,
 p , q 

r s-|-j 
that R o S - E (identity in I B (a«)) . In other words, S 

j-0
 P , q 

is an extension operator. One has also the corresponding counterpart 

for the spaces F
s
 (ft). 

p»q 

7• Distinguished and Quasi-Distinguished Spaces 

As we have remarked several times we consider spaces from the 

point of view of applications to partial differential equations. If 

one deals not only with linear, but with quasi-linear and general 

non-linear differential and integro-differential equations then some 

additional properties of the above spaces are desirable. We restrict 
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ourselves to the spaces B (R ) . With a few exceptions (e.g. state­

ments about convolution algebras), the corresponding assertions hold 

also for the spaces B (ft) , where ft is again a bounded C -domain 

in R . Furthermore, some results of the type formulated below for 

n ' J r 

the spaces B (R ) can also be obtained for the spaces F (R ) p,q n r p,q n 

and F (ft) (but sometimes not in such a final form). 
P > q 

(i) Multiplication Algebras. A space B s (R ) is said to be a mul-
s. 2 p 9 q n 

tiplication algebra if for any couple f €. B S (R ) and g € B S (R ) 
p , q n p , q n 

the pointwise multiplication f.g belongs also to B S (R ) and 

if there exists a constant c such that all those couples f and g 

satisfy 

r i f - s i . s 4 • i i * i i s i i s i i s 
B S (R ) B S (R ) B S (R ) 
p,q n p,q n' p,q n 

(ii) Convolution Algebras. If f and g are two distributions, 

then f * g denotes the convolution (if it exists). A space B (R ) 
p , q n 

i& said to be a convolution algebra if for any couple f € B (Rn) 

and g € Bs (R ) the convolution f * g belongs also to B (R ) p,q n p,q n 

and if there exists a constant c such that all those couples f 

and g satisfy 

i i f * s i i < c i i f i i i i g i i 
B S (R ) BS (R ) B S (R ) 
p.q n p»q -- p»q --' 

(iii) Sohauder Bases. A set {f.}. n C B s (R ) is said to be a j 3=1 p,qv n' 

Schauder basis in B s (R ) if each element f 6 B s (R ) can be p,q n p,q n 

uniquely represented as 

f := 1 £'f« » 3. complex ni 
j=l J 3 3 

(convergence in B (R )). In separable Banach spaces this is the 

usual notation of a Schauder basis. Our spaces, in general, are only 

quasi-Banach spaces. As in the case of Banach spaces, one can prove 

that the linear operators PN acting in B a ^
R
n ) » 
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N 
Pwf = I g . f . , where N = 1,2,3,... , 

J-l 2 3 

are uniformly bounded. In particular, 6. = B.(f) is a linear and 

continuous functional on B S (R ) . This shows that a quasi-Banach 

p»q n 

space with a Schauder basis must possess a sufficiently large dual 
space. If one replaces, for instance, B (R ) by L (R ) with 

p,q n p n 

0 < p < 1 then one has no chance to find a Schauder basis, because 

the topological dual of L (R ) consists of the 0-functional. On the 

other hand, the dual spaces of B (R ) are again spaces of such 
p , q n 

a type, cf. [ll], 2.5. 

REMARK 15. Comments and also more precise definitions (as far as 

the algebras are concerned) may be found in [ll], 2.3.8 and 2.6.2. 

Schauder bases will be considered in [l3j • 

Theorem 7. Let - « > < s < o o J 0 < p < : « > and 6 < q 4 °° . 

(i) Bs (R ) is a multiplication algebra if and only if 

either 0 < p < = « > , 0 < q < : < » , s > — 

or 0 < p ^ o o , 0 < q < : l , s = — 

(ii) Bs (R ) is a convolution algebra if and only if 0 < p 4 1 , 

0 < q < » and s >_ n(— - 1) . 

(iii) If -« < s •< » , 00 > p > -~~-~ and 0 < q < «> , then B s (R ) J * r n+1 H J P»q n' 

has a Schauder basis. 

REMARK 16. Proofs may be found in [ll], 2.3.8 and 2.6.2, and 

[13]. The assertions (i) and (ii) are final, in contrast to (iii). In 

[13] we proved that the spaces B (R ) , where (s,p) belongs to 

the interior of the area characterized by s in Fig.2 and 0 < q < <», 

have aSchauderbasis consisting of Haar functions. (Beside limiting 

cases this assertion cannot be improved.) If one uses lifting proper­

ties then it follows that all spaces B S (R ) with real s , 

0 < q < 00 and «> > p > —r-r- , have a Schauder basis. We coniecture 
nti *•* 
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fig. 2 

f> < q < oo and °° > p > ~ T T , have a Schauder basis. We conjecture 

that one can extend these considerations to higher spline functions 

and that one obtains in that way spline bases for all spaces B „(R_) 
P » 4 " 

with real s 0 < p < and 0 < q < 

Definition 3. (i) Bs (R ) is said to be a distinguished spa-— 4 P j q n 

oe if it is a Banaeh space, a multiplication algebra and a convolu­

tion algebra, and if it has a Schauder basis, 

(ii) Bs (R ) is said to be a quasi-distinguished space if it is 
p » q n 

a multiplication algebra and a convolution algebra, and if it has a 

Schauder basis. 
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REMARK 17. In any case, B (R ) is a quasi-Banach space. In 
P»Q n 

other words, the difference between distinguished spaces and quasi-

distinguished spaces is that the space in question is not only a quasi-

Banach space but a Banach space-. It seems reasonable that for applica­

tions Banach spaces are more convenient than quasi-Banach spaces, be­

cause one has a lot of theorems in Banach spaces which are useful for 

applications. On the other hand, one of the most striking facts of 

the theory of the spaces B (R„) i s that p = 1 (which, roughly 
p, q n 

speaking, marks the border between Banach spaces and quasi-Banach spa­

ces, which are not Banach spaces) does not play a peculiar role in 

many theorems. So it seems reasonable to extend assertions for Banach 

spaces to special classes of quasi-Banach spaces, which include e.g. 

the above quasi-distinguished spaces. 

Theorem 8. (i) Bs (R ) -is a distinguished space if 

either p = l _ . 1 < q < <*> _ s > n 

or p = 1, q "= 1 , s >. n . 
(ii) Bs (R ) is a quasi-distinguished space if 

p, q n 

either -~- < p < l , l < q < « > , s > — 
n+1 r = ' n * p 

n+1 
P < _ l , 0 < q 4 l , s > . 

REMARK 18. The area where B (R ) is a multiplication alge-
p, q n 

bra as well as a convolution algebra has been marked in Fig.2 by >̂ |\ . 

As we have mentioned above, the restriction —r-r < p <_ 1 in part (ii) 
n+l — 

of the theorem can probably be replaced by 0 < p <_ 1 . The distin­

guished spaces have been characterized in Fig. 2 by a bold line. 

REMARK 19. The best choice in Theorem 8 (i) seems to be 

p = q = 1 , i.e. the spaces B. .(R ) with s JL n satisfy almost 

all what one wants (or not?). There are nice explicit norms, cf. 

Theorem 3, and, in particular, Theorem 4. There is a lot of other 

equivalent norms, the full theory of equivalent*norms as developed 
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e.g. in [9], Chapter 4, is applicable. In particular, A in (12) 

can be replaced in the usual way by A, D etc. By Theorem 5, these 

spaces have the multiplier property, the multiplication property 

• ( 

(which follows also from the fact that these spaces are multiplica­

tion algebras), the diffeomorphism property, and the extension pro­

perty. Furthermore, by Theorem 6 (and Remark 14) one has a final know­

ledge about traces ( ft can be replaced by R ) . By Theorem 8, these 

spaces are multiplication algebras and convolution algebras. There 

exist Schaudar bases (probably even spline bases). Some of these pro­

perties can be carried over immediately to the spaces B- 1(ft) with 
1,1 

s >. n , other properties are typical for spaces defined on R (e.g. 

multiplier properties, convolution algebras). 

8• Linear Regular Elliptic Differential Equations 

Let ft be again a bounded C -domain in R .W e want to apply 

the theory of the spaces B (ft) to linear regular elliptic diffe­

rential equations. Proofs may be found in [l2] (a short summary which 

coincides partly with the description below, has been given in the 

appendix of [ll]). First we recall some well-known definitions, cf. 

also [9] , pp. 361-364. 

A differential operator A 

(Af)(x) = I a (x)Daf(x) , 
|a|<2m a 

is said to be properly elliptic, if 

a(x,£) = Z a (x)£a = 0 for all R 3 £ $ 0 and all x € ft , 
I a I-2m a 

and if for all couples £ e R and rj € R of linearly independent 

vectors and all x e ft the polynomial a(x,£+Tri) in the complex 

variable T has exactly m roots T, - T, (x,£,n) with ImTir > ^ 

(including multiplicities). Here a (x) are infinitely differentia-

ble complex-valued functions in ft . Let 
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L.t B j, 

+ a 

a (x, Ç, n, т) » П ( т - i O 
J-l 

(B f)(x) = . ľ Ь. (ï)D°f(l) 
J Iai<m 4

 3,a 

j - l,...,m , be m differential operators, where b. (x) are in­

finitely differentiable complex-valued functions on 3Q • Then 

{B,}. = 1 is said to be a normal complemented system (with respect to 

the above operator A) if 0 < m. < m„ < . . . < m <_ 2m-l , if 
r = 1 2 m — 

. J hu*M< * ° • j = 1""'m • 1 * 1 - ^ 
for every normal vector v # 0 on dQ with x € 3fi , and if for 

3 x 

all x € 3fi , the corresponding normal vector v t£ 0 and every tan­

gential vector % 4 0 at the point x with respect to dQ, , the 

polynomials in T 

b j(K,S x + TVX) - | a | | m ^ , C «
( x ) ( 5

X
 + " X

> a 

are linearly independent modulo a (x,£ ,v , T ) . If all these assump­

tions are satisfied then {A, B., ..., B } is said to be a regular 

elliptic problem. 

We put £ S(&) = Bs ^(fi) if s is a real number, cf. Theorem 

2 (i). Furthermore, for our purpose the following additional assump­

tion is convenient. 

Hypothesis. If f(x) m. C°°(fi) with (Af) (x) = 0 for x fc ft 

and (B f)(x) = 0 for x c an and j = l,...,m , then f(x) = 0 . 

REMARK 20. In other words, the origin belongs to the resolvent 

set if {A, B,, ...» B } is considered as a mapping between appropri­

ate function spaces. 

Theorem 9. Let { A, B,, ..., B } be a regular elliptic problem 
1' m 

and let the above Hypothesis be satisfied. 
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(i) If 

eithev 1 <. p < °° - 0 < q <- °° , s > — - 1 

ov Szi < p < i , 0 < q < - , s > n ( ^ - 1) , 
n P 

then (A, B1, ..., B 1 yields an isomovphic mapping fvom 

,9 m s+2m-k.- — 
Bn tmW onto B S (0) x n. Bn

 J P($Q) . 
p»q p»q j = 1 p»q 

(ii) If s > -1 j then {A, B-,..., B } yields an isomorphic 
,9 m s+2m-lk. 

mapping fvom € (ft) onto <es(£2) x n « J(3fi) . 
J-l 

REMARK 21. It is not clear at this moment whether the restric­

tion p > is natural or not. Part (i) with 1 < p < « and 

1 < q < » follows essentially from the L -theory by interpolation, 

cf. [9], Chapter 5. Part (ii) with s > 0 is one of the main asser­

tions of the famous theory of regular elliptic differential equations 

in HiJlder spaces. Hence the most interesting assertion of the theorem 

is that for p ^ 1 . A s mentioned above, proofs are given in [l2] . 

REMARK 22. Of course, the assertions of the theorem include the 

corresponding a-priori estimates. 
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