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A FINITE ELEMENT METHOD FOR A MODEL 
OF POPULATION DYNAMICS WITH SPATIAL DIFFUSION 

M I L N E R F . , W E S T L A F A Y E T T E , I N , U .S .A . 

1. I n t r o d u c t i o n . We consider the approximation of the solution w(a, £, x) of the age distribution 
function in a one-sex population which moves locally in a bounded domain l l C R 2 . Here a denotes 
the age, t the time and x = (x, y) the spatial variables. We use the following degenerate parabolic 
equation to describe the dynamics of the population: 

I T + IT" ~ V * (KP)U^P) = -/"*. a>0, 0<*<T, xe l l , (1.1) 
ut ua ~ \ ~ J 

where we have omitted the explicit writing of the time and spatial variables as arguments as we 
do throughout the paper when there is no ambiguity; the nonnegative function \i = p(a,t,x) 
is the age-specific mortality rate, q(a,tf, x) = k(p)uVp is the flux of individuals aged a at time 
t at the point x, 

, 0 0 

p ( r , x ) = / u(aj,x)da (1.2) 
Jo 

is the total population density, and V = (§^-, %fr)- Boldface characters, as well as a tilde under a 

character, are used to indicate vectors. The flux we consider here is one that results in directed 
dispersal in the direction of least crowding. Other fluxes have been considered (e.g. to describe a 
random dispersal in [2,8], among others), and our present analysis readily extends to those cases. 
The initial age distribution is given by 

w ( a , 0 , x ) = u° (a ,x ) , (1.3) 

where u° is a smooth, nonnegative, compactly supported function in the age variable. Finally, the 
birth rate u(0, tf, x) satisfies 

u (0 , t , x ) = B(*,x) = / /3(a,*,x)tt(a,*,x)da, (1.4) 
.10 

where the nonnegative function ft is the age specific birth rate of the population, and the homo­
geneous Neumann boundary condition 

q - i / = 0, x e d f t , (1.5) 

is imposed to describe a population without immigration or emigration. The vector 1/ denotes the 

outward unit normal to d£t. We assume that /3 and p, are continuously differentiable functions 
with bounded derivatives. 

Several authors have treated various theoretical aspects of (1.1)—(1.5); we refer the reader to 
[2,5-8], just to mention a few. The numerical solution of this problem in the case of a linear flux 
q = k(x)Vu was carried out in [9]. A finite difference method of characteristics was employed 

in [4] for the case without diffusion. The numerical analysis of a similar two-sex model without 
spatial diffusion was done in [1,10], respectively, by the finite difference method of characteristics 
and by a- finite element method in the age variables with Crank-Nicolson time discretization. 

It can be shown that the initial-boundary value problem (1.1)-(1.5), with the initial and 
boundary conditions satisfying some compatibility and regularity constraints has a unique solution 
u which is compactly supported in the age variable for any time t (see, for example, [2,8]). Note 
that this implies that all the integrals which appear in this paper are really over a finite interval. 

2. A R e f o r m u l a t i o n of the M o d e l . Following [2], we modify the initial-boundary value prob­
lem (1.1)-(1.5) as follows. We integrate ( I T ) in a and use (1.2)—(1.5) to see that the population 
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function p satisfies 

% - V • (k(p)PVp) = pj~(0 - n)» da, 

with the initial and boundary conditions 

p(0, x) = J°°u°(ay x) da, KP)P^ = 0. 

Next, we introduce the age profile function v = ^ which satisfies the equation 

^ - -h ^ - A:(p)Vp • Vv = - v ^ H- ^°°(/? ~ /") ^ ^«] , « > 0 , 0 < t < T , x € ft, 

and the initial and boundary conditions 

„(a,0,x)= r
t t

u
0 , ^ ) < t a , i>(0,t,x) = £ V x f o , Jq-_ = *(p)«g = 0. 

Finally, by introducing the "backward characteristics" <j>T = ((<£r)i,(0r)2) as solutions of 

d<j>r 

and letting 

(ť,x) = -k(p(t,фŢ(ť,x))) K*,f (*,*)) [(Vp) (ť,£Ҷť,x)) Г(r,x) = x, 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

w(a, t, x) = v(a, t, ^°(t, x)), 

we see that the system (2.1)-(2.4) can be replaced by the modified system, with unknowns ^*,u;, 

and p given, respectively, by (2.5), 

( dw dw r r ° , . , , 'I 

ln+!a- = -wY + L ^-^wda\ 
a > 0, 0 < t < T, x Є fì, 

i - __«°<«.«> Ц a ^ O , ^ ^ ^ ^ ) ^ ^ , ^ ^ , a > 0 , x є f ì , 

iü(0,t ,x)= / ßwda, 0 < t < T , xЄf ì , 
Jo 

w(a, t,x) > 0, a > 0, 0 < t < T, x Є fì, 

w da = 1, 0 < ť < T, x Є fì, 

(2.6) 

í 
u;(a, ť, x) -> 0 as a —> oo, 0 < ť < T, x Є fì, 

and 

| f - V • (k(p)PVp) = p / (ß - p)w(a, t, <ŕ*(0, x)) da, 0 < ť < T, x Є fì, 

roo 
p(0, x) = / u°(a, x) da, x Є fì, 

Jo 

Kp)pjf- = Q, 0 < ť < T , xєдfì, 

0 < ť < T , xєfì . 

(2.7) 

p(t,x)>0, 

Note that the variable x in (2.6) appears only as a parameter. It is possible to solve (2.6) for w 
independently of (2.5) and (2.7). Once w has been found, (2.5) and (2.7) form a coupled system 
for p and </> which, for some special cases, has been analyzed in [2]. This formulation separates the 
hyperbolic and the degenerate parabolic behavior of (IT), and so, in particular, w is smoother 
than u (see [2]). Note that w(a,t,x) = w(a, t, <£'|._.0)p(t,x). Hence, once w, <f> and p have been 
approximated, an approximation to w(a,-, tn, x) can be immediately obtained from this expression. 
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3 . A N u m e r i c a l M e t h o d . We begin by discretizing (2.6) using the finite difference method of 
characteristics employed in [4]. Let 5 > 0 be a fixed integer and let At = T/S and tn = nAt, 
0 < n < S. Let Q = {ai = iAt, 0 < i < oo} be the grid for the age discretization. We 
seek a discrete function W = Wn(x) which approximates the value wn = w(ai,tn,x). We use 
the no tat ion fn = f(ai,tn) for any function / of the arguments a and/or t. The algorithm to 
approximate w is given by: 

W? = tí>°(a0, ť > 0, 

л" + f t ø - ? - /•"Г. WЗL-,1 дt 
wn — wn~x 

Ať " * 
n > 0 , i > 1, 

(3.1) 

i=i 

The approximation (3.1) converges to the solution of (2.6) at an optimal rate [11]. 

T h e o r e m 3 . 1 : Let the solution w of (2.6) be continuously differentiate with bounded derivatives. 
Then, there exists a constant C > 0, independent of At, such that, for At sufficiently small, 

max sup {\w?-Wr\}<CAL 
0<n<S t > 0 

We use a modification of the method of [12] to approximate p while simultaneously approximat­
ing <j> (which is the solution of a system of ordinary differential equations) by Euler's method. Let 

us simplify the no tat ion by introducing an antiderivative of k(p)p. Let c(p) = JQ
P k(s)s ds, p > 0. 

Note t h a t the flux which appears in (2.7), is now just V<7, and thus (2.7) can be rewritten in the 
form 

§£ - A<r(p) = R (u'(0 ,x)) p, 0 < . < T, x e ft, 

£-* 0 < t < T, x є дӣ, 

where we have set 

Л(*, У) = / [£(<», *, У) ~ Mв, *, У)l ^(a> *> У) áв, 
Jo 

while (2.5) is rewritten as 

-^-=(-V<7(p))(n, MT,X) = : 

(3.2) 

(3.3) 

No te t h a t (3.2), together with the assumptions on the data, imply that R is uniformly bounded. 
Let 

W = L2(il), V = H1(íí)n{|f = 0 on díí}, 

and deno te the standard L2-inner product by ( • , • ). Let {Th}h->o be a regular family of 
triangulations of Q of characteristic parameter h, and, associated to it, let us consider the following 
finite element subspaces of V and W: 

V = {continuous piecewise linear polynomials o n 7 ] . } n < - - £ = 0 o n dQ, >, 

W = {discontinuous piecewise constant polynomials on Th}. 

Let II : L2(Q) — • Wh be the orthogonal L2-projection onto Wh. We need an approxima­
tion of R, p, naturally given by replacing w in (3.2) by the continuous age-time piecewise bilinear 

287 



interpolant W of its nodal approximation Wn, 0 < n < 5 , 0 < i, given by (3.1) and prolonged by 
zero outside Q: 

p(t, y) = / [/?(<-, *, y ) - /-(«. t, y)] W(«, *, y) da. 

Jo 

The finite element method we propose is the following: Find functions Fn(x) G Wh x W\ 

Pn e Wh and z n <E V\ such tha t 

F°(x) = [nxn] (x ) , 

(P ° -p \ ^ ) = 0, </>GW\ 

(V[z0-o-0],Vx) = (o-0-z°,x), x e v \ 

Fn(x) = F°(x) + A ^ V Z , - \ n > 0 , 
~ ~ i=i ~ 

(z^x) + ^ ( v z ^ v x ) - = ( a ( P n - l ) + -^P"-V(t^F n ) ,x) , x ^ V \ n > o , 

p n = p n - 1 + A r j j^n _ <--(p»--)] , n > 0, 

where we have chosen some positive constant A smaller than the reciprocal of the Lipschitz constant 
for a, La. 

The next to last equation in (3.5) results in a linear system of algebraic equations with a 
symmetric positive definite matrix and, thus, is uniquely solvable. 

The unconditional stability of this algorithm was established in [11]. 

T h e o r e m 3 ,2 : Let Q be a convex polygon and let o~(p) be Lipschitz continuous growing at least 

linearly at infinity (that is, \p\ < C\ + C2|o"(p)|f Then, there is C > 0, independent of h and At, 
such that 

s 

||P||,~(L2) + KP)||,~ (L2) + ||vz||p(L2) + ]T ||P> - P'-1 ||o < a 
3=1 

The convergence of the algorithm for the approximation of p was established in [11] only for 
small £. The author is presently extending that result to be global in t ime . 
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