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STABILITY AND AVERAGING PROPERTIES 
OF STOCHASTIC EVOLUTION EQUATIONS 

MASLOWSKI B., PRAGUE, Czechoslovakia 

The theory of averaging for differential equations with quickly oscil­

lating coefficients has been a subject of interest for many authors 

since early fifties, see e.g. [l] for ODE's, [2] , [7] for stochastic dif­

ferential equations. Recently the results from [1] on averaging in the 
quadratic mean have been extended to stochastic differential equations 

in a Hilbert space with unbounded drift terms and applied to stochastic 

PDE's ([5],[6]). In [5] some stability results are also included. They 

make it possible to find effective conditions guaranteeing the required 

averaging properties on an infinite time interval; however, they also 

may be of some independent interest. 

In the present contribution the main results from [5] , [6] are summa­

rized. They are restated in a slightly less general, but more transpa­

rent form. Consider a parameter-dependent system of semilinear SDE's 

(1)* dx*(t) = (Axc<(t)+f0<(t,xec(t)))dt + 0o((t,x<:<(t))dwt , t^tQ , 
X«(V = V* • * ~° • 

in a real separable Hilbert space H , where A : H-* H is an infinite­

simal generator of a strongly continuous semigroup S. , w. is a K -

- valued Wiener process on (.Q,r4,P ) with a nuclear covariance W 

(K - a real separable Hilbert space), f* : IR+*H-* H , ^ : JR+x H —• 

—• ̂ (K,H) are measurable and satisfy 

(2) |frf(tfx)-f.,(tfy)| + 1 ̂ (t fx)-^(t fy)|iK|x-y| , 

[**<t»°>| + II $«(t,0)|£ K , tE!R+, x,yEH , 

for some K> 0 independent of <* . I t is we l l known (see e.g. [3 ] ) 
that under the above assumptions there exists a unique mild so lution 

x^ to ( I ) * . 

Theorem 1 ( [6] ) . Assume 

( 3 ) l i m S. C 3 ( f c ( ( s + t n , x ) - f n ( s + t n , x ) ) d s = 0 , 
* ->o+J t 1 V s ° ° ° 

(4) l im f T r { ( ^ ( s + t n , x ) - 0 5 n ( s + t n , x ) ) W ( $ t X ( s + t n , x ) -
<*-» 0+ J tx ^ ° 0 0 o 

-(J>0(s+t0,x))*}ds = 0 

for a l l x € H , O ^ t ^ t , , , and %^-^^f 0 
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Then for any 0<T<oo we have 

(5) lim sup E||xrx(t)-xn(t)||
2 = 0 . 

* - 0 + t€<tQ,T> " * ° " 

In the finite-dimensional case it can be seen ([7]) that a similar 

statement is valid even for T = +00 provided the limit solution x 

is asymptotically stable. The proof from [ I ] fails for dim H = QD , 

however, in [5J we prove the assertion imposing some restrictions on 

st . 
Definition. A solution x of the equation (1) is said to be asympto­

tically stable in the mean square if 

(i) for every l>0 there exists S > 0 such that for all 

t ==" 0 and all solutions x of (1) satisfying 

^ V - V V l 2 ^ we have E|x(t)-xo(t)||
2 < 6 , t>t Q , 

(ii) there exists A>0 such that for all t > 0 , J"E(0,A) 

there exists T = T(t,(f)>0 such that for all t === 0 , x 

satisfying E|| x(tQ)-xo(to)||
2< S we have E|| x/(t)-xo(t)||

2 < 6 , 

t^t +T . 
0 

Theorem 2 ([5] ). Let (3), (4) be fulfilled uniformly w.r.t. tQElR+ 
and xGH and assume S^ xE C((0,+oo ), & (H)), t^-> ^Q . Then (5) is 

valid with T = +00 provided x is asymptotically stable in the 

mean square and E||x (t)| is bounded for t.==t . 

In order to obtain effective results on infinite time intervals we 

still need verifiable criteria for mean-square asymptotic stability. 

The standard application of Liapunov method leads to some difficulties 

as the mild solutions of ( D 0 need not possess a stochastic differen­

tial. This can be overcome by approximating mild solutions by strong 

solutions similarly as in [4]. For vEE, 2(IR+*H) set 

^v(t,x,y) = ̂ v + <vx(t,x-y),Ax-Ay+fo(t,x)-fo(t,y)> + ^Tr($Q(t,x)-

-^0(t,y))%xx(t,x-y)(^o(t,x)-$o(t,y))W , (t ,x,y)E IR+*c0(A) >S(A) . 

Proposition 3. Assume i£ v(t,x,y) == Kf (t ,v(t ,x-y)) , tElR + , x,yG-0(A), 

where vEC. 2^+*^) *s s u c n that 

d1|x|
Z£>vCt.x)*d2|x|

2 , » v j +«vxxl<d3(l+Ix||P)) xGH , 

for some d-,, d2, d-j, p>0 and if : IR+—* IR is measurable, t/>(t,.) 

is Lipschitzian and concave, <^(t,0) = 0 for all t== 0 . Then all 

solutions x of (1) are asymptotically stable in the mean square 

provided the trivial solution x = 0 of the equation x = if(t,x) is 

asymptotically stable. 

Example. The stochastic parabolic problem described by 
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(6) 
flu. r,(t/e)u. r,(t/£)u,. 

T T " A u * + 1 + |u,| + i + |u.|W(t'x) • ***o ' x e D 

(D - a bounded region in 1R with C2 boundary), 
u,(0,x) = u (x) , u.I =0 can be formally rewritten in the 

0 K>D 
form ' 

( 7 ) d x f c ( t ) = ( A x e ( t ) + f ( t / e , f x L ( t ) ) ) d t + ^ ( t / £ , x t ( t ) ) d w t , 
X * ( V = Hi > 

i n the space H = L 2 (D ) , w i th K = H (D) - valued Wiener process w. 

( k > 2 n ) , where A = A | H 2 ( D ) H H J ( D ) , f ( t , x ) ( 8 ) = r 1 ( t ) x ( B ) . 

. ( 1 + | x ( 9 ) | )""1 , < £ ( t , x ) h ( 8 ) = r 2 ( t ) x ( 8 ) h ( 9 ) ( l + | x ( 9 ) | ) " 1 , 8 € D , h E K . 

Assume 

r / 3 T + T ^ T + T 

\ J r 1 ( t ) d t - » r 1 , y I ( r 2 ( t ) - r 2 ) 2 d t — 0 , T — GO , 
J /JT J /JT 

u n i f o r m l y in /3 ^ 0 f o r some r - , r 2 E l R , and -X + max ( 0 , r , ) + 

+ 1 / 2 r 2 k T rW<0 , where \ > 0 i s the f i r s t e igenva lue of -A and 

k > 0 i s such t h a t || L / r j N ^ k | | |L . Then i t can be checked t h a t 

Theorem 2 and P r o p o s i t i o n 3 y i e l d 

sup E | | x £ ( t ) - x ( t ) | 2 — > 0 as I - * 0 , L/>fc—> TJ , 
t _ t Q 

where x" is the solution of the limit equation 

dx = (Ax + r j l c / l + l x | ) d t + ( r 2 x / l + | x | )dw t , x ( t Q ) = L̂  (see [5] fo r a 

s i m i l a r examp l e ) . 

Remark. Some extensions of the above results (e.g. averaging in L (Q) 
for p^2 , averaging in probability, statements analogous to Theorems 
1, 2 for a cylindrical Wiener process, etc.) can be found in [5], [6]. 
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