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SOME REMARKS TO NUMERICAL SOLUTION 
OF THE EULER AND NAVTER-STOKES EQUATION 

KOZEL K., PRAGUE, Czechoslovakia 

The work deals with numerical solution of 2D system of the Euler 

equations used for computation of steady transonic flows through a cas­

cade and with numerical solution of 2D system of Navier-Stokes equations 

used for computation of steady laminar compressible viscous flows past 

a flat plate. The problems are solved by finite volume time dependent 

method using three explicit di f ference schemes. 

Numerical results of 2D steady transonic flows through a compres­

sor cascade (Mco> 1) and through a turbine cascade (M2> 1) are compared 

to experimental results. Numerical solution of 2D Navier-Stokes equati­

ons used for simulation of steady laminar viscous flows over a flat pla-
• 2 4v te is compared to Blasius solution with Reynolds number Re6<10 , 10 >. 

*• Governing equations 

Consider 2D system of Navier-Stokes equations for compressible 

flow fields 
U t + F x + Gy = Rx + Sy > 

U = col| |<J , ? u , ? v , e|| = c o l | | ^ , ?u,<?v,<JE | | , ( 1 ) 

where ^ is density, (u,v) is velocity vector in cartesian coordinates, 

e is total energy per unit volume, E is specific total internal energy. 

Vectors F=F(U), G=G(U), R=R(U,U ,U ), S=S(U,Uv,U) are defined f.e. in 
x y x y 

[1] . The system (1) with R = S = 0 is called 2D system of Euler equations. 

System of Euler equations is nonlinear system of first order and hyper­

bolic type, eigenvalues *(A),MB) are real; A =9F/9U, B = 3G/9U are 

Jacobian matrices. 

II. Numerical solution and used difference schemes 

A finite volume approach is applied to discretize the system equa­

tions (1). In our case the computational domain Q is divided into quad­

rilateral cells O.. fixed in time. For numerical solution of the Euler 

equations and a case of transonic cascade flows a non-regular H-grid 

was used (see [2]); in our case of numerical solution of Navier-Stokes 

equations a non-regular orthogonal grid was used. For each computational 

cell the governing equations are considered in following integral form 
U+ =-i- i- $ (F dy-G dx) + $ (R dy-S dx)},<u,. =If dx dy . 
t (Uî l *Oij aOij J u n ^ (2) 

For computation of the steady state solution a time dependent method is 

used and following relation is fulfilled 
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- І (F dy-G dx) + í (R dy - S dx)= 0 
*

П
i j ^ З 

(3) 

In the case of numerical solution of the Euler equations R=S=0. Mac Cor-

mack explicit predictor-corrector finite volume difference scheme was. 

used for numerical solution of Euler and Navier-Stokes equations: 

C2= ^ - -g. {t (Fk »*< *v - (Rk »*< -v} (4a) 

1J k
 k=l

 J 

k _ i
 (4b) 

U ^
1
 = U

7
^
 +
 DU

n
. , (4c) 

where U
n
. is mean value of U in the cell . 0 . . , F ^ F k + 1 / 2 > G £ > G k + 1 / 2 are 

defined in C2l and R^jS. are approximated by central differencing of 
second order; Du!.1. is artifitial damping term described in [2\. This 
difference scheme is possible to write in rezidual form 

(U^-U*)/ M - -Rez U". - - J - \ £ (Fn ̂  - Gn ̂ )-(R n
 Ayk-~S

n Ax,)} , (5) 
13 l k=l 

Where F,G,R,S are the approximations of F,G,R,S and Rez U.. is approxi­
mation of -j ( , ,>. 

4-rf)J (F dy - G dx + R dy - S dx). Kb) 

We can define ||Rez U . J L , || Rez U. . ||r, ||nM||r = max | M^T1- M n | (M is 
ij «-2 --J L L ij --J 13 

the Mach number) and a convergence of time dependent process to the 
,n steady state solution is control led by the values log||Rez U . . |L , 

| |Re 2 U n . ||c, | | » M | | C . J 2 

Runge-Kutta time stepping difference schemes were also used for nu­
merical solution of the Navier-Stokes equation: 

un. = u ( 0 ) 
IJ IJ > ^ 

"i? = Uij} " At- V ^ z " i j '^' (P = 1 ' 2 ' - - - ' m ) ' a p rea1' 
Un+1 = i f (71 
U i j " i j ' (" 

Kez U ( n ) - ^ { £ ( F < P > A y k - G(P) . x k ) - (R(P> . y k - G(P> . x k ) } - DUn
j , where 

F , G
 p , R D , S are d e f i n e d i n [ l l as w e l l as a r t i f i t i a l damping term 

Du!?.. Rez U^. i s a l s o an app rox imat ion o f ( 6 ) . For example in r e ­

gu lar o r thogona l g r i d we can use ( <u.. = ^x . Ay) 
Fn Fn r n r n

 J
 Rn Rn q n q n 

PczUn. - i + l . -T Fi-1--I , i ^ + l " i>J-l R i^l /2? j" K i - l /2 , j +
 b i , -> l /2 - b i j - l /2 

1 J 2 . AX 2.Ay AX Ay 
- D U ^ , (8) 
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where R, *i + l/2 = 7
 (Ri+l,j

 + Rij)> -"j + 1/2 = 7 ( Sij +l
 + Sij }> • • • ^ d i f f e -

rence approximation of second order for all space derivatives is used. 

Using regular orthogonal grid Mac Cormack scheme (4) is 0( At 2, A X 2 , 

Ay 2 ) , Runge-Kutta scheme (8) with * 1 = l/4 *2=l/3 «3=l/2, *4=1,(RK4) is 

0( At 4,AX 2,ay 2) and with « 1 = l/2, « 2 = l/2 * « 3 = 1 (RK2) is 0( -»t
2, A x 2 , A y 2 ) 

A stability limitation of mentioned difference schemes is given i n L 2 l . $ ] . 

III. Numerical solution of steady inviscid transonic flows 

In this part some numerical results of steady inviscid transonic 

flows through a cascade of compressor and turbine type are presented 

and compared to experimental results. Presented results are achieved by 

numerical solutin of the Euler equations using Mac Cormack finite volume 

difference scheme. A detailed mathematical formulation of a weak solu­

tion of the problem of transonic flows through a plane cascade and the 

details of numerical method one can find in [2]. Our numerical solution 

of transonic flows through a compressor cascade is improved by multi­

level grid solution (FAS-algorithm) using three-level grids. 

Fig.l shows comparison of our numerical results of transonic flows 

through a compressor cascade (full line) using distribution of modified 

pressure coefficients along upper and lower profile surface to experi­

mental results of DFVLR Cologne (see [3] ) for slightly supersonic up­

stream Mach number M^ = 1,03. Computing this case of transonic flows 

we have to use multigrid procedure. 

Fig. 2 shows comparison of our numerical results of transonic 

flows t h r o u g h a turbine cascade (full line) using distribution of Mach 
number along upper and lower profile surface to experimental results[43 

of Institute of Thermomechanics of Czechoslovak Academy of Sciences 

(M 0 D= 0,395; p 2 = 0,45 p-j M 2 = 1,2). 
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IV. Numerical solution of steady laminar viscous flows past a flat plate 

This type of the solution is based on numerical solution of the 

system of Navier-Stokes equations (1) by three difference schemes: Mac 

Cormack, RK4, RK2. The problem was solved in domainO (oblong) using 

orthogonal grid regular in x-direction and regular or non-regular in 

y-direction. A detailed mathematical description of the problem is pos­

sible to find in [5], The problem was solved for M,=0,2 and Reynolds 

numbers Re « (100,10000)and one can compare the agreement of our numeri­

cal solution to Blasius solution, efficiency of three numerical methods 

in computation of the steady state solution and convergence of mentioned 

three methods to the steady state solution using the change ]|u||
r
 = 

= max | u. t -u^.|. Qualitatively good results was observed for all three 

.erence schemes but the best for RK4 method. Fig.3 shows comparison 

of our numerical solution by RK4 (full 
1/2 

line) to Blasius solution (n̂  =(y/xyRe ' ) 

for Re=1000. Fig. 4a,4b shows the con* 

vergence of RK4 and MC using the change 

of-u (||u|| c -|Ml c -nx llu^-u^-IDduring 
the i t e r a t i o n process for Re=100 (Fig. 

4a) and Re=1000 (Fig.4b). 
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