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BIFURCATION PROBLEMS FOR VARIATIONAL INEQUALITIES 

Milan.KuCera 
Praha, Czechoslovakia 

We shall consider a real Hilbert space H and a closed convex 

cone K in H with vertex at the origin. The inner product and the 

corresponding norm in H are denoted by <.,.> and | |. | | , respecti­

vely. We shall suppose that A is a linear completely continuous ope­

rator in H , N J IR x H -> H a nonlinear completely continuous map­

ping such that 

lim iivii " ° uniformly on bounded p-intervals. 
Bv|KO u v u 

We shall deal with a bifurcation problem for the variational inequa­

lity 

(I) u e K , 

(II) <u-pAu+N(p,u),v-u> > 0 for all v e K . 

In connection with the variational approach it is natural to investi­

gate the variational inequality 

(II') <f'(u)-pg'(u),v-u> > 0 for all v eK , 

where f , g are functionals on H , f' , g' their Frechet deriva­

tives. A point [v0»o] is said to be a bifurcation point of (I), (II) 

if every its neighbourhood in |R x H contains a couple p , u satis­

fying (I), (II) with 1|u|| j- 0 . Analogously for (I), (II'). Our aim 

is to explain briefly some results concerning higher bifurcation 

points (greater then the first one). 

1. VARIATIONAL APPROACH. First, we must mention the results of E. 

Miersemann [7], [8] based on a modification of krasnoselskii's sup-

-min principle. A closed subspace H C K is considered and it is 

supposed that p < p .. (n fixed), where p and p denote the 
n nri n n 

n-th characteristic value of the linear eigenvalue problem 

and 

respectively. Under certain assumptions about f , g (which are ful-
1 2 

filled for example if f (u) - j | |u| | , g is weakly continuous, 

g' - A+N with A , N as above but N independent of p and uni­

formly continuous on bounded sets), the existence of a bifurcation 
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u € H , f"(0)(u,v) -- pg"(0)(u,v) - 0 for all v Є H 

U 6 Ĥ  , f"(0)(u,v) -• pg"(ø)Cu,v) - o for all v є H 



point y^ € <»ln,vin> of *1*' * I I #) is Proved« If there is an eigen­
vector corresponding to y not lying in K , then even y, £ 

•v n J D » n 

€ (̂ n-̂ n* * In tne e x a mP l e s» this ensures the existence of a finite 
number (depending on the relations between y , y ) of bifurcation 
points. 

Let us remark that in [2] a modification of the Ljusternik-Schni-
relmann theory was used for the problem with the penalty corresponding 
to (I), (II'). This method gives formally infinitely many solutions 
of (I), (II') satisfying f(u) - r(r > 0 fixed) but only in the case 
when K is a halfspace it is proved that they are mutually different. 

2. TOPOLOGICAL APPROACH. NOW we shall explain one result obtained 
by a method developed in [4], [5], [6] (cf. also [3]) • For simplicity 
we shall suppose that A is symmetric (in the nonsymmetric case the 
situation is formally more complicated [6]) . Suppose that there exists 
an operator 0 : H —¥ H (a"penalty operator) which is completely con­
tinuous, monotone (<3u-$v,u-v> > 0 for u, v G H), positive homoge­
neous (e(tu) « tgu for t > 0, u e H) and such that $u - o for all 
u 6 K , <0v,v> > 0 for all v £ K , <&v,u> < 0 for all v ft K , 
u € K° (the interior of K). Let y , y. be simple characteristic 

o values of A with the corresponding eigenvectors u , u € K (the 
interior of K), -u , -u. j£ K . Suppose that there is no characteris­
tic value of A in ( y 0 , y . j ) having an eigenvector in K . Then there 
exists a bifurcation point [yb,cQ of (I), (II) with yb 6 (PQ,^.,) . 
The bifurcating solutions can be obtained from the branch; of solu­
tions of the equation with the penalty. More precisely, for each 5 > 
> o denote by C, the closure (in R x H x R) of the set of all 

5 

t r i p l e t s Q i , u , e ] e | R x H x l R s a t i s f y i n g the c o n d i t i o n s e j- 0 , 

(b) u - yAu + -j-f-: N(y,u) + e*u - 0 . 

Under our assumptions, there exists 6Q > 0 such that for each 6 € 
€ (0,6rt> there is an unbounded (in e) closed connected subset C. n 
of Cfi containing [yvu',0,0] , lying in dig...-!)- (in y ) and out­
side of K (in u) with the exception of some isolated points. If 

V V en € C«,0 ' En — + " • vn — »M> vn — v ( 6> weaklv' 
then we obtain (using a modified penalty method) that y(5) , v(6) 
satisfy (I), (II) and it can be proved that the limiting points of 
y(6) for 6 -*• 0+ lie in ( V g ^ ) . 

The existence of the branch Cfi Q with the above mentioned pro-
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perties can be proved on the basis of a global bifurcation result [lj 

and the fact that (a), (b) can be understood as a bifurcation equa­

tion of the usual type. 

In the case N = 0 , the results of this type for multiple cha­

racteristic values yQ , y1 are proved in [5]. 

In some cases the method gives the existence of an infinite se­

quence of bifurcation points of (I), (II) converging to infinity. 

3. REMARKS. All mentioned results are applicable to variational 

inequalities describing a beam or a plate which is compressed and 

unilaterally supported. 

We could mention a number of authors who have treated some ques­

tions connected with bifurcations of variational inequalities, but 

most of them either deal with problems of a different type (some sym­

metry assumptions about K and f , g are considered) or their in­

terest is concentrated on the first bifurcation point only. For the 

references see [8j • [4j. 

R E F E R E N C E S 

[lj E. N. Dancer: On the structure of solutions of non-linear eigen­
value problems'. Indiana Univ. Math. Journ.# Vol. 23, No. 11 
(1974), 1069-1076. 

[2J M. Kucera, J. NeSas, J. Soucek: The eigenvalue problem for va­
riational inequalities and a new version of the Ljusternik-
-Schnirelmann theory. In "Nonlinear Analysis", Academic Press, 
New York-San Francisco-London 1978. 

[3] M. Kucera: A new method for obtaining eigenvalues of variatio­
nal inequalities.of the special type. Preliminary communica­
tion. Comment. Math. Univ. Carol. 18,1 (1977), 205-210. 

[4 J M. Kucera: A new method for obtaining eigenvalues of variatio­
nal inequalities based on bifurcation theory. Casopis pro pSsto-
vani matematiky, 104 (1979), 389-411. 

[5J M. Kucera: A new method for obtaining eigenvalues of variational 
inequalities. Operators with multiple eigenvalues. To appear 
in Czechoslovak Math. Journ. 

[6j M. Kucera: Bifurcation points of variational inequalities. To 
appear in Czechoslovak Math. Journ. 

[7J E. Miersemann: Ober hohere Verzweigungspunkte nichtlinearer Va-
riationsungleichungen. Math. Nachr. 85 (1978), 195-213. 

[8J E. Miersemann: Hohere Eigenwerte von Variationsungleichungen. 
To appear in Beitrage zur Analysis. 

211 


		webmaster@dml.cz
	2012-09-12T23:35:17+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




