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POTENTIAL FLOWS 

Josef Král 
Praha, Czechoslovakia 

The role played by the Gauss bell-shaped function 

n .1x11 

(2жt) e
 2 t

 of the variable x 6 R
n
 in connection with the 

heat equation is well known; for any Borel set E C R
n
 the integral 

. -s _MІ 
(1) l(2«t)

 2
 e

 2 t
 dx 

E 

may be interpreted as the quantity of heat situated in E at the in­

stant t > 0 in consequence of the action of a point source at the 

origin which emanated the unit quantity of heat at the instant 0 • 

Impulses coming from various investigations in mathematics and phy­

sics led to extensions of the Gauss measure defined by (1) on Borel 

sets E C R
n
 to infinite dimensional spaces (cf. [9]

 t
 [18], [2l]

 t 

[22], [25]). Following L. Gross [ll] - [13] we first briefly recall 

some considerations connected with the concept of the so-called Wiener 

space. Let H be a real separable Hilbert space with the scalar pro­

duct (.,•). A cylinder set in H is a set of the form C - ( h f H ; 

[(h,h
1
)

t
...

t
(h

t
h

n
)] € E} where hlt...fh is a finite orthonormal 

system in H and E is a Borel set in Rn • For such a C the quan­

tity (1) (which actually depends on C only and not on the choice of 

the orthonormal system describing it) will be denoted by vt(C) • The 

set function y. is additive on the algebra of cylinder sets but it 

fails to be countably additive if dim H « «. . This indicates the idea 

of completing H with respect to a new norm | | •• • 11 . A norm 

| | • • • | | on H is termed measurable if for each e > 0 there is a 

finite dimensional projection P : H —• H such that y1(Cp) < e tor 

Cp • (h e H; I|Ph|| > e} whenever P is a finite dimensional projec­

tion orthogonal to P .If B denotes the completion of H with 

respect to a fixed measurable norm ||,..|| then the natural inclu­

sion H C B is continuous and the pair (H,B) is called an abstract 

Wiener space. If B* is dual to B and <.,.> is the pairing bet­

ween B* and B then any y* e B* represents, by restriction, a 

continuous linear functional on H and as such may be identifiedt 
via the Riesz representation theorem, with the corresponding element 

y € H determined by the equality <y*th> • (y,h) , h €*H • We thus 

arrive at the (dense) inclusions B* C H C B • Given a Borel set EC 
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C Rn and a iineariy independent system {y1 y } C B* we may 
form the cylinder C - {x € B; [<y1,x>,...,<yn,x>] e E} whose trace 
on H is CH • (h 6 H; [(y^h),..., (yn,h)J 6 E) . (Before caicuXating 
yt(CH) , one shouXd note that {y1,...,y } need not be orthonormaX 
in H .) Defining Pt(C) - vt(CH) we obtain a set function pfc on 
the aigebra of aXX cyXinders C in B ; now p. possesses a unique 
countably additive extension to the o-aigebra of aXX BoreX sets in B. 
The Wiener space (H,B) equipped with the probability measures p. 
(t > 0) represents a naturai playground for many potential theoretic 
investigations. The measures t p t ) t > 0 form a convolution semigroup 
which permits to solve suitably formulated Cauchy problem where the 
initial conditions are given by functions (cf. [l2] t [2oJ) or by mea­
sures (compare [23]). They also generate the fundamental solution of 
the heat conduction operator \ Q _ - 9 t " 7 A in tne s P a c e " t i m e A " 
- R x B whose elements will be written in the form a - [t,b] with 
t e R1 , b e B and normed by (|t|2+| |b| \2)** ; H will be identi­
fied with the subspace {0} x H in A • Let us define y on Borel 

sets M C A by y(M) - |P . . ( {b 6 B; [t,b] e M})dt . Then y > 0 is a 

J 
measure which is finite on sets that are upper bounded in time. If 

n denotes the formal adjoint to j ^ then J2. *dy - $(0) for all 
test functions <J> to be defined below; this means that n v • 6 
(- the unit Dirac measure concentrated at the origin of A )• Let us 
recall that a function f : A —*• R defined in some neighborhood of 
a € A is termed quasidifferentiable at a if there is a Df (a) 6 A* 
such that, for each continuous a : (-1,1) —*• A differentiate at 0 
with o(0) - a , the composition t i—> f (a(t)) has a derivative at o 
given by <Df(a),o'(0)> • We shall deal with uniformly continuous fun­
ctions t with bounded support that are everywhere quasidifferentiable 
with D* bounded (in the dual norm) and [a^a^ i-* <D^(a1)9a2> con­
tinuous on A x A ; such a <f> will be called test function if, in ad­
dition, for any fixed a the function h .—»• $(a+h) is twice Frechet 
differentiable at the origin of H , the corresponding second order 
differential D2+(a) (considered as a linear operator on H ) is of 
trace class and the map a h-• D 4(a) into the space of all trace class 
operators on H is bounded and continuous. For any test function + 
the Xaplacian A* (a) - Trace D2<f>(a) as well as dt+(&) " 

- <D*(a), [l,0]> , <D^(a),i» - <D*(a), Q),b]> (b e B) are defined and 
JQ_ • - - (d. + 4 A) 4 is a bounded continuous function with bounded 
support. It is an important consequence of results of [12] t [8], £lcQ 
that the class of all test functions is sufficiently rich to admit 
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construction of partitions of unity subordinated to open covers of 

the space; any uniformly continuous function with bounded support is 

a uniform limit of a sequence of test functions. Convolutions of y 

with other measures generate potentials useful for treating various 

boundary value problems. As an illustrative example we shall consider 

the so-called Fourier problem (cf. Ql5] , Q.9] for related finite di­

mensional considerations). Let us fix a T > 0 and an open set &C-* 

with boundary dft . Put V - (0,T) x ft , Q - <0,T) x 3ft and denote 

by 3' the space of all signed Borel measures v on A whose va­

riation |v| fulfils |v|(A^Q) - 0 . With each v € .3' we associ­

ate its potential u = u . - v * Y defined on the cr-algebra «/fCT of 

all Borel sets M C (-«,T> x B by u(M) « Jv(M-a)Y(da) . It follows 

from basic properties of y that u is H-differentiable: there 

exists a countably additive H-valued measure M —>• grad u(M) € H on 

t/LT such that, for any h € H and M € A « , lim t"1[u(M+th)-u(M)] -

r-i t ^ + 

-• (h, grad u(M)) (cf. [lj for differentiability-of measures). If $e 

e 5)T (- the class of all test functions with support in (-»,T) x B) 

then D<|> : A —• B* C H can be integrated against the vector-valued 

measure grad u : JLT —>• H and the bilinear integral (cf. [2]) exten­

ded over V permits to define the functional IHv over 2>T by 

<•, Hv> - j(D<fr, grad uv) - 2J$t*(a)uv(da) , • € 2>T . 

V V 

IHv will be called the heat flow associated with v • It is easily 

seen that <<f>, IHv> - 0 if <fr € 2>T and Q Ci spt • - 0 . The physical 

significance of JHv is best illustrated in finite dimensional case 

when grad u has a density vu (with respect to the Lebesgue mea­

sure) extending from V to a continuous function on V U Q ; if 30 

is smooth, N is the unit exterior normal to V and a is the sur­

face measure, then 

- ! < <•, IHv> - j<KN.Vuv)do , <j> € <2)T . 

Q 

In general case fiv need not be representable by a (signed) measure 

y in the sense that <<j>, lHv> * /$dy , <j> e 3 T . If there is such a 

y then it is uniquely determined by the requirement |y|(<T,-h») x B)-

- 0 ; under this condition it belongs to 3' and, as usual, will be 

identified with IHv . In order to get geometric conditions on ft gua­

ranteeing tHv € -3' for every v e SI it.is useful to adopt the 

following definition (compare [14] , [17]). 
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DEFINITION. If C ie a Banach epaae, M C C ie a Borel eet and 

w : I —* C ie a eimple differentiable path-curve defined on an inter-

val I C R , then c 6 C ie termed a hit of u on M if there ie 

a tQ € I with u(t ) - c and for each neighborhood 1U of c in 

C both {t 6 I; «(t) € MJ OM} and {t e I; w(t) £ U ^ M} have p o ­
sitive linear measure» 

This definition enables us to formulate the required condition 
in terms of the measure p 1 as follows. 

THEOREM 1. Given R > 0 , x £ 3ft and b € B we denote by nR(x,b) 
the total number of all hite of {x+tb; 0 < t < R } on ft C B . Then 

the function b •—*• nR(x,b) ie meaeurable and 

(2) sup [n^ix^p. (db) < -
x€dft £ V1 x 

ie a neceeeary and eufficient condition guaranteeing that IHv € &' 

for each v 6 & • If (2) holde then H : v •—• IHv is a bounded opera­

tor on the epace 3* equipped with the norm ||v|| - |v|(Q) . 

The norm of the operator N can also be simply evaluated. If 
x € 3ft and R > 0 then /nD(x,b)pi(db) < • implies measurability 

B K 1 

of the set ft formed by those b e B for which there is a 6 = 
s 6(x,b) > 0 with x+tb c ft for a.e. t e (0,6) .Assuming (2) and 
writing d (x) - P . i (8 x ) (which in finite dimensional case reduces to 
the Lebesgue density of ft at x ) we have 

||fi|| - 2 sup {d (x) + [n^(x,b)p (db)} . 
x 6 3ft " £ V1 x 

In particular, | |H|| < 2 for convex ft . 

The condition (2) can be somewhat simplified if we put r -
- { e € B ; I M I - l } and denote by o* the probability measure on 
r which is the image of p. under the projection b i—»• -j— of 
B M O } onto r . Then 

« > sup [nflB(x,e)a1 (de) (- sup n (x.b)?.. (db) ) 

B 

is sufficient (and also necessary in finite dimensional case) for va­
lidity of (2). 

In what follows we always assume (2). The Fourier problem has 
then the following natural weak formulation: Given y € ft , determine 
a v € *3' with IHv - y • General description of the range of M is 

201 



not known. However, sufficient geometric conditions on ft guarantee­

ing invertibility of IH can be established. If P C 3ft is a Borel 

set and 2>' denotes the subspace of all v e J8' with 

|v|(<0,T) x P) - |v|(Q) , then the following result holds. 

THEOREM 2. If 

(3) lim sup {|2dQ(x)-l| + 2fnr(x,b)Pl(db)} < 1 , 
r+0+ x € P " £ x 

then for every v € .#'« there exists a unique y € 3' such that 
IHy(M) - v(M) for each Borel M C <0,T) x P . 

If all the functions n (xf.) with x e P are dominated by a 

common p -integrable function (or if dim H < ») then the integral 

occurring in (3) may equivalently be replaced by /n (x,e)a1(de) . 
r 

Of course, main interest consists in P • 3ft when (3) implies the 

existence of a bounded inverse to IH on 3l . As pointed out by W. 

Wendland, (3) then appears to be rather restrictive for certain non-

convex domains even in the finite dimensional case. It is therefore 

useful to replace n (x,b) by a more general quantity counting hits 

with a suitable weight. Let Y > 0 be a lower semicontinuous function 

on dft . Given x , b 6 B and R > 0 we put n!*(x,b) - £ Y(x+tb), 

0<t<R 

where the sum extends over those t for which x+tb is a hit of 

{x+tb; 0 < t < R } on ftCB.If y is bounded and bounded away 

from zero, then (2) is equivalent to 

sup fn^íx.b^p. (db) < « ; 
X £dft g 

on the other hand, the condition 

lim sup {|2d0(x)-l| + 2Y~
l(x)fn*(x,b)p1(db)} < 1 , 

r+0+ x e 3ft u B 

which guarantees the existence of a bounded inverse to IH on &' , 

can be shown to be more general than (3) for P - dft • Restrictions 

imposed on Y may be relaxed and generalizations of the heat flow 

operator IH can be introduced acting on broader spaces of measures 

which need not have bo.inded variation. 

Suitable extensions of the quantity n (x,b) find application 

in treating boundary value problems for time-variable domains. If 

v* C (0,T) x B is a general open set and 3 - dv1 f. {(0,T) x B} , then 

for any z - [u,x] € $ the quantity n(z,b) counting all the hits 
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of the parabola {[u+t ,x+tb]; t > 0 } on $ C A is a measurable 

function of the variable b € B . The condition 

(4) sup [ n U . b ) ? . . (db) < » 

appears to be an adequate extension of (2) for this type of domains. 

This was shown in general investigations on integral representability 

of solutions of boundary value problems for the heat equation and the 

adjoint heat equation on time variable domains in finite dimensional 

spaces due to M. Dqnt and J. Veseltf (cf. [5 J - [7], .[24]). 

As shown by L. Gross [l2j (cf. also [4j), Newtonian potentials 

on B can naturally be defined with help of the measure which is the 

image of y under the projection [t,bj —»• b of A onto B . In 

finite dimensional case results related to those described above were 

obtained for Newtonian potentials in [3j , [l4j (cf. also [l6j for 

comments and references). 
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