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POTENTIAL FLOWS

Josef Krdl
Praha, Czechoslovakia

The role played by the Gauss bell-shaped function

-n _l1x?

(2xt) z e 2t of the variable x € R® in connection with the
heat equation is well known; for any Borel set E C R the integral
_n _lx|?

1) -[(2;1:) Ze 2t ax

may be 1ﬂterpreted as the quantity of heat situated in E at the in-
stant t > 0 in consequence of the action of a point source at the
origin which emanated the unit quantity of heat at the instant 0 .
Impulses coming from various investigations in mathematics and phy-
sics led to extensions of the Gauss measure defined by (1) on Borel
sets E C R® to infinite dimensional spaces (cf. [9], [18], [21],
[22], [25]). Following L. Gross [11] - [13] we first briefly recall
some considerations connected with the concept of the so-called Wiener
space. Let H be a real separable Hilbert space with the scalar pro-
duct (.,.). A cylinder set in H is a set of the form C = {h ¢ H;
[th,hy),...,(h,h))] € E} where h,,...,h, 1s a finite orthonormal
system in H and E 4is a Borel set in R" . For such a C the quan-
tity (1) (which actually depends on C only and not on the choice of
the orthonormal system describing it) will be denoted by "t(c) + The
set function u. is additive on the algebra of cylinder sets but it
fails to be countably additive if dim H = » . This indicates the idea
of completing H with respect to a new norm ||ee+|]| . A norm

|leee|| on H is termed measurable if for each ¢ > 0 there is a
finite dimensional.projection Pe : # — H such that "1(CP) < ¢ tor
Cp = {h € H; |[|Ph]|| > ¢} whenever P is a finite dimensional projec-
tion orthogonal #o P . If B denotes the completion of H with
respect to a fixed measurable norm ||,,.|| then the natural inclu-
sion HC B 1is continuous and the pair (H,B) 1is called an abstract
Wiener space. If " p* 1# dual to B and «,,.,> 1is the pairing bet-
ween B* and B then any y* ¢ B* represents, by restriction, a
continuous linear functional on H and as such may be identified,

via the Riesz representation theorem, with the corresponding element
y - € H determined by the equality «<y*,h> = (y,h) , h €-H . We thus
arrive at the (dense) inclusions B*C H C B . Given a Borel set EC
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C R® and a linearly independent system {yi,...,yn} C B* we may
form the cylinder C = {x e B; [syi,x>,...,<y ,x>] € E} - whose trace
on H is Cy = {he H; [(yi,h),...,(yn,h)] € E} . (Before calculating
ue (Cy) » one should note that {yi""'yn} need not be orthonormal
in H .) Defining pt(c) - "t(cﬂ) we obtain a set function P, on
the algebra of all cylinders C in B ; now P, Ppossesses a unique-
countably additive extension to the o-algebra of all Borel sets in B.
The Wiener'space (H,B) - equipped with the probability measures Pe

(t > 0) represents a natural playground for many potential theoretic
investigations. The measures {pt}t>o form a convolution oemigroup
which permits to solve suitably formulated Cauchy problem where the
initial conditions are given by functions (cf. [12], [20]) or by mea-
‘sures (compare [23]). They also generate the fundamental solution of
the heat conduction operator n- f A in the space-time A=

= R1 x B whose elements will be written in the form a = [t,b] with
terl, beB and normed by (|t|2+||b||9)% ; H will be identi-
fied with the subspace {0} x H in A . Let us define y on Borel

sets MCA by yM) = Ipt({b € B; [t,b] e MhHdt . Then y >0 is a

measure which is finite gn sets that are upper bounded in time. If
D denotes the formal adjoint to n then [J ¢dy = ¢(0) for all
test functions ¢ to‘'be defined below; this means that o y = &
(= the unit Dirac measure concentrated at the origin of A ). Let us
recall that a function f : A — R1 defined in some neighborhood of
a € A is termed quasidifferentiable at a if there is a Df(a) € A*
such that, for each continuous a 3 (-1,1) — A differentiable at 0
with «(0) = a , the composition t +—+ f(a(t)) has a derivative at o
given by <«Df(a),a’(0)> . ‘We shall deal with uniformly continuous fun-
ctions ¢ with bounded support that are everywhere quasidifferentiable
with D¢ bounded (in the dual norm) and [al,az] — <D¢(a1) a,> con-
tinuous on A x A ; such a ¢ will be called test function 1£ in ad-
dition, for any fixed a the function h » ¢(a+h) is twice Fréchet
differentiable at the origin.of H', the corresponding second order
differential D ¢(a) (considered as a linear operator on H ) is of
trace class and the map a > D ¢(a) into the space of all trace class
operators on H is hounded and continuous. For any test function ¢
the laplacian Ao(a) = Trace p? ¢(a) as well as 3, ¢(a) -
- <D¢(a) [1,0]> , <p¢(a) b> = <D¢(a),[0,b]> (b e B) are defined and
né¢=- (a +' = 1 A)¢ is a. bounded continuous function with bounded .
support. It is an important consequence of results of [12], [8], [10]
that the class of all test functions is sufficiently rich .to admit
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construction of partitions of unity subordinated to open covers of
the space; any uniformly continuous function with bounded support is
a uniform limit of a sequence of test functions. Convolutions of vy
with other measures generate potentials useful for treating various
boundary value problems. As an illustrative example we shall consider
the so-called Fourier problem (cf. [15], [19] for related finite di-
mensional considerat;ions). Let us fix a T > 0 and an open set QCB
with boundary 23Q . Put V= (0,T) x 2, Q= <0,T) x 3¢ and denote
by B’ the space of all signed Borel measures v on _.A' whose va-
riation |v| fulfils |v|(ANQ) = 0 . With each v ¢ 3’ we associ-
ate its potential u = u = vogy defined on the o-algebra uﬂ,

all Borel sets MC (-=,T> x B by u(M) = [v(M-a)y(da).. It follows
from basic propert:.es of y that u is H-differentiable: there
exists a countably ‘additive H-valued measure M —+ grad u(M) € H on:
”’L'r such that, for any h € H and M € M, , 1'%: t 1[u(M+th)-u(u)] -

='(h, grad uM)) (cf. [1] for differentiability of measures). If ¢¢ .
€ ¢1) " (= the class of all test functions with support :I.n (=»,T) x B)'
then Do : A— B*CH can be integrated against the vector-valued

measire grad u : Mg — H and the bilinear integral (cf. [2]) exten-
ded over V permits to define the functional [Hv over 3.1. by '

<¢, Hy> = _‘I(N, grad u ) - 2[bt0(a)uv(da) » ¢ € Dp .
v v

IHv will be called the heat flow associated with v . It is easily
seen that <¢, Hv> = 0 1if ¢ € QT and Q Nspt $ = @ . The physical
significance of Hv is best illustrated in finite dimensional case '
when grad u, has a density Vu v (with respect to the Lebesgue mea-
sure) extending from V to a continuous function on V UQ ; if a8
is smooth, N is the unit exterior normal to V and o¢ is the sur-
face measure, then

<¢, Hv> = ]o(N'.-Vu\,)da » b€ Dy .
Q

In general case Hv need not be representable by a (signed) measure
u in the sense that <¢, Hvs> = f¢du , ¢ € 3; . If there is such a
u then it is uniquely determined by the requirement |u|(<T,+=) x B)=
= 0 ; under this condition it belongs to B’ and, as usual, will be
identified with Hv . In order to get geometric: conditions on § gua=-
ranteeing Hv € 3 'for'every ve % it.is useful to adopt the
following definition (compare [14], [17]). '
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DEFINITION. If C <& a Banach space, M CC <8 a Borel set and
ws:I-—=C <8 a simple differentiable path-curve defined on an inter-
val I C r? , then c € C s termed a hit of w on M <If there is

a t, eI with m(tc) = ¢ and for each neighborhood W of ¢ 1in

C both {t e I; w(t) € W NM} and {t € I; w(t) € U\ M} have po-
sitive linear measure.

This definition enables us to formulate the required condition
in terms of the measure p, as follows.

THEOREM 1. Given R >0, X €232 and b € B we denote by nR(x,b)
the total number of all hits of {x+tb; 0 < t <R} on Q CB . Then
the function b > nR(x,b) i8 measurable and

(2) sup In (x,b)p,(db) < =
xeanB‘ﬁ' 1

i8 a necessary and sufficient condition guaranteeing that Hv € B’
for each v € B'. If (2) holds then H : v — Hv <8 a bounded opera-
tor on the space B’ equipped with the norm ||v|]| = |v]|(Q) .

The norm of the operator H can also be simply evaluated. If
x €32 and R > 0 then InR(x.b)pl(db) < » implies measurability
B g

of the set a, formed by those b e B for which there is a § =

= §(x,b) > 0 with x+tbe Q@ for a.e. t € (0,8) . Assuming (2) and
writing dn(x) - pl(nx) (which in finite dimensional case reduces to
the Lebesgue density of Q@ at x ) we have

118l = 2 sup {4, (x) + In (x,b)p, (db)} .
1 =2 s {400 + [ngocme; @)

In particular, ||H|| £ 2 for convex Q .

The condition (2) can be somewhat simplified if we put T =
= {6 € B; ||e]] = 1} and denote by o, the probability measure on
r which is the image of 1 2 under the projection b F%i of
BN{0} onto T . Then
« > sup In_,(x.e)al(de) (= sup Ina(x.b)pi(db))
X € 3R T . X €93Q B

is sﬁfficient (and also necessary in finite dimensional case) for va-
lidity of (2).

In what follows we always assume (2). The Fourier problem has
then the following natural weak formulation: Given u € 3’ , determine
a v € B with Hv = y . General description of the range of H is
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not known. However, sufficient geometric conditions on @ guarantee-
ing invertibility of H can be established. If P C 82 is a Borel
set and 3; denotes the subspace of all v € B' with

|v|(<0,T) x P) = |v]|(Q) , then the following result holds.

THEOREM 2. If

3) lim  sup {|2d (x)-1] + ZInt(x,b)pl(db)} <1,
r+0+ X€EP B

then for every v € Jyp there exists a unique 1y € ifp such that
Hu(M) = v(M) for each Borel M C <0,T) x P .

If all the functions n_(x,.) with x e P are dominated by a
common pi-integrable function (or if dim H < =) then the integral
occurring in (3) may equivalently be replaced by !nr(x,e)ol(de) .

r

Of course, main interest consists in P = 3g when (3) implies the
existence of a bounded inverse to H on B’. As pointed out by W.
Wendland, (3) then appears to be rather restrictive for certain non-
convex domains even in the finite dimensional case. It is therefore
useful to replace nr(x,b) by a more general quantity counting hits
with a suitable weight. Let y » 0 be a lower semicontinuous function
on 32 . Given x , b€ B and R > 0 we put ng(x,b) - E Ry(x+tb),
. 0<t<

where the sum extends over those t for which x+tb is a hit of
{x+tb; 0 <t <R} on Q@CB . If vy is bounded and bounded away
from zero, then (2) is equivalent to

¥
sup  [nlg(x,bIpy (@) < = ;
X €39 B T 1

on the other hand, the condition

um  swp  {]2a,00-1] + 2670 [l eepapg @} < 1,
r+0+ x€23Q B

which guarantees the existence of a bounded inverse to H on 3'.
can be shown to be more general than (3) for P = 3Q . Restrictions
imposed on ¥ may be relaxed and generalizations of the heat flow
operator [H can be introduced acting on broader spaces of measures
which need not have bo.nded variation.

Suitable extensions of the quantity nr(x.b) find application
in treating boundary value problems for time-variable domains. If
¥ C (0,T) x B is a general open set and 3 = 3 f\{(o,T) x B} , then
for any z = [u,x] € § the quantity n(z,b) counting all the hits
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of the parabola {[u+t2,x+th; t >0} on ¥ C A is a measurable
function of the variable b € B . The condition

4) sup, Jn(z,b)pl(db) < ®

ze d B
appears to be an adequate extension of (2) for this type of domains.
This was shown in general investigations on integral representability
of solutions of boundary value problems for the heat equation and the
adjoint heat equation on time variable domains in finite dimensional
spaces due to M. Dont and J. Vesely (cf. [5] - [7], [24]).

As shown by L. Gross [12] (cf. also [4]), Newtonian potentials
on B can naturally be defined with help of the measure which is the
image of y under the projection [t,b] —~+b of A onto B . In
finite dimensional case results related to those described above were
obtained for Newtonian potentials in [3], [14] (cf. also [16] for
comments and references).
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