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ON A FIXED POINT INDEX METHOD FOR THE ANALYSIS OF THE ASYWMPTO -
TIC BEHAVIOR AND BOUNDARY VALUE PROBLEMS OF PROCESS AND SEMIDY-

NAMICAL SYSTEMS

A, F. 1zé
Universidede de Seo Peuio, Braz il

1. INTRODUCTION

WaZewski principle [19] plays an important role in the stu-
dy of ordinary differential equations. Its applicability is large-
ly due to the fact that in e finite dimensional euclidean space,
the unity sphere is not a retract of the closed unit ball. Since
this is no longer true in infinite-dimensional Banach space the
direct extension of WeZewski’s principle to processes or semidyna-
mical systems on infinite dimensional Banach spaces has a very li-

mited applicability.

Since in finite dimensional spsces the fact that the unity
sphere is not a retract of the closed unit ball is equivalent to
the fact that every continuous mepping of the unity closed convex
ball has a fixed point, the main idea of this work is to develop
a method based on fixed point index properties instead of retrac-

tion properties.

Our fixed point formulation, Theorem 2, is essentially equi-
valent, in finite dimension, to WaZewski Theorem. Although in fi=-
nite dimension, Wa%ewski Theorem is no longer applicable, Theorem
2 and also Theorem 3 are applicable and give deeper results since
fixed point methods have proved to be very useful in the solution
of differential equations either in finite or infinite dimensional
spaces. After that we go further and generslize theorem 2 and 3
using Leray-Schauder degree theory or the fixed point index theory
for compact or condensing maps. These generalizations, theorems 4,

5 end 6 are stronger even in finite dimension than Wa%ewski Theorem
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After the appearence of WaZewski paper several papers arised
applying WeZewski principle to the asymptotic behavior of ordinary
differential equations, C. Olech [13) , V. Pliss [16] , Miko-
lajska [11] , N. Onuchic [14] , 4. F. Izé [9] and others.
Kaplan, Lasota and Yorke L'IO"] applied WaZewski method to bounda-
ry value problem and C. Conley [37 also applied WaZewski method
to a boundary value problem for a difusion equations in biology.
Since our aproach uses WaZewski basic ideas in conection with de-
gree theory it should'give, even in finite dimensions much better
results and cen be epplied also to boundary problems in Hilbert

spaces.

2, PROCESSES

Definition 1. [2] Suppose X is a Banach space R+ =['0.°°) ’
wRxXxR X isa given mepping end define U(€,t):X~—>X
for F€ R , teR" by

U(6,t)x = u( ,x,t).

A process on X is a mapping u:R x X x R+-*x satisfying
the following properties

(i) u is continuous ,
(ii) U(§,0) = I (identity),
(iii) U(S +s,t)U(6 ,8) = U( 6 ,s+t).
A process is said to be an autonomous process or a 'semidina-
micel system if 1(6 ,t) is independent of 6 , that is ,

T(t) = U(O,t) , t20 . Then T(t)x is continuous for (t,x)
€ErR xx .

In a process u(¢,x,t) can be considered as the state of a

system at time 6 + t if initially the state at time © was x,

Processes arise from ordinary differential equations evolu-

tion equations, retarded and neutral functional differential equa-
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tions and partial differential equations.

Definition 2, Suppose u is a process on X . The trajecto-
ry et ( 6,x) through (6 ,x)€ER x X is the set in R x X de~-
fined by

2 (6,x) = {(+¢, u(s,t)x | ter*].

The orbit f(e",x) through (6 ,x) is the set in X defi-
ned by

r*(ﬁ',x) ={U(6‘,x)x . ten*}

Definition 3.If u is a process on X then an integrel of
the process on R is a continuous function y:R—>X such that for
any € R ,
=t (6,5(5)) ={(5'+t, y(6+t)) l't 2 0} e An integrel y is ean
inwgral through (6 ,x)€Rx X if y(¥) =x .,

We assume in the following that the integral through each
(6,x)€R x X is unique.

We define

27 () = (5,))ERxX|3t>0 such that

(S ,t)y=x .

I P = (,x) eRxX and z¢€ T"'(G,x) , we define

t, = int{ ¢ 2 ofu(o,t)x = &)

Q = (s+t, , U(e,t,)x)

[p, , Q)= {(5+, Ulo,t)xjoft<e,}

[p, , Q= {(5+t, Uls,xJoft <t}

(Py Q,]- i (O +t, U(F,t)x\o Lt £ t’}

(B, » Q) ={(S+t, U(F,t)xfo<t <t}

Let ) be enopen set of RxX , & an open set of JL ,

wcl ,wfP eand Qw =@ N (N -W) the boundary of W
with respect to n o We put:
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s® ={P°=(s',x)eawl 3t>0 e zer*(o',x) , With

» Q) #8 end (B, , QINT = B

33 o

[
s={qedw| I P = (S,x)€w , com Qe %* (6,x) o
[P,Qcw]
s'=s°ns .
The points. of S are called egress points, the points of s*
are called strict egress points,

Given & point P, = (6 ,x) €W , if the trajectory ‘=+(6‘,x)
of the process is contained in < for every t >0 , we say
that the trajectory is asymptotic with respect to & , if the
trajectory is not asymptotic with respect to < then there is
a t >0 such that (S +t, U(G,t)x) € 9w , Taking

tp ={amtnt> o] (&4, u(s,t)x) € dwY
Q= (6‘+tpo , U(G‘,tpo)x = C(p, .w)

we have
[P, AV w.

The point C(P, ,@) is called the consequent of P, .
Define G to be the set of all P, = (¥ ,x)€ such that
there is C(P, ,®) and C(p, ,w) € s” .

Consider the mapping
k: gus*-> s* ,
K(P,) = C(P, ,w) if P &€W and K(P) =P, if P € ™,
The proof of the following is standard, see for example (27,
f131 .
Lemma 1:The mapping K: oUs“— s is continuous.

Theoren 1:(First form) Assume that there exist sets S C Qdew
and ZcwUS , Z ¥ @ satisfying the conditions:

(i) s = s* (that is, the points of S are egress
points).
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(ii) Z is compact and convex.

(iii) Zn S is a retract of S.

(iv) There exists a continuous mapping
d:2ns—>zNnS such that @(P) # P for every
Peins.

Then there is et lesst one point P, = (6,x) e zNnw

such that the trajectory 3'"(6‘,1) is contained in w
that is, the trajectory 1;"( 6,x) is asymptotic with respect
to & ,

Proof: Assume the Theorem is not true. Hence for every
P, €2 NW the trajectory through P, is not
asymptotic with respect to w , that is, there exists (!(Pol e
Since s =8 , c(p, ,W)€ s . Then

ZAnwW <G,
From Lemma 1 the mapping K is continuous.

From condition (iii) there is a retraction.

r:S—»2nsS

The mepping

R=r ., K:iZNW—2ZNS
is continuous end takes P, = (S ,x) into
C(P_o ) = (Fﬂq , U(6 ,tq)x)e Zns .

From condition (iv) the mapping (b tekes C(P, ,w)
into S(C(P, ,w)) = C’(P, ,w) # C(P, ,w) end then the composite
mapping

$.2K:z =2
is continuous and never has & fixed point. This is in eontr‘adict:{on
with Schauder fixed point theorem. Then the trajectory "‘.(Po) is
asymptotic with respect to ¢J and the theorem is proved.
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Remerk 1: One simple situation in which condition (iv) is satis-

fied is when Z N S is symmetric, that is,
=ZNSC2ZNS . The mapping S:ZNS—>2Z2N S is defined by
@ =-p .

Theorem 2: (Second form) Assume that there exist sets SC ow

and Zcw Vs , Z#¢@ , satisfying the conditions:
(i) s = s™. ' ‘
(ii) Z is closed bounded convex .

(iii) Zn S is a retract of S.

(iv) There is a continuous mepping ¢ :2N S —=>zZNns

such that ¢ (P) # P for every P€ Z2NS,

(v) U is compact.

Then there is at least one point P, = (6,x)e 2N
0 such that the trajectory ’6+(°",x) is contained in wW
that is, the trajectory through P, is asymptotic with respect
to W . ’

The proof follows as in Theorem 1, Since U is compact the
mepping K that tekes P, into C(Po s0) is compact. r is a
retraction and then R = r.K:ZNw —>Z NS is compact. The map-
ping ¢.nK=P°"'C'(P° ,W) is also compact and never has a fixed
point. This is in contradiction with Schauder fixed point Theorem
since ¢ or.K:Z->Z and Z is closed convex, bounded.

Then the trajectory through Po is asymp;otic with respect
to W and the theorem is proved.

Theorem 2 can be extended by using tke fixed point index theo-
ry or Leray-Schauder degree in the following way.

Theorem j:Assume that there exists sets S, €S end ZCW U 8 »
Z closed convex, Z ¥ ¢ satisfying the conditions:
(1) s =s*%,
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(ii) There exists a continuous mapping 4) : 8, =S, ueh

that ¢ (P) # P for every P€ S,.
(iii) U is compact.
(iv) deg(I -¢U, 2NW ) # 0.

Then there exists st leest one point P, = (6,x) € Z nW
such that either C(P)) € S8 - S, or C(Po) does not exist, that
is, the trajectory 't+(0‘ ,Po) is asymptotic with respect to w

Proof: Assume that the theorem is not true. Then C(Po) € S
for every P, € ZNW end then ZnW C G , Then
2=(zns)v Znw CSuUG . From Lemma 1 the mep K is con-
tinuous and the restriction of K to 2 U S; that we note by
K , is also continuous since U is compact the map K that ta-
kes P, into C(Po) is compact. The transformation ¢U is also
compact and ¢ U(P) # P for every P € ZUS . This implies that
deg(I - <b U, 200 ) = O what is a contradiction and the theorem
is proved.

A less general formulation of theorem 3 that is more similar

t0 theorem 2 is the following.

Theorem 4: Assume that there exist sets S;c S and
ZCwuUs,, Z#@, Z closed convex satisfying the
conditions:
(1) s=s*
(11) zns, isa retract of S, , that is, there
exists a retraction r:S;—>zNSs,.
(iii) U is compact.
(iv) There exists-a continuous map C[) 12 5,z 0s,
such that ¢ (P) #P for every P ¢ Z ns,.
(v) deg(1 - U, zAaw ) ¥ 0.

Then there exists at least one point
.g = (6°,x) € ZNW such that either C(Py) € S - Sy or C(Py)
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does not exist.

The proof is similar to theorem 2 and 3. Nussbaum C12] ae-
fined a fixed point index and consequently a degree for *-set ‘

contredictions and condensing maps.

Theorem 5: Assume thet there exist sets S C S end Z<WU §;,
Z# @, Z closed convex satisfying the conditions:
(i) s=s™ '
(ii) There exists a continuous map ¢ :Sy—> S, such that
$(P) # P for every PE€ Sy
(iii) ¢)U is condensing .
(iv) deg(I - ¢U, 2NW) ¥ 0.
Then there exists at least one point P €8 - S‘ such that
either C(Po) €8 -8 or C(Po) éoes not exist, that is, the
trajectory ¥'(%,x) through (6 ,x) is contained in W
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