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HOMOGENIZATION FOR VARIATIONAL AND QUASI-VARIATIONAL INEQUALITIES 

Marco Biroli 

Politecnico di Milano , Nilano (Italy) 

1. Introduction. 

In this lecture we are interested in convergence and estimates in homogeniza-

tion for variational and quasi-variational inequalities • 

Roughly speaking we have a medium with a known microscopical behaviour and 

we want a medium with a known macroscopical behaviour ( homogeneous in the 
case of classical homogenization) which approach the initial medium • 

We state now the problem in the case of 2° order linear elliptic equation 

Let be Y -TT^ [0,y±] C RN , a ^ * L*° (Y) , i,j-l,...,N , such that 

21 «±jCy) li £y >. > 151* a.e. in Y , \ > 0, 

and we extend the a... by periodicity . 
N • t 

Let SL be a bounded open set in R with smooth boundary and A from 
HJ(XI. ) to H'^JO.) defined by 

>0 . (1.1) < A * u , v > - Z V f a..(f) -£ <x) -^ (x) dx , t 
-*/]•* JJX. J j i 

We indicate *A (y) « [a (y)], *A (x) - [a ( j )] . 

Ne consider the problem 

(1.2) A* u£- f f € H^CA. ) . 

We have at least after an extraction of subsequence 

(1,3) w-lim u* - u° in H*(-fL ) 

Problems: (1) Is u a solution to a linear 2°order elliptic equation 

(1,4) A°u° - f 

,Vf. where the coefficients S^ - L a±.l don't depend 

on the boundary conditions ? 

(2) There are some estimates on 1 u* - u || ? 

The second question has a relevant interest for Numerical Analysis , why , 
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for highly oscillating coefficients the Numerical Analysis of (1,2) can be very 

difficult ; if we have some estimates on |J u* - u ]| we can substitute the 

problem (1,2) by the problem (1,4) . 

The answer to problem (1) is affirmative , (1)(8) , and there are also some 

explicit expression for the coefficients a . of A , which are constants j the 

main tool to study the problem (1) is the "energy method" . 

The answer to problem (2) is affirmative if a..£ C (y) are Y-periodic and 

f c L ( k\ ) , r v N } in this case we have 

(1,5) 11 u 6 - u°ft £ ct1'2 • 

The main tool to study the problem (2) is the " multiple scales " method, (1) • 

In 2. we give now some results concerning problems (1) (2) for variational and 

quasi-variational inequalities • 

2. Results . 

Let H(y,u,p) be a function measurable for y e Y and continuous in (u,p) such 

that 

(2.1) i H(y,u,p)! i K ( 1 +lu» 2 + i p | 2 ) , 

(2.2) H(y,u,p)u > -K ( 1 + | u i 2 ) - Kj ip i 2 , Kj <: X , 

(2.3) | H(y,v,p+q) - H(y,u,p) | r C% (M) ( | p | + /p | |qj|+ | q ] 2 ) + C2( ^ ) 

for | u j , | v | < M , | v -u \< l H , 0 < Cj(M), C ( *j ) bounded and l i a C ( y% ) « 0 

We extend H(y,u,p) to y R by p e r i o d i c i t y and we define 

(2.4) Hfc (x ,u ,p) -- H ( j ,u,p) • 

Let <f be a measurable function and 

(2.5) K* «- \ v £ H J ( O L ) , v <£ <f a . e . in H \ . 

Let Q (y) be defined by the problem 

(2.6) - d iv A (y) grad £ K ( y ) - d iv A (y) grad y 

y y y y K 

9* (y) Y-periodic 

and P* (x) « grad 9* ( £ ) + I . 
2, We have , in L (it ) , 

У * 
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w-lim H (x,u,p) - H (u,p) » i \ H(y,u, [ grad Q* (y) +1", p ) dy. 

We consider now the var iat ional i n e q u a l i t i e s 

i sA^ u*- , v-u"> + \ H v (x,u* , grad u* ) ( v-u f c ) dx > 0 , 

V V i K ^ L ' ' * ( I I ) , u t K"*nL** (XL) , 

v , o o o ^ r „ , o ^ o. , o . ^ ^ . 
r < A u , v-u > + J HQ (u , grad u ) ( v-u ) dx 2>. 0 , <2,70> {' ' Л 

V v ц ŕ ň L * (-ГL) , ue: к*л L*" ( л ì ) . 

Suppose now a . (y) $ C 1 (Y) and Y-periodic then P * (x) s L t 0 ( Y ) . 

Theorem 1 - Suppose \f c L ! * (XL) and 

(sO \f is one sided Holder continuous and K f\ H ' °° (.0. ) ̂  ^ 

or 

(a2) ^ £ H 1 , q( XI) with q > 2 . 

Let u* be solutions of (2,7 ) ; there exists a subsequence {ufc J 

such that 

c' 0 1 
w-lim u c -= u in H_.(XO 
6'-*o § 0 

lim -4*' grad nL' grad u 6 ' - ^ ° grad u° grad u° in Y>j>(-iU 

where u is a solution of (2,7' ) , (5)(6) . 

The result of convergence of Th. 1 can be also easily extended to the case 

of the quasi-variational inequality of the impulse control , (5) . 

We observe that the result of Th. 1 can be extended in the more general frame­

work of G-convergence • 

Existence results for variational inequalities like (2,7 ) (2,7Q) are given 

in (7) for hypothesis (SL^) and in (6) for hypothesis (a2) . 

Let be now H-* 0 ( linear case) , we have : 

Theorem 2 - (A) If f A y |( r 4 C , r > N , <x is the De Gjorgj--Nash exponent 

llu*- u°|| £C B *5zZc • 
if 

(B) If ^eB1,r(SL ) , r > N , 

II u £ - u° \\ *C 8 *W-2->3^T) -
IT 

(C) If Y ^ C y (A.) , tf€ (0,1) , 

)| u* - U°|1 L -.^C 6 *CtV-J»i*» (2) (3) . 
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A known function f can be also considered ( in the case (A) we suppose f £. 

£ H , r ( J l ) , in the cases (B) (C) we suppose f £ Lr(J"L) ) r (2) (3) . 

The case of the quasi-variational inequality of the impulse control can be 

treated by the result (B) of Th. 2 and the Caffarelli - friedman method and 

we obtain an estimate as in (B) , (4) . 
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