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THE DIRICHLET PROBLEM
W.Hansen, Bielefeld

Given a partial differential operator L of second order on a relatively
compact open subset V of R" and a continuous real function f on v the
corresponding Dirichlet problem consists in finding a continuous real function
u on V such that Lu=0 on V and u=f on V* .

Since about twenty years ([1], [4]1)it is well known that a general treatment
of this question is possible by using the concept of a harmonic space. We shall
sketch how this is done and then discuss some recent developments.

1. Harmonic spaces

Let X be a locally compact space with countable base. For every open U in
X let H(U) be a linear space of continuous real functions on U , called har-
monic functions on U , and suppose that H = {H(U) : U open in X} is a sheaf.

Standard examples. 1. Laplace equation. X relatively compact open < R",
n a2
H(U) = {u € CZ(U) 3 3—$-= 0} 2. Heat equation. X relatively compact open
i=1 9x%
i

n .2
cR™, MUy = uedduy oz ZU-N
i=1 ax% n+1

A relatively compact open subset V of X is called regular if for every
f e C(V*) there exists a unique extension va on V which is harmonic on V
and positive if f dis positive.

Let us suppose that (X,H) has the following properties:
I. The regular sets form a base of X .

II. For every open U in X and increasing sequence (hn) of harmonic
functions on U such that h := sup h is locally bounded the function h is
harmonic on U .

ITI. 1 € H(X) , H+(X) separates the points of X .
Then (X,H) 1is a harmonic space.

Remark. We note that the general concept of a harmonic space in the sense of
Constantinescu-Cornea [4] uses a slightly weaker form of property (I) and a sepa-
ration property which is considerably weaker than our property (III). Accepting
some technical modifications all the material we want to discuss can be presented
in the more general situation (see [2], [3]). But probably the essential ideas
become more clear in our setup.
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Let V be a regular set and x € V . Then the mapping f +— va(x) is a
positive Tinear form on C(V*) , hence a positive Radon measure ”X on V* s

called the harmonic measure (on V at x) .

2. The Dirichlet problem and the PWB-method

Let U be a relatively compact open subset of X . Given a function
fe C(U*) the corresponding Dirichlet problem asks for a continuous extension
of f to a function h € C(U) which is harmonic in U . Therefore, one is in-
terested in the linear space

H(U) := {h € C(U) : h harmonic in U} .

If this Dirichlet problem is solvable for every f € C(U*) then U is
regular, H(U) = C(U*) , and vice versa. However, U may be not regular and
then there are functions f € C(U*) for which the Dirichlet problem is not
solvable. :

But there is a method due to Perron, Wiener and Brelot (PWB-method) which
yields a positive linear mapping f +—> HUf such that HUf is harmonic on U
for every fe€ C(U*) and such that Huf is the solution of the Dirichlet
problem provided a solution exists.

The PWB-method of determining a so-called generalized solution of the Dirichlet
problem uses hyperharmonic functions. A 1.s.c. function v : U= ]-o, 4+=] is
called hyperharmonic (on U) if uX(v) < v(x) for every regular V such that
VcU and for every x €V .

Let *H(U) = {v|v : U= )-=, +=] 1.s.c., v hyperharmonic on U} . We note
that *H(U) n -*H(U) = H(U) . *H(U) is'a convex cone satisfying the following
boundary minimum principle: If v € *H(U) and v >0 on U* then u >0 on
u.

Let fe c(U*) . Defining

A = inftve "HU) tv> f oon U%),

W = sup twe -"HU) :w<f on UM

the boundary minimum principle yields ﬂpf < ﬁUf . If the Dirichlet problem for
f is solvable, i.e. if there exists a function h € H(U) such that h = f on
U*  then evidently h < ﬂpf and ﬁUf < h , hence ﬂpf =Wf-n.

It can be shown that for every f € C(U*)

wr = Wl =2 wls

and furthermore HUf is harmonic on U , HUf =f on U*
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A boundary point z € U* is called regular if for all f € C(U*) the
generalized solution HUf is continuous at z . Evidently, U is regular if
and only if all boundary points of U are regular. The generalized solution of
the Dirichlet problem and a useful criterion for the regularity of boundary
points can be obtained using balayage of measures.

3. Balayage

*
Let H* denote the set of all positive hyperharmonic functions on X .

Given an arbitrary subset A of X and a function u € *H+ one tries to find
%

a smallest function v € H' satisfying v=u on A . The obvious candidate

is the pre-sweep (or réduite function)

Rﬁ = inf {v € *H+ :v=u on A} .

Since Rﬁ is not 1.s.c. in general, one replaces Rﬁ by the greatest 1.s.c.

function < Rﬁ . This is the sweep (or balayée function) of u relatively to

A:

ﬁﬁ(x) := 1im inf Rﬁ(y) (x € X) .
. y>x
We have ﬁﬁ € *u* and obviously
oiﬁﬁsRﬁflJ-

The initial interest leads then to the study of the base of A
b(A) = /) (x€ X : Ro(x) = u(x)} .
u€ H
It has the following fundamental properties:
Rcb(r)<h,

b(A) = {x € X : ﬁe (x) = uo(x)} for some u, € *H+ nc,
0

in particular, b(A) is a GG-set.

For every Radon measure u > 0 on X with compact support there exists a
unique Radon measure uA >0 on X satisfying
Ju ah = f ﬁﬁ du forall  ue W .
uA is called the swept out of u on A . It is carried by AL By choosing
for u unit masses e, at points x € X it follows that

AL
b(A) = {x € X : ey = ex} .

We are now able to express the solution of the generalized Dirichlet problem in
terms of balayage:
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" For every relatively compact open set U and every f € C(U*) the solution

WUt satisfies %

We(x) = | fdgﬁu = [ fde)  (xeU).
The set Ur of regular boundary points is given by

U. = b(fu)nU.

4. The weak Dirichlet problem

Again let U be a relatively compact open subset of X . The fact that a
function f € C(U*) may not admit an extension to a function h € H(U) 1led to
the introduction of the generalized solution HUf which is a harmonic extension
of f but is not necessarily continuous at all points of the boundary U* .

Another way of turning the problem is the following: Are there at least some
subsets B of the boundary such that every continuous function f on B admits
a continuous extension to a function in H(U) ? Because of a general minimum
principle a natural candidate for such a set B would be the Choquet boundary
ChH(U)U of U with respect to H(U) .

The Choguet boundary ChH(U)E. is the set
ChH(U)U = {x€eVU: MX(U) = {ex}}

where
MX(U) = {u : u(h) = h(x) for all h € H(U)}

denotes the set of all representing measures for x (with respect to H(U)) .

If for example V is regular, VecU and x €V then uX is a representing
measure for x . More generally, for every x € U the swept-out E&U of €y
on (U 1is a representing measure for x . In particular, the Choquet boundary
ChH(U)U- is a subset of the set Ur of regular points. For the Laplace equation
these two sets coincide whereas for the heat equation the Choquet boundary may be

a proper subset of Ur .

We have the following minimum principle: For every h € H(U) there exists a
point z € ChH(U)U> such that h > h(z) . In particular, if hy » hy € H(U)

and h1 = h2 on ChH(U)U then h1 = h2 .

Thus the following weak Dirichlet problem arises: Given a compact subset
K of ChH(U)U- and a continuous function f on K , 1is there a continuous
extension to a function in H(U) ?

The solution of this problem is obtained by the following result.
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Theorem ([2]). For every x € U there exists a unique measure u, € MX(U)
which is carried by ChH(U)U . For every x € U~ ChH(U)U s

TN
My T &
A very general reasoning now yields the following consequence.

Corollary. 1. The weak Dirichlet problem is solvable.
2. {p €HU)" : p >0, p(1) =1} is a simplex.
Furthermore, a close study of the Choquet boundary yields a characterization of
ChH(UiU which is similar to the one obtained for U,

(U)U =g((u)nu
where s([U) is the greatest subset C of [U such that b(C) =

5. General PWB-method

We shall now see that for every x € U the measure €y H(U) and many other
representing measures can be obtained by a procedure in the spirit of Perron-
Wiener-Brelot.

For every compact subset K of U* let *HK(U) be the set of all functions
v which_ére limits of an increasing sequence (Vn) Ef 1.s.c. real functions
v, on U, hyperharmonic on u and cont1nuous on U~ K. Then HK(U) is a
convex cone such that H(U) = HK(U) c H L(U) = H(U).

Furthermore

H(U)U < Ch,, (U)U cKuUu ChH(U)U

where the last inclusion is a consequence of the local characterization of the
Choquet boundary. Indeed, obviously Ch, U c U& . Solet x € TREN

LK u ChH(U)E) . Then there exists an opeﬁ(né1ghborhood V of x such that
VvnkK=p. Def1n1ng W=UnV wehave x €V n [8 ([u) =[8((W) and hence
x € ChH(w)_-' Thus eg Chy W 4 e, and be1ng a representing measure of X with
respect to * (W) the measure ec H(W) is a representing measure of x with
respect to * (U)

Let B be a Borel subset of U containing Ch U . Defining
H(U)
ww) = \J )
K cp.cB
we thus have the following minimum principle: If v € *HB(U) and v>0 on B
then v>0 on U.
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Let f € c(U*). Defining

HOf = inf (v € "Hy(U) : v > f on B},

HIF = sup twe - Hg(U) :w<f on B)
the minimum principle yields ﬂgf < ﬁgf . If there exists a function h € H(U)

such that h = f on U* then evidently h < ﬂgf and ﬁgf < h, hence
ﬁgf = ﬂgf = h . In the general situation we have the following result.

Proposition ([3]). For every f € C(U*)

Ve - pUe _. U
Hpf = Hpf =: Hgf ,

and Hgf is harmonic on U. Furthermore, for every x €U~B

B
HOF(x) = f  deb

Proof. It suffices to consider the case f = v| for some continuous real

veSH . Then "H'e *HB(U) implies that

my B
HBf|U < Rv .
Let K be a compact subset of B, w = Rs - Then w € - *HK(U),w < Vv. Hence

R5 < ﬂgf on U. Taking the supremum of Ua]] R

B U
Ryfg < Hgf -

K

v e obtain
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