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THE RAYLEIGH AND VAN DER POL WAVE EQUATIONS, SOME GENERALIZATIONS* 

W. S. Hall, Pittsburgh 

Here are two interesting nonlinear partial differential 

equations. The first we call the Rayleigh wave equation, 

y
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xx

 = e ( y
t "

 y
t

3 )
 (1.1) 

y(t,0) = y(t,Tr) = 0, 

arid the second is the wave equation of Van der Pol type, 

y
tt - y

xx
 = c ( 1

 -
 y 2 ) y

t 

У(t,0) = y(t,тт) = 0 
(1.2) 

Each of these has been used to model physical phenomena, although 

they first appeared in the literature as curiosities. For example, 

in [3] we see (1.1) serving as a model for the large amplitude 

vibrations of wind-blown, ice-laden power transmission lines. 

Equation (1.2), on the other hand, can describe plane electro­

magnetic waves propagating between two parallel planes in a region 

where the conductivity varies quadratically with the electric field 

[5]. 

Just as their counterparts from ordinary differential equations 

can be transformed one to the other, (1.1) and (1.2) are related. 

As we shall see, solutions to each can be obtained by simple 

operations performed on the solution of a certain first order, 

nonlinear wave equation. In fact, the goal of this note is to show 

how certain aspects of this particular equation can be studied such 

as global existence, uniqueness, and the transient and steady state 

behavior for small e > 0. 

It is perhaps surprising that some second order equations can 

be solved as first order problems. However, this is strongly 

suggested by the form of (1.1) where y itself is absent. Also, 

although two independent initial conditions are required for (1.1) 

and (1.2), each must be an odd, 2iT-periodic function of x. Two 

such odd functions can always be generated from an arbitrary 2TT-

periodic function by separating it into its odd and even parts 

and integrating or differentiating the latter. Obviously, this 

^Support for this work was provided in part by the Office of 
Research and in part by the Center for International Studies, 
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procedure can be reversed, and a single periodic function can be 

built from two odd functions. Thus it is possible for the initial 

value of an appropriate first order equation to carry the initial 

position and velocity for (1.1) and (1.2) in its odd and even 

parts. 

Let us now derive the first order wave equation corresponding 

to (1.1). Let 

u = yt - yx (1.3) 

and let P project a periodic function of x to its odd part. Since 

y and yt are odd in x, y. = Pu. Hence, from (1.3)-

ut + ux - ytt- yxx - e(yt - y t 3 ) - e ( P u - (pu)3)d^) 

Similarly, we can obtain (1.4) from (1.2) by the transformation, 

y = /3z, u = z - ftx (1.5) 

Of course, these derivations are formal, but they strongly 

suggest that once we have a solution to (1.4), then /3 Pu will 

solve Cl.l) and /^ Pu will be a solution to (1.1). We shall not 

discuss here the question of whether these equations are equivalent. 

Rather we simply regard (1.4), or rather 

ut + ux = e(Pu - h(Pu) + f(t,x)), (1.6) 

where h is a suitable monotone increasing function and f is a 2IT-

periodic forcing term depending on t and x, as the fundamental 

equation generalizing the previous examples. We mention, however, 

that the equivalency of (1.4) and (1.1) has been established In [71 

Some names associated with the study of (1.1) and (1.2) are 

Kurzweil [8], [9], Vejvoda and Istedry' [10], Chikwendu and Kevorkian 

[2], and Fink, Hall, and Hausrath [4], [5], L7]- Kurzweil's 

contribution is by far the most important, as he was able to prove 

the existence of exponentially asymptotically stable integral 

manifolds of periodic solutions for both (1.1) and a general form 

of (1.2). Vejvoda and^Stedry showed the existence*of periodic 

solutions to these equations by elementary methods. In [2], a 

formal analysis of (1.1) appears, using a two-time method from 

the theory of ordinary differential equations. In [4] a 

convergent two-time method is developed, and in [7] a rather 

detailed analysis is made of the Rayleigh equation. 

Let us begin the analysis of (1.6) by studying the question 

of global existence and uniqueness. 
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2. A Global Existence Theorem 

Let H be the space of 2Tr-periodic, square integrable functions 

of x with inner product <u, v> and norm |u|. Write (1.6) in the 

form, 

u - Au + eNu = eu + ef (2.1) 

where Au = -du/dx and Nu = h(Pul + (I - P)u. Assume e > 0 and h 

is a continuous, monotone increasing, odd function defined for all 

real u. Then Ph(Pu) = h(Pu), and so on the domain of h, 

<h(Pu) - h(Pv), u - v> = <h(Pu) - h(Pv), Pu - Pv> j> 0. 

since <u, Pv> = <Pu, v> for all u and v in H. Thus N is monotone 

on H. On its domain H, of elements having square integrable 

derivatives, -A is trivially monotone. Hence B = -A + eN is 

monotone as well. 

Now suppose B is maximal monotone and let f in L,(0, 2TT; H). 

By Theorem 3.17 of Brezis [1], p. 105, for each uQ in H, (1.6) has 

a unique weak solution on [0, 2TT]. This means that there are 

sequences u in C(0, 2TT; H) converging uniformly to u and f •*• f in 

L, (0, 2TT; H) such that each pair (u , f ) strongly satisfies (1.6). 
i n n 

If f has some additional smoothness, then u is also differen-
tiable in t. For example, if f is in VL, ..(0, 2TT; H) and uQ in H , 

|&<*>| < e e t | e f ( 0 + ) - u 0 x + sPu0 - eh (Pu 0 ) | + e}^\§U) | d . 

and when f = 0, u(t,uQ) = S(t)uQ is a semi-group on [0, °°) with 

expansion constant ee . 

The main condition that must be verified, therefore, is that 

B is maximal. First, note that it is enough to check that -A + ehP 

is maximal because then B is of the form maximal monotone plus 

monotone Lipschitzian defined on all of H. By [1], p. 3^, B is 

also maximal monotone. According to a result of Minty [lj, p. 23, 

-A + ehP is maximal monotone if it is monotone (already verified) 

and if the range of I + ehP - A is all of H. So we consider the 

equation, 

P- + eh(Pu) + u - f (2.2) 
ax 

where f is in H. Splitting u into its odd and even parts v, w we 

get the system 

g + eh(v) + v = g , g + w = k (2.3) 
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where g - Pf and k = (I - P)f. But it is easy to see that a 

solution in H1 to (2,3) exists if and only if v is an odd function 
in H satisfying 

2 
-Cv = ^-% - eh(v) - v = kx - g (2.4) 

dx 
2 2 

where kx and d v/dx are now in H . , the dual space of H.. under 

<•,•>. It is however, quite easy to verify that C: H -*- H 

is strongly monotone and hemicontinuous. Hence by a now classic 

result, C is bijectlve and we are done. 

3. A Perturbation Analysis Using Averaging 

In this section we shall give some of the results of applying 

a modified method of averaging to ( 1 . 6 ) . Suppose u(t,e) is one of 

its solutions. Let v(x) solve the associated averaged equation, 

2TT 

If - F(V) • 2lr lO 6_At P(t> eAtv)dt (3a) 

where F(t,u) = Pu - h(Pu) + f ( t , x ) is the perturbing part of (1.6), 

and {e } is the group generated by A = -°Vdx. Let X be a suitable 

space of initial values with norm |* |. According to the theory we 

can expect the following: 

(1) Suppose ii > G is given and u(0, e) = v(0) = uQ is in X. 

Then there is a constant L > 0 such that for all t in [0, L/e], 

|uCt, e) - eAtv(et)| < r,. 

t 

(2) Let vQ be an equilibrium point for (3.1) and suppose F (vJ 
has a bounded inverse on X. Then (1.6) has a 2iT-periodic solution 

At given approximately by e vQ 

(3) If the variational equation of ( 3 . 1 ) is exponentially 

asymptotically stable then so is the corresponding periodic solu­

tion to (1.6). 

For a discussion of the averaging method and its application to 

various types of partial differential equations see [4] and [7]. A 

simplified explanation can be found in [6]. 

Statements (1), ( 2 ) , and (3) above tell us simply that for 
times of order e""1, a solution to (3-D for arbitrary initial 

value is asymptotic to the actual solution of ( 1 . 6 ) , whereas the 
equilibrium points correspond to the periodic steady states. Thus 

we must analyze C3.1) for its behavior first as a differential 
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equation with assigned initial value and secondly for the existence 

and nature of its constant solutions. 

Before continuing in this direction, let us say something about 

the space X. The averaging method in its present form does not 

apply when the nonlinear term h is unbounded. As we would certain­

ly like to admit polynomials, the L spaces for 1 <_ p < «> are ruled 

out. On the other hand, we need a set large enough to accommodate 

nonclassical steady states. For these reasons, we have taken X to 

be the 27r-periodic essentially bounded functions of x with no mean 

value. This choice results in a series of interesting but some­

times bizarre consequences. The most notable is that the solution 

itself, which is of the form u(t, e) = e z(t, e) (with z strongly 

continuous in t) is only weak continuous since {e } is simply 

right translation of the space variable x. Hence translations of 

solutions u(t+h, e), while certainly solutions in the autonomous 

case f(t,x) = 0, are distinct and isolated from each other for each 

value of h in the norm topology of LM. Thus even when (1.6) is 

autonomous, the periodic solutions can be exponentially asymp­

totically stable. 

From (3.1) and the definitions of e and F ( t , u ) , 

P(V)(T,X) = ivCt.x) - k L7fh(vU»x> I V<T'S>) ds + f0(x) 
2 2 0 2 u (3.2) 

i 2 i r 

f0(x) = |-K S f(s, x+s) ds 

When h<u) = u , it. is possible to solve (3.1) up to a quadrature 

depending only on the initial value vQ. The details are in [7]. 

When h is more general we can still say something about the 

behavior of th.e averaged equation. For example, if h is odd and 

monotone increasing* then we can prove solutions exist on [0X «>) 

but may not be bounded. In fact, if p is odd, 

2lT 

H U - i / 0 h(U(*> ;"<->) ds, 

and <u,v> is the usual inner product, then 
?1T 2lT 

<Nu,uP> -2i / ds /Q dx h(U<
x> 2

 u<s>) (uP(x) - uP(s)Jds-<Nu,up> 

Thus, 2 < Nu, uP> >_ 0 since h(u)u j> 0. 

Now let Z(T) * M p + i ^ e t h e L
p+i

 n o r m o f v* 
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From ( 3 . 1 ) , ( 3 . 2 ) , and the inequality on N, 

£ i i * + i f o i -
and this gives z(T) < {|vQ| + 2|fQ|}e

T/2. 

r+1 A better result can be obtained if we suppose h(u)u ̂  c u 

where r > 1 is odd, and if X restricted to the n-antiperiodic 

elements U(X+TT) = -u(x). In this case we can show 

D cr , ,P
+r 

<Nu, up> > — u . , 
• — 2r • 'p+r* 

p+r 
and from the Holder inequality we get <Nu, up> j> a lulD+i where a 

is independent of p. 

Now from the averaged equation we obtain 

ff < g(z) = |z + |fQ| - atZ
r 

Eventually, g(x) -*--«> as a •*• +°° monotonically. So for large a, 

g(a ) < -6 and a2 > a-, implies g ( a 2 ) < g ( a 1 ) , For such an a let 

|V(T)| > a* Since lv(T)| + 1 -̂
s continuous in T and converges 

monotonically to |V(T)| we can apply Dinifs Theorem to obtain a PQ 
such that |V(T)| + 1 > a when p > PQ uniformly for T in [0,L]. Thus 

on (OjL) 
dz 
^ < g(z) < g(a) < -<5 

and hence z, and therefore |V(T)| itself is nonincreasing outside 

some large ball. Hence not only do we have global existence, but 

we also know all se&lutions are bounded, Of course, we cannot 

conclude the same is true of (1.6) since we are assured only that 

its solutions follow those of (3.1) on some long but finite time 

interval. 

The constant solutions of (3«D correspond to the periodic 

solutions of (1.6) provided the conditions of the implicit function 

theorem can be met. So let us examine the roots of F(v). In most 

circumstances, the term fQ(x) is absent even if f is not. In fact, 

unless f has a right traveling wave component, fQ(x) = 0 . So let 

us begin with this case. 

If f = 0 we expect that the most general solution to F(vQ) = 0 

will be constant on subsets of [0, 2ir}. Let v be the 2iT-periodic 



f - a l { 

0 (_ P(a) 

13Є 

extensions of f °
 x e A

0 

v Q ( x ) = J a
 e

 A
x ( 3 t 3 ) 

C~
a G A

2 

where A , i = 0,1,2 are disjoint measurable sets whose union is 

[0, 2IT). In order that v
n
 have no mean value we need mes A = mesAp. 

We thus obtain 

{h(-a/2 ) + h(a/2)}, x e A
Q 

t) = | a - a^hfa) - a
Q
h(|), x e AJJAg 

where a. = mes A. /2IT, 1 = 0,1, If h Is odd, then P vanishes on A
Q
. 

Let us also suppose that h»(0 ) = 0, h?
(u) -•+» and h

T,
(u) > 0 for 

u > 0. LFor example, hCu) = u p
, p >_ 3 and odd, and h(u) = sinhu - u 

both satisfy this r e q u i r e m e n t ) . Then P(a ) is concave on a > 0, 

F'(0) = -j and F f ( a ) decreases steadily to -<» as a •* + °° . Hence 

there is a unique a > 0 where P(a ) = 0. 

When mes A
0
= 0, then a is simply the root of a = h ( a ) . Using 

techniques developed in [7] we can prove that P ? ( v 0 ) is boundedly 

invertible when 

X = 1 - h'ta) f 0 y = 1 ~ Jh'(a) ¥ 0. 

The solution to the variational equation is 

£ = e*Ta + b(e^T - 1) 

where a and b are linear functionals of the initial value. Hence 

we have exponential decay and thus stability of the periodic 

solution if X and y are both negative at the root of P(a). 

It is Interesting to note that the stability result above is 

independent of f if it has no right traveling wave component. Also, 

if mes AQ ? 0. then we can prove that £ is actually increasing 

exponentially for x in AQ. This indicates, (but does not prove, of 

course) that those equilibrium points with mes A ^ 0 are unstable. 

We shall conclude by looking at a particular case when fn(x) ? 0 

Specifically, we take h(u) = uJ and we restrict X to the TT-anti-

periodic elements so that the odd powers have no mean value. Then 

PCv) = Jv - |(v3 + 3 < v2> v) + fQ(x) 

<v2> • i /oV(x'dx 

Let us try to solve FCv) = 0 with v = m cos 6. This gives 

m3cos30 - C4 ~ 3m2 < cos20>) m cos0 - 8fQ(x) = 0 (3.4) 
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2 
Replace <cos 6> by 3 and consider 

m3cos30 - (4 - 3m23) m cosG - 8f (x) = 0. (3-5) 

Since 4 cosJ0 - 3 cos9 - cos30 = 0 we will have a solution if 

m3^m(J4-3m
23) = Jt0M 

4 3 cos36 

Hence 

cos36 = 32fnU)/m
3 and m = 4//3U+43) > 

and 6 will be real if -m3 < 32fQ(x) < m
3. Since 3 e [0,1], we can 

continue this procedure if 

-2/33/2 < fQ(x) < 2/15
3/2 a.e. 

Let e^XjG) be a root of ( 3 - 5 ) in 0 < 0 < IT. Then 02 = 61+2TT/3 

and 0O = 6 + 4IT/3 are also roots, and we can construct a candidate 

for an equilibrium point. Let BQ, B , B2 be three mutually disjoint 

measurable sets whose union is [0,IT). Define 

v0 {m cosd-^x, 
m cos9^(x, 
m cos0o(x, 

ß) x є B 
ß) 

x є BQ Є) x є BQ 

and l e t vQ be i t s i r - a n t i p e r i o d i c e x t e n s i o n . Then 

<y2> - i / 0

v o ( x ) d x 

and we have a solution to ( 3 . 4 ) if we can find 3 in [0.1] such that 

3 = ~ { /
B
 cos

2
a

i
Cx,3)dx + /

B
 cos

2
e

2
(x,3)dx + /

B
 cos

2
0

o
(x, 3)dxJ 

But th.e right side of this equation is just a continuous map of the 

unit interval to itself. Hence we have at least one fixed point 

It can be proved that if mes B
Q
 = 0, then the condition of the 

implicit function theorem and the requirement on the exponential 

decay of the variational equation are met. We remark that the sets 

B
Q
, B , Bp play rolls analogous to those of A

Q
, A-, and A

2
 of the 

previous example and the solutions given here reduce to those given 

earlier as L -̂  0. 

We conclude with the following observation. When f = 0, the 
At 

approximate steady states e v
n
 are the actual solutions in a 

3 
generalized sense. In particular, when h(u) = u , and v

Q
(x) = 1 on 

A , -1 on A
2
 (where A U A

2
 = [0, 2IT) and mes A-̂  = mes A

2
) then a 

family of stable steady states for the Van der Pol wave equation is 
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given by 

4(v
0
(x-t) - V

Q
(-X-t)} , 

and for the Rayleigh equation by 
t 

[1] 

H 

[3] 

M 

M 

M 

[7] 

[8] 

M 
[ю] 

1 J {v0(x-s) - v0(-x-s)} ds 
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