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SOLUTION SET PROPERTIES FOR SOME NONLINEAR PARABOLIC 

DIFFERENTIAL EQUATIONS 

J.W. Bebernes, Boulder 

1. Introduction. This paper is concerned mainly with reporting some solu­

tion set properties for various classes or problems for nonlinear parabolic equa­

tions. Most of this work was done jointly with K. Schmitt. The example in section 

6 is a special case of a class of problems being studied jointly with K.-N. Chueh 

and W. Fulks. 

During the past few decades much work has been devoted to the problem of 

characterizing sets which are invariant with respect to a given ordinary differen­

tial equation. More recently several papers ([3], [5], [11], [ 1 3 ] ) have consider­

ed the same question for nonlinear parabolic differential equations. In [5], the 

relationship between invariant sets and traveling wave solutions is noted. This 

relationship can be used to study the Fitzhugh-Nagumo and Hodgkin-Huxley equations, 

for example. 

The assumptions which are sufficient for a given set to be invariant also 

yield existence of solutions for initial boundary value problems and yield the 

classical Kneser-Hukuhawa property, i.e., the set of solutions is a continuum in 

an appropriate function space. For scalar-valued problems, conditions sufficient 

for invariance give existence of maximal and minimal solutions [4]. 

2. Definitions and Notation. Let 3R denote n-dimensional real Euclidean 

space and let Q be a bounded domain in 3R whose boundary dC- is an (n-1) -
2-\-a 

dimensional manifold of class C , a £ (0,1) . Let rr = fi X (0,T) and 

r = (dQ X [0,T)) U (C- X {0}) . For u: fr -» 3R , define the differential operators 

V1 by: n 2 
V ( x ' f c ) - L V x ' t } ^T^T + L b i ( x ' t } S7 + c ( x ' t ) u " St 

i,j = l x J i = l x 

where a * . , b k , c k € C a , a / 2 ( f i X [ 0 , T ] ) , 0 < a < l , l £ i , j £ n , l £ k < . m , 
1J L k a a/2 

and for all k , c iS 0 . Here C ' (•) denotes the usual Holder spaces of 

functions u(x,t) . For u: rr -> 3R , let L = (L-,...,L ) be defined by 

Lu = (L-u-,...,L u ) . Assume that L is uniformly parabolic. Let 

f: n X 3Rm X 3Rnm -> 3Rm , defined by (x,t,u,p) -» f(x,t,u,p) with (x,t) € rr , 

u = (u-,...,u ) 6 3Rm , p = (p-,...,p ) € TR*1™ , p. € 3Rn be a locally Holder 

continuous function with Holder exponents a , a/2 9a , a in the respective 

variables x,t,u,p . 

Given i[r: F -> 1R , consider the first initial boundary value problem (IBVP)-: 

(1) Lu = f(x,t,u,Vu) , (x,t) 6 TT 

(2) u = f , (x,t) € r 
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where i|f is continuous on T , may be extended to n so as to belong to 

C ' (n) , and satisfies compatibility conditions appropriate to (1) and (2). 

For cp: Q-> 3R , the second initial boundary value problem (IBVP)?: (1) with 

(3) u(x,0) = cp(x) , x £ 5 

(4) f-± = 0 , (x,t) € oD X [0,T) 
ov 

where * ('\ ~ (v 'Vu-,...,v • Vu ) ,, v(x) is an outer normal to CI at x , and 

rv+1 
v(x) £ C (oC.) will also be considered. 

3. Positive Invariance. A set S C 3R is positively invariant relative to 

(IBVP)- ((IBVP)2) in case, given i|r: T -> S(cp: fl-* S) , every solution 

u 6 C ( Z , 1 ) ( T T ) of (IBVP)-̂  ((IBVP)2) is such that u: n-> S . A set S c 3Rm is 

weakly positively invariant relative to (IBVP)- ((IBVP)«) in case, given any 
2 1 -

i|r: T -> S(cp: CI -> S) , there exists at least one solution u 6 C ' (TT) of (IBVP)., 

((IBVP)2) such that u: TT -> S . 

Theorem 1. Let L. = L- , i = l,...,m . Let S cr 3R be a nonempty open 

bounded convex neighborhood of 0 such that for each u £ dS , there exists an 

outer normal n(u) to S at u with 

(5) n(u) • f(x,t,u,p) > 0 

for a l l p = ( p - j , . . . , p ) , p . € 3R , 1 £ i £ n , such tha t n(u) • p . = 0 , 1 n _ l . l 

i = l , . . . , n , ( x , t ) € TT (v(x) • ( p _ , . . . , p n ) = 0 , j = l , . . . , m , x 6 Sfi , 

t 6 [0,T] or p. • n(u) = 0 , i = l,...,n, (x,t) G n) . Then S is positively 

invariant relative to (IBVP)1 ((IBVP)2). 

This theorem is easily proven by standard maximum principal arguments. 

Using the above theorem on positive invariance and assuming a Nagumo growth 

condition on f with respect to p , a weak invariance result, i.e., existence of 

a solution which lies in the set, can be proven. 

Theorem 2. Let L. = L- , i = l,...,m . Let S C 3R be a nonempty convex 

set such that for each u £ oS and every out normal n(u) to S at u 

(6) n(u) • f(x,t,u,p) -2 0 

for all p = (p.,,...,p ) , p. 6 3R , 1 £ i £ n , such that n(u) • p. = 0 , 

i = l,...,n , (x,t) € n (v(x) • (p-J,...,Pn) = 0 , j = l,...,m , x 6 90 , 

t 6 [0,T] or p. • n(u) = 0 , i = l,...,n , (x,t) £ TT) . Furthermore, let there 
1 2 

exist a positive, continuous, nondecreasing function cp(s) satisfying s /cp(s)-><» 

as s -> » and |f(x,t,u,p)| £ cp(|p|) , u 6 S , (x,t) 6 TT . 

Then S is weakly positively invariant relative to (IBVP)- ((IBVP)2). 

The growth condition imposed on f is the Nagumo condition. 

TTie details of the proof of this theorem can be found in [3]. To convey the 
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idea of the proof for (IBVP)- , first assume S is an open convex neighborhood 

of 0 and that the strict outer normal condition (5) is satisfied. Let 

F: C ' (TT) -* C(rr) be the continuous map taking bounded sets into bounded sets 

"defined by 

(7) (Fu)(x,t) = f(x,t,u(x,t) , Vu(x,t)) . 

Let K: C(TT) -* C ' (TT) be the compact bounded linear extension of the linear 

map K: CQSQ'/2(n) -* C0*2,1+C*/2 (n) defined as follows: for v € (^ ' ^ ( T T ) , Kv 

is the unique solution of 

(8) LKv = v 

Kv = 0 . 

Let g 6 C ' (TT) be the unique solution to 

(9) Lg = 0 

g = t • 

For any X € [ 0 , 1 ] , XKF: C ' (TT) -* C ' (TT) i s a c o m p l e t e l y c o n t i n u o u s map. 

For X € [ 0 , 1 ] , g <E C 2 + Q f , 1 + a / 2 ( T r ) a s o l u t i o n of (9) , u <E C 1 , 0 ( T T ) i s a 

s o l u t i o n of 

(10) u = XKFu + Xg 

if and only if u 6 C2+a,1+Q'/2(n) is a solution of 

(1 ) Lu = xf(x,t,u,Vu) , (x,t) £ TT 
A. 

(2^) u(x,t) = XtO-»t> > (x,t) 6 t • 

By the Nagumo growth condition imposed on f in hypotheses of the theorem, if 

u 6 CoH"2,Q?/2+1(-rr) is a solution of (1 ) - (2 ) for any X € [0,1] with 
_ _ X X 

u: n -> S , then there exists M > 0 such that |vu| £ M . 

The crux of the proof is to show that the continuous compact perturbation of 

the identity given by I-\(KF + g): ® c C 1 , 0(TT) -> C 1 , 0(TT) , X € [0,1] , where 

O = £u £ C ' (n) | u: n-> S , |vu(x,t)| < M + l ] is a nonempty bounded open subset 

in C ' (n) , has nonzero Leray-Schander degree at 0 relative to 0 . This can 

be accomplished by a homotopy argument. In this way, the existence of a solution 

for (IBVP)- is established for a strict outer normal condition on an open convex 

neighborhood of zero. By a perturbation argument, the weak outer normal condi­

tion (6) suffices. Finally, one shows that if S is a compact convex set, then 

the result holds for S , e - neighborhoods of S . By an approximating argu­

ment, the weak invariance of S follows. 

which have compact convex cross sections 

in ]R depending on x and t , similar invariance results hold. For example, 
2 1 -

let ff,p 6 C * (n) be given with a (x,t) < P (x,t) on TT and define 
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(or,P) = {u e lRm: <*± <. u. £(3. , i = l,...,m] . 

Theorem 3. Assume that 

f Vk ' £ t ( s ' t , u i V i - V V i V 7 u i \ i ' V V i ' - ' v 
(11) < s 0 a 

L \h - y"^'-!'-'^'^'^'-'"/"! 'v i 'Vvi ' - ' v u J 
f o r a l l ( x , t ) 6 IT , k = l , . . . , m , ajid a. £ u . «£ (3. , k J= j . 

Furthermore, assume the Nagumo growth condition of theorem 2 relative to (a,(3). 

Then (a,(3) is weakly positively invariant relative to (IBVP)- ((IBVP) ) . 

4. Funnel Properties. The classical Hukuhara-Kneser property for ordinary 

differential equations in ]R states that if all solutions of a given initial 

value problem exist on [tn,t0 + 6] , then the set of solutions is a continuum 

(a compact connected s e t ) in C[tn,t~ + 6] . Krasnosel'skii and Sobolevskii [7] 

very elegently proved an abstracted version of this result for the set of fixed 

points of completely continuous operators defined in a normed linear space which 

also satisfy a certain approximation property. By using a modification of this 

result, the following theorem can be proven. 

Theorem 4. Assume the hypotheses of Theorem 2, then the set Q = {u£0: 

u = KFu + g] is a continuum in C ' (rr) . 

Here K , f , g , and 0 are as in Section 2. 

5. Maximal and Minimal Solutions. When m = 1 , the invariance result given 

by theorem 3 can be used to establish the existence of maximal and minimal solutions 

for the scalar version of (IBVP)- and the Cauchy initial value problem for ( 1 ) . 

In this section we report on the main result in [4]. 

In recent years a considerable amount of study has been devoted to establishing 

the existence of solutions for elliptic and parabolic problems provided upper and 

lower solutions of such problems exist. Much of this work has its basis in the 

fundamental paper of Nagumo [8] as carried further by Ako [1]\ Keller [6] and 

Amann [2] constructed solutions between upper and lower solutions of elliptic pro­

blems using a monotone iteration scheme which was possible because of certain one 

sided Lipschitz continuity assumptions on the nonlinear terms and because the 

nonlinearities are assumed gradient independent. Sattinger [12], Pao [9], and 

Puel [10] extended Amann's results to parabolic initial boundary value problems 

using either monotone iteration techniques on the theory of monotone operators. 

While these procedures have certain computational advantages the permissible 

class of nonlinearities is quite restrictive. 

Using a different approach patterned after methods employed by Ako, the exis­

tence of maximal and minimal solutions for the Cauchy initial value problem and 

the initial value problem for parabolic equations can be proven for a much larger 

class of nonlinearities. 



29 

A continuous function v: n -* 1R is called a lower solution of (1), (2) 

in case 

(12) v(x,t) s. t(x,t) , (x,t) <E T 

and if for every (x ,t ) £ TT there exists an open neighborhood U of (x ,t ) 

and a finite set of functions fv } - ^ ^ <Z C ' (U fl n) such that 

(13) Lvr :> f(x,t,vr,Vvr) , (x,t) € U D TT , 1 * r £ s , 

and 

(14) v(x,t) = max v (x,t) , (x,t) € U fl TT . 
l ^ r ^ s 

If in the above definition the inequality signs in (12) and (13) are reversed 

and in (14) max is replaced by min , then v is called an upper solution of 

(1) , (2) . 

For such upper and lower solutions (3>a of (1) - (2) respectively with 

a(x9t) £ p(x,t) , (x,t) £ TT , theorem 3 holds and hence (IBVP)- has a solution 

u 6 C2,1(n) with a(x,t) £ u(x,t) £ (3(x,t) for (x,t) € n . 

A solution u of the (IBVP)- with f = f- (m = 1) is a maximal solution 

relative to a given pair of lower and upper solutions a and (3 with a(x,t) _S 

P(x,t) , (x,t) £ TT if <*(x,t) •* u(x,t) -S P(x,t) and if u is any other such 

solution then u(x,t) -S u(x,t) for (x,t) 6 TT . Minimal solutions are defined 

analogously. 

Theorem 5. Assume the hypotheses of theorem 3 for a given pair of upper and 

lower solutions p and a with P(x,t) ̂  <*(x,t) , (x,t) £ rr . Then (IBVP)-

has a maximal and a minimal solution. 

The proof of the existence of a maximal solution is obtained by considering 

the collection X of all lower solutions of (IBVP)- where £ = [v: n -* 1R: 

or(x,t) sS v(x,t) £ P(x,t) , (x,t) £ n , v is a lower solution of (IBVP)-} 

and showing that 

umax(x,t) = sup[v(x,t): v (E Z ,Qf-Sv^P} 

so defined is the maximal solution using theorem 3. 

This same result is true for (IBVP),., and for the Cauchy initial value problem. 

6. An Example. To illustrate how invariance can be used to analyze a problem, 

consider 

(15) f Ll" = ai"xx " Ufc = ""̂  
L V = 32Vxx " V t = +UvY 

for ( x , t ) 6 n - (0,1) X (0,oo) where Y > 0 , together with the in i t i a l -boundary 

condit ions 

u(x,0) = uQ(x) :> 0 , v(x ,0) = vQ(x) -2 0 for x € [0,1] 

( 1 6 ) u ( t , 0 ) = 0 = u ( t , l ) , v ( t , 0 ) = 0 = v ( t , l ) , t <E (0,oo) , 
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where u (x) , v n (x) £ C[0,1] . 
2 Set V = max v n (x) and U = max u (x) , then (a,(3) c 3R as defined in 

[0,1] U [0,1] U 

section 2, where <*(x,t) = (-^(xjt) , <*2(x,t)) = (0,0) and P(x,t) = (P1(x,t) , 

VYt 
P2(x,t)) = (Ue ,V) , is a weakly positively invariant set by theorem 3. Hence, 

there exists at least one solution (u(x,t) ,v(x,t)) 6 (<*,P) for (x,t) € fr . 

If Y *- 1 > then the solution to IBVP (15) - (16) is unique and one can obtain 

additional asymptotic properties. 

Let cp(x,t) be a solution of L2v = 0 , the homogeneous heat equation, then 

L«cp(x,t) = 0 £ u(x,t)qr where u(x,t) is the first component of the unique 
Y 

solution of (15) - (16). Hence, cp is an upper solution of L?v = u(x,t)v , 

and cp(x,t) £ v(x,t) for (x,t) £ rr . By standard estimates for the heat 

-a2rr t 
equation, v(x,t) £ cp(x,t) £ 4/TT Ve . From this, v(x,t) -> 0 uniformly 

in x as t -» » . For v(x,t) , there exists T > 0 such that, for all t ;> T . 

v XI 2 
< a«n - e = M . Take ijf(x,t) to be the solution of L-u = -Mu with 

i|f(x,T) = u(x,T) , i|f(l,t) = u(l,t) and i|f(0,t) = u(0,t) for t ̂  T . Then 
Y 

L-i|f = -Mi|f < -(v(x,t)) ijr and ijr is an upper solution. Hence u(x,t) ̂  i|f(x,t) 

for t -i T . By again standard estimates, u(x,t) s: i|r(x,t) =- 4/n Ke"e for 

t ^ T . We conclude that (u(x,t) , v(x,t)) -» 0 as t -> » . 
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