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INVARIANT SETS FOR SEMILINEAR PARABOLIC AND ELLIPTIC SYSTEMS 

H. Amann, Bochum 

Let fi be a bounded smooth domain in IR and let Q := ft*(o,T) for some 

fixed T > o . Denote by 8/at + A(x,t,D) a uniformly parabolic second order 

differential operator on Q with smooth coefficients, and let B(x,D) be a 

(time independent) f i rs t order smooth boundary operator. We suppose that B(x,D) 

is of the form B(x,D)u = b(x)u + 6(au/8$) , where either 6 = o and b(x) = 1 

(Dirichlet boundary operator) or 6 = 1 and b(x) > o for all x e da , and 3 

is a smooth outward pointing, nowhere tangent vector f i e ld on 9ft (Neumann or re­

gular oblique derivative boundary operator). 

We denote by f : Q x IRn x ]R n m - IRm a Lipschitz continuous function, and con­

sider parabolic in i t ia l boundary value problems of the form 

- ~ + A(x,t,D)u =f(x,t ,u,Du) in Q X (o,T] , 

(1) B(x,D)u = o on a^x (o ,Tl , 

u( . ,o ) = uQ on n 

where u =(u , . . . ,u m ) . In other words, (1 ) is a "diagonal system" which is strong­

ly coupled through the nonlinear function f . By a solution of (1 ) we mean a clas­

sical solution. 

In order to obtain appropriate a priori estimates, we impose the following growth 

restriction for f , which we write in a self-explanatory symbolic form: namely 

we suppose that either 

| f (x,t ,u,Du)| < c ( | u | ) ( l + |Du|2 'e) 

for some e > o , or 

If^x.t-u.DuJI < c(IuI)(1 + I D u V ) 

for i = l,...,m , where c e C(IR + ,1R+) . 

It is well known that (1) possesses a unique solution for every sufficiently smooth 

initial value u satisfying appropriate compatibility conditions. However this 

solution may only exist for a small time interval and not in the whole cylinder Q. 

The existence of a global solution can be guaranteed provided an a priori bound 

for the maximum norm can be found. Unfortunately, establishing a priori bounds for 

the maximum norm is a rather difficult problem for systems since no good maximum 

principle is available. 



Recently H. F. Weinberger [51 (and la ter Chueh, Conley and Smoller [ 3 ] ) has g i ­

ven a weak substi tute for a maximum pr incip le which can be used for establishing 

a p r i o r i bounds. But these results presuppose a p r i o r i knowledge of the solution 

on the la tera l boundary 9ft * [o ,T ] of the cylinder Q which i s , in general, on­

ly available for the case of D i r ich le t boundary conditions. 

In this paper we present a global existence and uniqueness theorem for problem (1) 

without assuming any a priori knowledge on the solution for t > 0 . We emphasize 

the fact that our results apply to the case of boundary conditions of the th i rd 

kind which are of par t icu lar importance in applications ( to problems of chemical 

engineering, for example). 

For an easy formulation of our results we introduce the fol lowing hypotheses and 

notations. Let ID be a compact convex subset of IRn such that o e E). For 

eyery £ e 8ID l e t 

NUQ) := { p e IRm | < p , £ - £ 0 > < o V ^ ID} 

that i s , N(£ ) is the "set of outer normals" on 3E) at £Q . F ina l l y , for 

k = 1,2 , we l e t 

Ck(fl,ID) := {u e Ck(fl,IRm) I Bu = o on an and u(fl) c ID} . 

Then we impose the fol lowing tangency condition: 

For e\/ery v e c j f f t ,© ) and for e\/ery x e H with v(xQ) e 3D , 

we suppose that 

(Tg) < p , f ( x 0 , t , v ( x 0 ) , D v ( x 0 ) ) > <o 

fo r a l l t e [ o , T ] and a l l p e N ( U , where < . , . > denotes the 

inner product in IRm . 

Condition (Tg) means geometrically that the vector f (x , t , v (x ),Dv(x )) , attached 

to 3 ID at the point v(x ) , l ies in the cone which contains ID and is described 

by the family of a l l supporting hyperplanes at v(x ) . I t is easi ly seen that (Tg) 

reduces to the condition introduced by Weinberger [ 5 ] (and also used by Chueh, Con-

ley and Smoller [ 3 ] ) in the case that f is independent of Du (the case studied 

in [ 3] and [ 5] ). I t is essential ly the same condition as the one used by Bebernes 

[ 2 ] . We refer to [ 3 ] fo r a variety of examples sat is fy ing (Tg). I t is easy to give 

fur ther examples in the case of nonlinear gradient dependence. 

After these preparations we can give our basic existence and uniqueness theorem for 

problem (1) (cf . also [ 2 ] for the special case of D i r ich le t and Neumann boundary 

condit ions). 

Theorem 1: Let the growth condition and the tangency conditions be satisfied. Then 



the initial boundary value problem (1) has a unique global solution U for every 
2 — — 

initial value U G Cp(ft,ID ) , and u(Q) C ID. 

Proof: By using the results of Kato, Tanabe, and Sobolevskii on abstract parabolic 

evolution equations as well as the results of Ladyzenskaja, Solonnikov, and Ural' 

ceva on the classical solvability of linear parabolic equations, it is shown that 

(1) is equivalent to the nonlinear evolution equation 

(2) u + A(t)u = F(t,u) , o < t < T , 

u(o)= uQ 

in X := L (n,]Rm) , where p > .2 is sufficiently large and -A(t) is the infi­

nitesimal generator of a holomorphic semigroup. We denote by X the domain of the 

fractional power [A(o)]a , o < a < 1 , and we let 1M := L (fl,B ) n Xa , endowed 

with the topology of X , where a is sufficiently close to 1 . Then (2) is equi­

valent to the integral equation . 

(3) u(t) = U(t,o)uQ + / U(t,T)F(T,u(T))dT 
o 

in C([o,T] ,X ) , where U denotes the linear evolution operator associated with 

(2). 

The maximum principle implies that U(t,T)(lM ) c IM for o < T < t < T , and it 

is shown that the tangency condition implies that 

(4) distx(y + hF(t,y),IM) = o(h) as h + o + 

for each y c ]M . Hence we are left with the problem of solving the integral equa­

tion on the closed bounded subset ]M of the Banach space X . By employing a 

discontinuous Euler method as developed by R. H. Martin (e.g. [4] ), it can be shown 

that the Nagumo type condition (4) implies the existence of a unique local solution 

of (3) in ]M . Finally, by means of the growth condition, we obtain a priori esti­

mates which guarantee that the local solution has a unique continuation to a glo­

bal solution. a 

Suppose now that A and f are independent of t . Then, as a consequence of 

Theorem 1, it follows that (1) defines a nonlinear semigroup (S(t) I o < t < «>} 

on IM , where S(t)u denotes the solution at time t of the autonomous problem 

(1) with initial value u c IM . O n the basis of the integral equation (3) and by 

using appropriate a priori estimates, it can be shown that, for every t > o , the 

nonlinear operator S(t) : IM -> IM is continuous and has a relatively compact 

image. 

For every t > o , l e t 

ft : = { u e i M a | S( t )u 0 = uQ} , 

that i s , £ is the f ixed point set of S(t) . Then, by Schauder's f ixed point 

theorem, £. * fi for every t > o . Moreover, suppose that * i »•••»*«, a r e posi­

t i ve numbers having t > o as a common div isor . Then i t is an easy consequence 



of the semigroup property ( i . e . , S(t+r) =S( t )S( r ) ) that 

This implies that the family { £ I t e fl)+} has the f i n i t e intersection property. 

Hence, by compactness, n { ^ | t e Q+} * 0 . This shows that there exists an ele­

ment uQ e JMa such that S(t)u = u for a l l t e d)+ , that i s , u is a common 

f ixed point of the family {S(t) I t e q } . F ina l ly , by using a continuity argu­

ment, i t follows that S(t)u =u fo r a l l t > o , that i s , u is a rest point 

of the flow {S(t) I t > 0} , hence a solut ion of the stationary equation. 

By this argument we obtain 

Theorem 2: Suppose that A(x,D) is a strongly uniformly elliptic second order dif­

ferential operator with smooth coefficients. Suppose that f is independent of t 

and satisfies the growth condition and the tangency condition. Then the semilinear 

elliptic system 

A(x,D)u = f(x,U,Du) in tt , 
(5) 

B(x,D)u = 0 on 3ft 

has at least one solution U such that u(ft) CZ ID . 

I t should be remarked that the assumption that in each single equation of the system 

(1) or (5) there occurs one and the same d i f fe ren t ia l operator can be dropped i f 

the conditions on ID are strengthened. For further de ta i l s , examples, and more de­

ta i led proofs we refer to [ 1 ] . 
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