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Introduction to Kenogrammatics * 

Gerhard G. Thomas 

Summary: The origins of kenogrammatics are m-valued logic {Gunther), complexe non-linear modern 
system theory and qualitative finite mathematics and cybernetic ontology. The foundation of keno­
grammatics was developed by G.Gunther. By using the kenogrammatic proemial-relation, these origins 
have a harmonizing effect leading to unity. Some topics are: qualitative counting, kenogrammatic equi­
valence relations, morphogrammatics, kenographs, kenogrammatic lines and cycles. 

Kenogrammatics 
If we look at the situation in different sciences, so we find, that the researchers concentrate on specific 
'objects' or 'subjects'. Most of these belong to different qualities (for example, even in a single science 
like mathematics, topological spaces, groups, algebras... are considered). If you ask for logical relations 
between the different subjects, the findings of scientists show a picture like this: 

шш 
Every researcher has more or less deep insights in a special subject, what we call objective science. But 
there are less or nearly no general connections between the different qualities . But kenogrammatics 
looks on qualities and relates them by a qualitative (kenogrammatic) relation - the so called proemial 
relation [3,5]. 
In the theory of categories for example the mathematicians try to come to a better overview. They 
look on a class of objects O and a class of morphisms M and combine them by only 3 axioms to the term 
category K. 

K:=(O,M, .) 

• is a connector of morphisms, m e M connect the different elements of 0 (I am following here [10]). 
But if you sharply look at these operations, you see that they are still thinking on a line by constructing 
a composition 

( f - g ) - h 

and they clustered it in pairs of two (they think it in the manner of a more than 2 thousand years old 
logic — the Aristotelian logic). 

*ln memoriam Gotthard Gunther 
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Compositions like g 

/ \ ^°-
f o h 

are not allowed in the classic theory of categories. Although such relations are really necessary for bio­
logical models, you have to construct a transclassical theory of categories', one that is not only related 
to mathematics, but also to logic. That such a transclassical approach is constructable, I will show later. 

Kenogrammatics is an approach to a harmonizing of 

+ m-valued logic (in the sense of Gunther), 
+ modern system theory and 
+ qualitative finite mathematics. 

The foundation of kenogrammatics was developed by G. Gunther [2] - whithout doubt for me, the 
greatest logician of the 20th century. Kenogrammatics had a lot of sources. 

Sources of kenogrammatics 

Qualitative counting The dialectic logic of Hegel Poly-contexturality for 
a theory of subjectivity 

Morphogrammatics — 
a placed value system 
for many-valued logic 

The foundińg relation (Grundrelation) of Karl Heim, 
who related reflexions of natural science, philosophy and 
theology. 

Cybernetic research of Wiener, McCulioch,Ashby, v. Foerster,... . 
An inter-disciplinary approach including mathematics and biology. 

Questions of cybernetics lead to concepts of self-reference, self-organizing, ultra-stability ... 

Because I held a lecture on the Winter School of Abstract Analysis, up to now I will summarize only the 
mathematical technics of kenogrammatics. 

A. Qualitative counting 
If we count, we step forward from one object to another. If we count a Pear/o-sequence, we count only 
strokes 

I I I I I ! I . . . | (iterative = quantitative) 
and name it also 1 2 3 4 5 6 7 . . . n; 

and if we count A B C D E F G . . . Z (accretive = special qualitative) 

so we count objects with the same property: either all objects are equal: counting by the same stroke 
(Peano), or all objects differ: counting of different classes. But there is also a way to count until n, if 
the objects are not all of the same kind or if they are not all different: 
Example: n = 3 

D D D D D 
D D O ' O O 

D O D O A 

(1) (2) (3) (4) (5) 

Table 1: qualitative counting until 3. 
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n = 4 

1 
2 
1 
3 

1 1 
2 2 
3 3 
3 4 

) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

Table 2: qualitative counting until 4 

(The used integers without brackets have only the meaning of symbols, the integers with brackets are 
natural numbers.). 

The qualitative number sequences between iteration und accretition combine iterative and accretive 
counting. The table of Bell numbers shows the rapid growing of different qualitative number sequences. 

n 
B(n) 

2 3 4 5 6 7 8 9 10 
2 5 15 52 203 877 4140 21147 115975 

Table 3: Bell numbers (sequence 585 in [11]) 

The Bell number B(n) counts how many qualitative number sequences exist. 

B(n) := 2 S(n,i) 
i= 1 . .n 

The Bell number is the sum of the Stirling numbers of the 2nd kind S(n,i), which gives the number of 
different linear patterns of length n, if i symbols are used. 
For example is 

S(4,D S(4,2) S(4,3) S(4,4) B(4) 
1 7 6 1 15 

Later we will call these qualitative counting sequences a tritogram — one kind of 3 types of kenogramma-
tic numbers — and the single symbols in the sequence a kenogram. A tritogram corresponds to an auto­
morphism in a finite set. 

B. Kenogrammatic equivalence relations 

1. Kenogrammatic lines (the simplest kenogrammatic structure). 
Be ® a reservoir — a kenogrammatic set — of n symbols — called kenograms. 

® := I k t ,k 2 , . . . ,kn ] and be gt g2 • • • gm a sequence of kenograms. To get a canonisation (standard 
forms) of kenogrammatic sequences, we order the kenograms of ® in a lexicographic order: 

®* == i w s - K„,--
The sequence ilf2 .. . fm is called a standard representative of a kenogrammatic sequence gig2 . . . gm , if 

f. < x f o r a l l x ^ f , , ^ ,f. (i := 1,2,...,m). 

Gunther distinguished 3 different kinds of kenogrammatic sequences (lines) by using three different 
equivalence relations: 

Trito-equ/'valence = T : for all i,j f. =£f <=• g; ^ g . e.g. the position in between the structure of 
n places is relevant. 

Deutero-eqiva/ence = D : Only the distribution of used symbols in the structure of n places is relevant. 

Proto-equivalence =p : Only the cardinal number of different symbols is relevant in the given structure. 
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Examples for tr i to-, deutero- and proto-equivalence: 

a b b c = _ b c c a = _ n o o A a a b b = n a b a b = n D O D O 
T T O D 

! CAUTION ! : A kenogram is not a usual element of a usual set, like in set theory. A kenogram has no 
fixed identity. The only property it has, is that it is distinguishable from another kenogram and that it 
differs or differs not as a symbol from another. Kenograms only 'exist' on a structure together with a 
kenogrammatic equivalence relation. Or like Gunther defined: 'A kenogram is an empty place which 
merely indicate structure which may or may not be occupied by symbols.'[5]. The terminus 'kenogram' 
is derived from Greek Kevoo (kenos). The inexhaustible reservoir ®n of at most n different symbols, is a 
new kind of set — a kenogrammatic set. 

2. Kenogrammatic cycles 
Also simple, but important structures are cycles. An example of kenogrammatic equivalence between ke­
nogrammatic cycles is shown below: 

distribution 4-2 

KCj % KC2 * T KC3 £ T KCj K d =D KC2 * D KC3 * D K d K d = p KC2 = p KC3 

C Morphogrammatics - a place valued system of an m-valued logic 
In the classic mathematical logic we use two truth-values T (true) and F (false). That leads to 16 different ' 
logical two-placed operations. F.e.: 

disjunction 

This is combined with the usage of only two variables p,q. Al l other classic extensions on more than two 
variables fol low the line scheme: ((p,q),r) => (a,r) with a = (p,q). (Compare this with the composition in 
category theory). Where you have 4 places for a logical operation on two variables, also 4 values can 
arise. E.g. the following rejection operations can arise: 

' q 
V T F 

T T T 

P 
F T F 

r 1 2 

0 , 2 ) ^ 3 

(2,1) -»'3 

r* 1 2 

1 

2 

1 

3 

3 

2 

0 , 2 ) ^ 3 

(2,1) -»'3 

1 

2 

1 

4 

3 

2 

(1,2) ->3 

(2,1) - 4 

undifferentiated rejection r differentiated rejection r* 

That means an undifferentiated or a differentiated rejection of the presented logical values. F.e., if you 
reject a question as being 'wrong', you need such an operation, because there is no third value in the 
two-valued logic which reflect this.The whole situation of the two-valued logic can be regarded in a keno­
grammatic sense. Then f.e. holds TTTF = T FFFT and the 16 operations of the two-valued logic can be 
reduced to 8 kenogrammatic patterns. 
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Gunther called such a bloc of 4 kenograms a morphogram. If you close morphogrammatically the logical 
possibilities of two variables, then you get 8 classic junctions and 7 transclassic junctions 

1 1 1 1 1 1 1 1 
1 1 1 1 2 2 2 2 
1 1 2 2 1 1 2 2 
1 2 1 2 1 2 1 2 

classic 

1 1 1 1 1 1 1 
1 2 2 2 2 2 2 
2 1 2 3 3 3 3 
3 3 3 1 2 3 4 

transclassic 

In a three-valued system of two variables you get a 3 x 3 kenogrammatic matrix KM. 

s l 1 S12 S13 

l Ø 2 1 
S 2 2 S 2 3 

S 3 1 S 3 2 S 3 3 

S l 1 S12 S13 

S 2 1 S 2 2 S 2 3 

S 3 1 S 3 2 S 3 3 

KM KM structured in morphograms 

Gunther constructed a place-valued system of an m-logic by interlocking morphograms 

morphogram 'i i 
*2 1 

morphogram 
II 

"2 2 
S 3 2 

"2 3 
S 3 3 

morphogram 
III 

The 3-valued kenogrammatic matrix KM will be transformed into the place-system of morphograms: 

KM -* (MG l,MG II, MG III). 

If n = 4 you get A) = 6 different morphogrammatic compounds of a 4 x 4 kenogrammatic matrix. In» 
эh< 

P 

(vvv) 1 2 3 

1 1 1 1 

q 2 1 2 2 
3 1 2 3 

general: (2 ) morphogrammatic compounds. With a place-valed system of morphogrammatic compounds 
you can organize an m-valued logic only by 15 morphograms ( n > 4 ) 
Example: 

=> (MG l,MGII,MG III) :=(v,v,v) 

MG I := (\\) := v disjunction; MG II := (^3) = T (\\) := v disjunction; MG III (\\)^T (\\) :=v disjunct. 

By the way: With the rules of m-valued negators, it is possible to come from the 3-fold disjunction (vw) 
to a 3-fold conjunction ( AAA ): 

(AAA): pvwq = l\l1

,

2

,iP A M N f j ' i q ) (see [5], page 234), 

That is the generalized de Morgan-rule. Also a stepwise metamorphose from (AAA) -> (AAV) -*...-> (vw) is 
possible, a fact you never can produce by a logical system based on two values. But if you structure an m-
valued logic in such a manner, you lose some sogical (kenogrammatic) possibilities. F.e. the number of dif­
ferent 3 x 3 matrices in the 3-valued case is 

S(9,1) + S(9.2) + S(9,3) = 1 + 255 + 3025 = 3281; 

but the number of different morphogrammatic representations for used values is 14 x 14 x 14= 2744. 
That means you lose possibilities by structuring and restriction on 3 values (i.e. morphogrammatic in­
completeness). For further information see [4,7,8]. 
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D Kenographs 

GERHARD G.THOMAS 

KG := KG( KENO(Str), PC(P, N) ) 

is called a kenograph, if it is 
(1) P := (Pj ,P 2 , . . . ,Pm ) a set of m positions in an m-positional structure Str; 
(2) Str a graph of IPI = m knots (structure-graph); 
(3) the positions contexture PC(P,N) - a second order relation - a graph on iPl knots and IN I edges 

(a graph on positions and negations); 
(4) N := (N!,N 2 , . . . ,Nr) a set of r kenogrammatic negations, i.e. exchange relations on two positions 

P,, P. , which change Venograms on these positions 

Nk=Nм 
k(P.) « 1 k(P.) k є ( 1 .. r ) ; 

(5) ® := ( k i , k 2 , . . . , kn) a reservoir, i.e. a kenogrammatic set of n symbols, called kenograms; 
(6) KENO(Str) a kenogrammatic structure, i.e. a structure Str covered by kenograms of ®. 

N 3 . 

Example: Structure of kenograms Str := O—*0—>0—O ; 
Pi P2 Pa P4 

N4 

There exist 15 different kenogrammatic coverings of Str 
(see table 2). 

Ni 

PC 

The kenograph KG( o-+o+o-+of g ^ j h a s 5 c o m p o u n d s c (like all kenographs of 4 positions): 

^ 
тг 

N. 

Ю& 
N„ 

C. 

Kenograph on 4 positions with line-structure Str and cycle-contexture PC 

The numbers in the small cycles represent a 4-placed tritogram and corresponds to the natural numbers 
of table 2. More on kenographs, f.e. the number of compounds which are related to thedistributions_pf 
kenograms on Str or — that compound C2 always reflects the used contexture PC, you will find in [13] 

E The proemial relation — a kenogrammatic relation 
When Gunther (1972) published 'Cognition and Volition' [3], only few people understood, that the in 
this contribution described proemial relation was a mile stone in qualitative mathematics. The first quali­
tative relation was operationalized. This new type of relation does not interlock different base rela­
tions, an order relation and an exchange relation, but also simultaneously operations of constants, vari­
ables and qualitative different relations. The proemial relation textured now in a harmonic way aspects 
of (many-valued) logic, system theory, cybernetics, dialectic and qalitative Mathematics. 
To get a first imagination, how the proemial relation works, for mathematically educated readers may 
be useful the definition of a graphograph, which can be seen as a skeleton of the proemial relation. In 
graphographs — an extension of permutographs [12] and kenographs [13] — the hidden proemial relation 
appears by operating on these skeletons [14]. 
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GG := (CT,X(Str),RPr) 

is called a graphograph, if it is 
(1) X := (x1# x 2 , . . . ,xn) a finite (kenogrammatic) set (i.e. values, places,. . . , kenograms); 
(2) N := (Ni , N2 , . . . , Nr) a set of r negations, i.e. a set of exchange relations on two x,,x e X (i+j) 

x. * " * x. s e (1 . . r ) ; 

(3) CT := (X,N) a graph on I XI knots and r = IN I edges. The contexure CT constructs the edges in 
every knot of GG ( negationsystem); 

(4) the structure Str(X) := (X, (£) ) is a graph on X; 
(5) X(Str) the set of all coverings (x e X ) of Str constructs the knots of GG. 
(6) By the above 5 sets — the so called proemial relation Rp r — which interlocks X, CT and X(Str) by 

two different basic relations — here an order relation R0and an exchange relation Rn simultane­
ously is defined 

RPr := RPr(X(Str), CT(X), R0, Rn ). 

More details of the proemial relation you will find in [1,3,5] and were given 1984 [14]. 

F Kenogrammatic lines and cycles and Number theory 

The cyclic periodicity of a kenogrammatic line expresses a connection between kenogrammatic lines 
and cycles. Kenogrammatic lines and kenogrammatic cycles in the compounds of kenographs give in­
sights in the connected system of divisors of natural numbers. 
Given is a kenogrammatic cycle KC and its cyclic norm CN. CN is the canonical representation of KC, 
e.g. the lexicographic first line pattern (the cyclic structure written in a line) of KC, which can be 
found by cyclic permutation. The single kenograms (symbols) are written as natural numbers. The 
cyclic permutation of a line representation of a kenogrammatic cycle leads to the periodicity p. 

Example 1: 

1 1 1 1 2 1 1 2 1 
1 1 1 2 2 1 2 2 1 
1 1 2 2 1 2 2 2 1 
1 2 2 1 1 т 2 2 2 т 1 
2 2 1 1 1 2 2 1 2 
2 1 1 1 1 2 1 1 2 

4.1 4.2 4.3 4.4 4.5 4.6 4.7 =4.1 

CN(KC4) :=1 1 1 1 2 2 ; 
the periodicity p = 6 was calculated by cyclic permutations of CN(KC4) 

Example 2: 

= 4.1 

1 1 2 1 2 1 
1 2 1 2 2 1 
2 
1 

1 
1 

1 
2 т 

2 
1 

1 
2 т 

2 
1 

1 2 1 2 2 1 
2 1 1 2 2 2 

12.1 12.2 12.3 12.4= 12.1 
12.1 :=CN(KC1 2) :=1 1 2 1 1 2 p(KC12) = 3. 
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Example 3: 
The partition 2-2-2 with its tritogram number T(2-2-2) = 15 leads to the compound C8 of 
a) a line-kenograph KGfLine; PC) with 2 + 6 + 3 + 1 = 15 knots (kenogrammatic lines) or 
b) a cycle-kenograph KG (cycle, PC) with 5 knots ( K C 2 0 , KC 2 5 , KC 2 7 , KC 3 6 , KC 4 0 ). 

KC 2 0 KC 2 5 

p = 2 6 

! All divisors of 6 appear only, if 6 is partioned into 2-2-2 ! 

KC, K C 

The following table 4 show all 43 kenogrammatic cycles of length 6, in table 5 are the 43 kenogramma­

tic cycles ordered by the partitions of its coverings, p. is the number of kenogr. cycles with periodicity i. 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 
1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 3 3 3 3 
1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 2 2 2 3 3 3 3 3 1 1 1 4 
1 1 2 2 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1 3 3 1 1 1 2 2 3 3 4 4 4 1 1 3 1 2 2 4 4 2 2 4 5 
1 2 2 3 2 3 2 3 2 3 4 2 3 2 3 2 3 4 3 3 4 2.3 4 3 4 2 4 2 3 5 2 3 4 4 3 4 3 5 3 4 5 6 

p 166666366663366666 6 2 66666633666166236361331 
KC-Nr 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 

Table 4: 43 kenogrammatic cycles of length 6 in lexicographic order; p j = 4, p 2 = 2, p 3 = 9, p 6 = 28. 

Ci 

6 

c2 

5-1 

Cз 

4-2 

c 4 

4-1.1 

c5 

3-3 

c 6 

3-2-1 

c 7 

3-1-1-1 

c 8 

2-2-2 

C9 

2-2-1-1 

Cю 

2-1-1-1-1 

Cц 

1 б 

2 

1 1 1 

1 1 1 

1 1 2 

1 2 1 

2 1 1 

2 2 2 

1 1 1 

1 1 1 

1 1 2 

1 2 1 

2 1 1 

3 3 3 

1 1 1 

1 1 2 

1 2 1 

2 1 2 

2 2 1 

2 2 2 

1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 2 

1 1 1 2 2 2 2 2 2 1 

2 2 2 1 1 1 2 3 3 2 

2 3 3 2 3 3 1 1 1 1 

3 2 3 3 2 3 3 2 3 3 

1 1 1 1 

1 1 1 2 

1 2 2 1 

2 1 3 3 

3 3 1 1 

4 4 4 4 

1 1 1 1 1 

1 1 1 2 2 

2 2 2 1 3 

2 3 3 3 1 

3 2 3 2 2 

3 3 2 3 3 

1 1 1 1 1 1 1 1 1 

1 1 1 1 1 2 2 2 2 

2 2 2 2 2 1 1 1 3 

2 3 3 3 3 2 3 3 1 

3 2 3 4 4 3 2 4 2 

4 4 4 2 3 4 4 3 4 

1 1 1 

1 2 2 

2 1 3 

3 3 1 

4 4 4 

5 5 5 

1 

2 

3 

4 

5 

6 

1 6 6 6 3 6 6 3 3 6 1 6666666666 6 6 6 2 2 6 3 3 1 663666633 6 6 3 ; 

Table 5: The number of kenogrammatic lines (p = periodicity) in kenogrammatic cycles 
related to compounds C of kenographs with 6 positions. 

ţи- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

т î 1 1 1 2 1 2 1 1 ' 2 2 2 2 1 2 2 

T ' 1 1 2 2 2 2 1 2 1 1 1 2 2 1 2 

т ! 1 2 2 1 2 2 2 1 2 2 1 2 1 1 1 
Ť I 2 2 1 1 2 2 1 2 1 2 1 1 * 1 2 2 
dь-J 2 1 1 1 2 1 2 1 1 2 2 2 2 1 2 

3.1 3.2 3.3 3.4 3.5 3.6 5.1 5.2 5.3 5.4 5.5 5.6 12.1 12.2 12.3 

Table 6a: 15 kenogrammatic lines in 3 kenogrammatic cycles with distribution 4-2. 
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N, 

3.1 3.2 3.3 3.4 3.5 3.6 5.1 5.2 5.3 5.4 5.5 5.6 12.1 12.2 12.3 

N, _ _ _ 5.4 - 5.5 - - 12.3 3.4 3.6 12.2 - 5.6 5.3 
N2 

- - 5.3 - 5.4 - - 12.2 3.3 3.5 12.1 - 5.5 5.2 -
N3 

- 5.2 - 5.3 - - 12.1 3.2 3.4 12.3 - - 5.1 - 5.4 
N4 5.1 - 5.2 _ _ _ 3.1 3.3 12.2 - - 12.3 - 5.3 5.6 
Ns 

- 5.1 - - - 5.6 3.2 12.1 - - 12.2 ЗÍ.6 5.2 5.5 -

Table 6b: Negation table for compound C3 (4-2) of the kenograph K G ( O - K ) - K > K H O - > O D.D.D.D.D.D) 

(r.s means: r := lexicographic cycle number; s := line, which belongs to cycle r). 
The following 3 figures represent 3 compounds of KG(o-*o-^>-K>-x>^op--o--or-a--o—o), The number 
of knots is calculateable from the distribution resp. deuterogram, to which every compound is related, 
(algorithms in [13]). 

Figure C3 Figure C7 

comp. deuterogram distribution knots KC(p) 

C3 D D D D O O 4-2 15 = 6 KC 3(6) 

+6 KC 5(6) 
+3 KC12(3) 

10 = 3 KC 7(3) 
+6 KC14(6) 
+1 KC32(1) 

20 = 6 KCn(6) 
+6 KC18(6) 
+6 KC24(6) 
+2 KCЗS(2) 

3-3 

C7 DODOДO 3-1-1-1 

Figure C5 Table 7: Relations between lines and cycles 

By the figures C 3 , C 5 , C7 (3 compounds of a kenograph with a 6-cycle contexture) it is evident, that in 
the system of natural numbers, counting on a line is incomplete. If the line is closed by a cycle, the com­
plete symmetry is given, e.g. the relations between integers include the concept of cycles. 
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G Some applications of kenogrammatic methods 

Mathematics 
Combinatorics:^ kenogrammatic methods for kenographs turns out a connection between 

* STIRLING numbers of the 2nd kind (proto-and trito-equivalence), 
* number partitions (deutero-equivalence): p = pj U . . . U pk S | =1 k p. = p, 
* refined STIRLING numbers of the 2nd kind (trito-and deutero-equivalence), which 

are also related to BELL polynomials [13] . 
Graph theory within topology: 

* homomorphy of kenogrammatic compounds [13], 
* shortest and longest (max.) shortest paths and hamiltonian cycles in permutographs. 

All these applications use extremely easy algorithms and are much more efficient than classic 
methods. F.e. : if one hamiltonian cycle is found, a family of other hamiltonian cycles can be 
calculated of this cycle only by using the concept of contextures. 

Number theory: The proemial relation applicated on number theory leads to a relational net­
work of the divisors of integers -> qualitative prime number theory. 

Logic: The extension of the conception of form, so that it is evident, that GQDEL's theorem is valid 
only for special domains of formalisation ; post-godelian theorems of formality [1 ]. 

Quantum mechanics: The double two-valued logic of quantum mechanics. 

Cybernetic medicine: Volitron - a model of the formatio reticularis (the oldest parts of the brain) 
with permutographs [9,12]. 

Computer theory: Hard- and soft-ware for many-valued negations towards a non-v.-NEUMANN- or a 
non-ZUSE-ora non-TURING-computer. 

Biology and social sciences: Logic and systemtheory modeled by qualitative number system for sub­
jects (living systems). 

Theory of relations: Non linear composed theory of categories. 

H Final remarks 

For biological model theory you need without doubt in any case: 
* cycles (symbolisation of life) 
* order relations (order in nature) 
* exchange relations (for movements) 
* distributed contextures — Guntherian poly-contexturality (a living being has its own subjective 

identity, but can only live, if there are other subjects with an own contexture). 

The proemial relation of Gotthard Gunther has all these properties, if they are used in a process (e.g. 
by acting). And so it is little wonder, that the first steps to come to 
* self-reference * self-organization * super-additivity * multicentred designs of biological models * 
* ultra-stability of systems are made. 
They also appear in a brain model [13]. With the help of the proemial relation — a harmonization of 
qualitative mathematics, logic and system theory — it is possible, to arrive at a more biologically moti­
vated development, especially with regard to vital cycle-research and structure-thinking. 
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