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On the Boolean Structure Generated by Q-Points of co* 
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We prove that under p = cf(c) is RO(^(a))/fin, ig*) isomorphic to the Boolean completion of the 
partial order of nowhere-dense subsets of co* defining Q-points (ordered downwards by inclusion). 

Introduction and motivation 

In this paper we study Boolean properties of a (naturally defined) ordering of 
the system of nowhere-dense subsets of co* which defines Q-points in the sense, 
that Q-points of co* are exactly those points of co* (ultrafilters) which are not in 
the union of these nwd sets. This study is a continuation of a work which originally 
arose from two different motivations. 

The first motivation is that of [V2] namely to study natural partial orders (e.g. 
absolutely convergent and divergent series ordered as in comparison and ratio 
comparison test) from set-theoretic and Boolean-theoretic point of view. In [V2] it 
was shown that under p = cf(c) (cOi = cf(c) resp.) Boolean completions of these 
ordering of divergent (convergent resp.) series are isomorphic to RO(^(co)/fin) 
— the Boolean completion of the algebra of subsets of natural numbers modulo 
the ideal of finite sets. 

The second motivation is that of [VI], namely a new type (besides topological 
and combinatorial) of definitions of points of co* as those outside of the union of 
a system of nowhere-dense subsets of co* (which leads to new existence theorems 
for points of co*). These systems of nowhere-dense subsets of co* are those 
connected to the definition of the very point, i.e. filters on co which are connected 
to series, partitions, etc 

Moreover, in [VI] these two motivations met in an observation that the ordering 
of divergent series is the same as the ordering of nowhere-dense system induced 
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by series. So, in general (see [VI]) having F a system of nowhere-dense subsets 
of co* it defines points, which we can call F-points (in special cases these are 
rapids, Q-points, etc) laying outside the union of F. That is, j e co* is an F-point 
iff j e co* \ (J F. Considering F as being ordered by inclusion upwards the 
dominating number b(F, .=) is the number of nwd sets necessary to cover the same 
portion of co* as the whole F does. By this way we get existence theorems of type 
n(co*) > b(F, _=) implies there are F-points (n(co*) is the Novak number i.e. the 
minimal number of nwd sets necessary to cover the whole co*). 

Further, the system (F,-' ^ ) defining rapid ultrafilters was shown in [VI] to be 
Boolean isomorphic (after completion) to ^(co)/fin. So a new type of problems 
occured, namely, having a system F of nwd subsets of co* ordered by inclusion, 
look to it downwards and ask about the Boolean type of this ordering. 

In this paper we investigate the Boolean structure of (F<y, .= ), where ¥q is the 
(canonical) system of nwd subsets of co* defining Q-points and we show 
(surprisingly) it is again isomorphic to that of ^(cD)/fin (after necessary comple­
tion). 

Notations 

Let co denotes the set of natural numbers, [co]'" is the system of all infinite subsets 
of CD, [co]<w is the system of all finite subsets of co, ^(cD)/fin is the Boolean algebra 
of subsets of co modulo ideal of finite sets (sometimes seen as [co]w). The Stone 
space of algebra ^(co)/fin is denoted co* = St(^(co)/fin) and equipped with the 
topology generated by base consisting of sets of form: 

^* = {j'J lS a uniform ultrafilter on co and A ej}, 

where A ^ co. 
For an ideal J on co, 3Fj denotes the dual filter. Filters on co can be viewed 

(represented) as subsets of co* in the following way: 

b{F) = f){A*:Ae3?} 

is the closed set corresponding to 2F. Note that b(3F '.,) is nowhere-dense iff J is 
tall (i.e. (VX e [co]<0)(3Ye [X]a,)(Ye J)). 

The set 3& ^ [co]<a,\ {0} is said to be a (finitary) partition of co if \]0t = co 
and elements of 8% are pairwise disjoint. U is the system of all (finitary) partitions 
of co. (In following we omit the adjective finitary.) The set s4 c [co]<to \ {0} is 
said to be a partial partition of co if elements of si are pairwise disjoint and 
\s/\ < K0. PR is the system of all partial partitions of co. Elements of IR are 
denoted by St, if, ^, 1f and elements of PR by sJ, $8, <€ respectively. 

This work was supported by the grant 2/1224/94 of the Slovak Grant Agency for Science 
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For S e U w e define the ideal 

SJf = {X= Q):(3keco)(VRem)\RnX\ < k}9 

denote J% = SF, ,. For partitions 3k, Sf we write 0t < Sf if Ĵ > 3 ^ and ^? « ^ 
i f j ^ = J^. 

For ^ , y e R, 3k is said to be a refinement of 5^ (denoted by 0t C 5") if 
(VR e ^?)(3S e Sf)(R c S). For ^ e PR we denote r(^) = si u {{*}: f £ (J-^}-
Note that r(^) is a partition. For ^ e PR, ^ e R , j . / is said to be the partial 
refinement of 3t if r(si) C ^ . Denote 0t nn Sf = {RnS.ReM, S e Sf}\ {0} 
the roughest refinement of ^ and Sf. For ^ e R and X c to define ^ f l = 
= r ( { ] { n I : J { 6 l & i { n I 4= 0}). 

Recall for a Boolean algebra A9 cA = sup{|K|: X is a pairwise disjoint family 
in A} (cellularity of A), ca = cAa = c(A \ a) and KA = min {|X|: X dense in .4} 
(density of A). 

Basic facts 

It is easy to see that J# = 0(a)) exactly for 3k such that (3k) (VR e R)(|R| = fc). 
Denote R° the set of such St\ let R+ = R\R°. Note that for St9 Sf e R° is 
0t « -5 .̂ It can be shown easily that 

« < -9* iff (3k)(VR e 0)(|{Se ^ : R n 5 + 0}| < k). 

Particularly, ^ E <Ŝ  iff 2̂ =< Sf with k = 1. It is easy to prove that 0t and ̂  are 
incompatible (denoted by 9t 1 Sf) iff (3k)(VR e 0t)^Se Sf)(\R n S\ < k), i.e. 
3tnnS?enQ. It is obvious that 0t nn Sf < 3t9 Sf. In the case 0t^Sf, 
0tnnSf^0t holds. 

Define 

\0t\ = { y e R : i , = ^ r } = { ^ e R : ^ « <̂ }> 

denote R* = R + /~ with order 

[ « ] < \Sf\ \f 0),^Sf, i.e. J^> 3 J!f. 

By [J], 2̂ and Sf are compatible iff [^] and \Sf\ are compatible and 
RO(R*, <) s RO(lR+, =<) holds. 

Denote 

Fc/= { ^ ) : . « e R + } . 

In [VI] it is shown that 

j is a Q-point of co* iff ; e CO* \ (J <5(J%) iff ; £ (J F„. 

Observe that <5(J%>) is nowhere-dense for all 3t e R. 
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Since St ^ ST iff J* 3 ^ iff (5(Jv) £= <5(J*>), the Boolean algebras RO(F„, c ) , 
RO([R*, < ) and RO([R+, < ) are all isomorphic. 

The partial ordered set (IR*, < ) is separative, because for 0t, ^ e IR+ such that 
0t =£ ^ , i.e. 4 * £ ^ r , # f X ^ « and ( « \ X) 1 ^ hold, where X e JyXJ* 
Hence IR* can be considered as the dense subset of its completion RO(IR*, <) . 

The theorem. Now we are ready to state our main result. 

Theorem. If p = cf(c), then the Boolean algebras RO(F,p !=) and 
RO(P(c0)/fin, <= *) are isomorphic. 

The idea of the proof is analogous to that of [V2], namely to construct 
isomorphic dense trees in algebras using the following. 

Lemma 1 [BSV, BS]. Let T, X > X0, \x > 2 be cardinals, A a (T, *, i^-now-
here-distributive Boolean algebra having a X-closed dense subset D. Let A be 
(K, *, 2)-distributive for each K < x. If TZ(A) = \i<}\ then there is a dense subset 
T := D of A such that (T, >) is a tree of height x and each t e Thas \i<A immediate 
succesors. 

We show that presumptions of Lemma 1 are fulfilled for T = X = p, \i = 2, 
A = RO(lR*, <) , D = IR*. Recall that (not only under p = cf(c))2<p = c holds. 

Lemma 2. Below each 01 e IR+ there are t-many pairwise incompatible ele­
ments from IR+. 

Proof. We know that there is a system {AL*: a < c) c [co]w such that every two 
sets of this system are almost disjoint (i.e. (Va, j8 < t)(\Aa n Ap\ < co)). Denote 
0t = {JR,, : n e co}, wlog assume that lim \Rn\ = + oo. Define 0^ = r({R,,: n e A^\), 
clearly Ra e IR + . Obviously every 0t^ is a refinement of ^?, hence ^?a =̂  0t. For each 
a, P < c, ^?a and 0fa are incompatible, because if k = max {|-RJ: ne Aa n Ap) + 1, 
then (VS e 0t^Te fy)(\S n T| < k), i.e. K a n n fy e R°. 

Lemma 3. For every a e RO(IR*, < ) + is ca > t. 

Proof. Because IR* is dense in RO(lR*, <) , it is sufficient to prove it for IR*. 
Since the compatibility in IR* corresponds to the compatibility in IR+, below each 
\_0t\ we can find c-many pairwise incompatible elements (namely {[^?] : a < c}, 
where {^?a: a < c} are those from Lemma 2). 

Lemma 4. 7i(RO(IR*, <)) = c. 

Proof. Because c l > c, there does not exist a dense subset of type <c , and for 
a dense subset IR*, |tR*| = c holds. 

Lemma 5. RO(IR*, < ) is (cf(c), •, 2)-nowhere-distributive. 

Proof. IR* \ a is dense in RO(IR*, < ) \ a and c(RO(IR*, <)\ a)> t too, hence 
|IR* \ a\ = c too. Decompose IR* \ a = [j {Sa: a < cf(c)} so that |SJ+ < c for all 
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a < cf(c). By [BV] every Sa has disjoint refinement Pa. The system {% : a < cf(c)} 
cannot have a common refinement as (JPa is dense in RO(R*, <) \a and 
RO(R*, <) \ a has no atoms. 

Lemma 6. (R*, <) is p-closed. 

Proof. Using the theorem of Bell [B], it is enough for every descending 
sequence in IR* of length < p to find a cr-centered p.o. set and less than j3-many 
dense sets such that any filter (in the ground model) that meets each of these dense 
sets produces a partition from R+ laying below the given descending sequence (in 
the ground model). 

Let for K < p, {01* : a < K} C R+ be such that a < /? implies [ 0 j < [ ^ ] . Put 

P = {(s/9 0t): s/ e PR & (3a < K ) ( ^ « ^a)} 

and the ordering (.s/, 2̂) ^ (^, ^ ) if s/ is a prolongation of ^ (i.e. ja/ ^ 0t)9 01 is 
a refinement of Sf (i.e. ^? IZ Sf) and the prolonging part s/\0l is a partial 
refinement of partition 01 (i.e. r(s/\3S)[Z St\ 

For fixed JS/ E PR, put P^ = \(3S9 0t) e P : 0S = s/}. P^ is centered, because for 
USf^) : i < m}, where Sf{ « ^?ai and {ô } is non-descending, the element (s/9 Sf)9 

where Sf is the roughest common refinement of {Sf{} and Sf « ^?awi, is below every 
(is/, 5^). Hence P is a-centered, because |PR| = K0. 

The following (< p-many) sets are dense in P: 
- for k e co9 Xk = {(s/90t): k e [js/}9 as {s/ u {{k}}0) ^ (s/9 9t)\ 
- for k e co9 Yk = {(s/9 01): (3,4 e s/) \A\ > k}9 as (s/ u {0l}90t) _< (s/, 0t)9 

where R is a set of ^? disjoint with every A e s/ and \R\ > k\ 
- for a < K9 Za = {(s/9 $):M^ 0l*}9 as ( ^ , ^ n n 0t*) ^ (JS/, ̂ 2). 

Let G .= P be a filter that meets every Xk9 Yk and Za. Put 

1ST = [j{s/: (101) (s/9 01) e G}. 

iT is obviously a partition of co and f e U + (because every G n 7fc =|- ^ and if 
Wxes/U W2es/2 with (s/X90t^)eG9 (s/290t2)eG there is 0t^.s/X9s/2 i.e. 
KV1} KV2 6 ^ i.e. Wxr\W2 = 0). We prove that ->T < 01* for every a < K. Take 
(^, 5?) G G n Za, hence 2̂ =< 52a. We show if -< ^2, i.e. there exists a k e co such 
that for every WeiV9 \{Re 0t: R n W 4= 0}| < k holds. If KV£ .c/, then there 
exists a (̂ ?, Sf)eG such that KVG^\j3/. Since G is a filter, there exists 
a (#, , f ) e G below (ja/, ^2) and (0t9 Sf). We have 0t c ^ and # V / is a partial 
refinement of ^2. Then ^?V/ .= #V*a/ is a partial refinement of 2̂ too, hence 
|{P6^?:R n PV4-0}| < 1. As s/ is finite, it is sufficient to take k = 
max{|{KG^:Rn W * 0}|: KVe ja/}-F 1. 

Lemma 7. RO(R*, <) is (K9 •, ̂ -distributive for all K < p. . 

Proof. A-closedness of a dense subset implies /c-distributivity for all K < X. 
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Proof of the Theorem. By Lemma 1 there exists a dense tree T = IR* of height 
p and each teT has 2 < p = c immediate succesors. Denote Pa levels of T for 
a < p. Obviously D = U{Pa+i: a < p} is a dense subset of RO(IR*, <) too. As 
D is clearly isomorphic to (J{ac: a < p} ordered by the inverse inclusion, which 
is the (canonical) dense subset of complete Boolean algebra Col(c, p), we have 
RO(R*, <) =" Col(c, p). Using the results of [BPS] under p = cf(c) the same is the 
case for RO(^(co)/fin, =*). It means that under p = cf(c), RO(Ff/, =) and 
RO(^(co)/fin, = *) are isomorphic. 
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