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For a given partial ordering P we consider the generic extension V[G] of the uni­
verse Vof set theory. If X is a compact Hausdorff space in V, then, in general, X is 
not compact in V[G]. There is a natural procedure which assigns to X a compactifi-
cation XG of X in V[G], The general question here is, which topological properties Q 
are absolute in the following sense: 

XG satisfies Q in V[G] iff.K satisfies Q in V.1 

All topological spaces in this paper are assumed to be Hausdorff. We denote by 
RO(X) the regular open algebra of a topological space X. Undefined topological 
notions can be found in the book of Engelking [8]. 

1. In this section we describe XGand discuss the behaviour of this construction 
under the most important operations on topological spaces. V[G] is always supposed 
to be a generic extension of the universe V. 
Let X be a compact space in V. We consider X in V[G] as a topological space with 
the topology generated by all open subsets U £ X, U e V. If S denotes the family 
of all continuous functions / : X -> I on X into the unit segment in V, an embedding 
i : X -> Is is given in both Vand V[G] by i(x) = (fx)feS for every xeX. XG is nothing 
but the compactification of i(X) in the Tichonov cube Is in V[G]. Remark, that for 
e a c h / e 5, there is a continuous function fG :XG -• I in V[G] w i th / = fG\x. 

1.1. Lemma. XG is the smallest compactification of X in V[G] such that clXo(A) n 
n clXc(B) = 0 for arbitrary disjoint nonempty closed subsets A, B c X, A, B e V. 

Proof. It is obvious, that CIXG(A) n C\XG(B) = 0 for arbitrary disjoint nonempty 
closed subsets A,B^X,A,BeV. 

*) Ernst-Moritz-Arndt Universitat Greifswald, Fachbereich Mathematik, O-2200 Greifswald, 
Jahnstrasse 15a, Germany. 

1 This notion is due to Prof. S. Fuchino (FU Berlin) and was given in his lecture on the 
conference „Topology and Measure" (Rostock— Warnemunde, August 1991). I would like 
to thank him for stimulating discussions. 
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A compactification bX of a completely regular space X is characterized by the 
family of all pairs C, D of closed subsets of X with cl6X(C) n c\hx(D) = 0 (see Engel-
king [8], 3.5.5). Hence, it suffices to Show, that for arbitrary nonempty closed subsets 
C, D of X in V[G] with C\XG(C) n C\XG(D) = 0 there exist closed subsets A, B of 
X in V, such that C s C\XG(A), D S c l ^ B ) and _4 n £ = 0. If s e S, let ns denote 
the natural projection ns:I

s -+1 which associates to each point x of 7 s the sth co­
ordinate. A base of Is in Vas well as in V[G] consists of all possible finite intersec­
tions of sets of the form n~ * U, where U is an open interval (p, q) = 1 with rational 
end points. Let H denote the family of all finite unions of sets of this base in V. 
For We H W9 denotes the corresponding set in V[G]. Of course, c^PVi) n cl(JV2) = 0 
(in V) iffcl(PV;) n cl( WJ) = 0 (in V[G] for arbitrary Wl9 W2 e tf. 

If C, D are nonempty closed subsets of X in V[G] with clXo(C) n clXG(D) = 0, 
we find using the compactness of J5 sets Wx, W2 e H, such that C s j ^ ' , I) c jp2' 
and c l ^ ) n cl(JV2) = 0. _4 = cl^Wi) n X and 5 = clx(PV2) n X are the desired 
sets in V. • 

1.2. Proposition. (X x Y)G = XG x YG. 

Proof. It is easy to see that there exists a natural map (X x Y)G -> KG x YG 

which leaves every point of X x Y fixed. 
Let A, B be disjoint nonempty closed subsets of X x Y,A,BeV Using the com­

pactness, we find open subsets Ut x Wu ...,Uk x Wk, Ux x Wl9 ...,Ut x IF, of 
X x Yin Vsuch that A c U{17. x W-: j = 1, . . . , k } , JB s u{Uj x W^rj = 1 , . . . 
. . . , /} and c\(Ut x JVf) n cl(E7y x Wj) = 0 for every i e { 1 , . . . , k} and j e { 1 , . . . , /} . 
01(17, x Wt) n cl(C7y x Wj) = 0 iff c\x(Ut) n cl^ET,) = 0 or c\Y(Wt) n cly(JF,.) = 0. 
If c\x(Ut) n cl^ET.) = 0, (in V), then clXo(tf£) n cl^G(Ui) = 0 (in V[G]) and, ana­
logously, if cly(JV;) n clr(PY}) = 0 (in V), then clyG(JVf) n cl r G(^.) = 0 (in V[G]). 
Hence, 
(v{dxa*TjUv Wt) : i = 1, . . . , fc}) n (u{dXaXTa(Uj • JPy) :I = 1, . . . , /}) = 0 , 
i.e. clXGXrG(A) n cl^GXyG(B) = 0. By Lemma 1.1, the natural map (X x Y)G -> 
-* XG x YG is an homeomorphism. D 

An easy consequence of the construction of XG is, that for every continuous map 
f:K-»Y of compact spaces there exists a unique continuous extension fG : XG -> YG. 

1.3. Proposition. If the compact space X is the limit of the inverse system S = 
= <Xa, 7r£, A} in V, then XG is the limit of the inverse system SG = <Xa>G, n%jG, Ay. 

Proof. X' = lim SG is a compactification of X in V[G]. Furthermore, there is 
a natural map of XG onto Jim SG which leaves the points of X fixed. For arbitrary 
disjoint nonempty closed subsets A, B of X in V we find — by means of some ele­
mentary observations — an index cue A and a continuous function / : Xa -> /such 
that A £ (fo 7TJ"1 {0} and J5 £ (f0 7ra)

-1 {1}. Since f has a continuous extension 
over XatG, we have c l ^ A ) n c l ^ B ) = 0. • 
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An immediate consequence of 1.2 and 1.3 is the following 

1.4. Proposition. Let {Xa :OLEA} be a family of compact spaces in V. Then 
(U{Xa : a G A})G = n{Xa,G : a e A}. 

If fa : X -• ya, a G A, is a collection of maps, the diagonal product A/a considered 
as a map from X to its image is called the interior product of the maps fa and is 
denoted by ® {fa : a e A}. 

1.5. Proposition. Let fa : X -> ya, a e A, fee a collection of maps of compact 
spaces in V. Then (® {/a : a e A})G = ® {/a,G : a e .A}. 

Proof. ®/a is a map of X onto a subspace of Il{Xa :cce A}. It is easy to see that 
(®/«)G coincides with ®/a,G for every xeX. Since X is a dense subspace of XG, 
they coincides on XG. • 

1.6. Proposition. A continuous onto mapf: X -> Yof compact spaces is irreducible 
in Viff fG is irreducible in V\G\. 

Proof. Suppose fG to be irreducible. Let if be a nonempty proper closed subset 
of X (in V). Obviously, H' = C\XG(H) # XG and, consequently, fG(H') is a proper 
closed subset of YG. Since yis dense in yG, it follows that Y\fG(H') ^ 0 and/(H) ^ Y. 
Hence,/is irreducible in V. 

Conversely, l e t / be irreducible in Vand let H be a proper subset of XG in V\G]. 
By the construction of XG9 there exist continuous functions hl9..., hn :X -+1 in V 
and rational intervals (pi9 qt),..., (pn, qn) c / such that 

O = {xeXG: hitG(x) e (pi9 qt) for every i = 1, . . . , n} 

is a nonempty open subset of XG with O n H = 0. Fix a small positive real number e 
such that 

0 = { x e Z G : ht(x) e (pf + e, qt - a) for every 1 = 1, . . . , n} 

is nonempty. Then F \ 0 is a proper closed subset of X in V and H c cl^G(F). 
Hence, fG(H) c fG(c\Xa(F)) = c\Xa(fF) ± YG. • 

A map is said to be skeletal if the preimage of the boundary of any open set in Y 
is nowhere dense in X (Mioduszewski, Rudolf [12]). It is easy to check that / is 
skeletal if and only if for every nonempty open subset U of X the set Int(cl(/T/)) is 
nonempty. 

1.7. Proposition. A continuous onto mapf:X -> Y of compact spaces is skeletal 
in Vifff is skeletal in V[G]. 

Proof. One readily sees that / is skeletal in Vif and only if it is skeletal in V\G\. 
The reason is that the topologies on X and Y in V[G] are generated by sets which are 
elements of V. Furthermore, it is a well known fact that a m a p / : X -> Yof completely 
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regular spaces is skeletal if and only if for any suitable compactification bX and bY 
the continuous extension bf: bX -> by is skeletal. Hence, / is skeletal in V[G] iff 
fG is skeletal. • 

1.8. Proposition. A continuous onto map f: X -> Y of compact spaces is open 
in Viff fG is open in V[G]. 

To prove this fact we shall use the concept of representation of compact spaces 
as proximities on Boolean algebras (DeVries [6], Fedorchuk [9]) and the concept 
of absolutes of maps (Shapiro [18]). Further, we shall freely use the duality between 
a Boolean algebra and its space of ultrafilters. 

Let s/ be an infinite Boolean algebra and b a binary relation on s/. We write 
aSb instead of <a, b> e 5 and aSb instead of <a, b> £ b. 

Definition (Fedorchuk [9]). b is called a proximity on the Boolean algebra s/ 
if it satisfies the following conditions: 

1. abb <-> bba , 
2. abb and aSc <-> aS(b v c) , 
3. a 7-= 0 -> aba , 
4. a T-= 0 -> there exists an element b 7-= 0 with bS —a , 
5. abb -> there exists an element c ? - 0 such that aS — c and bSc . 

It is easy to check that a$ —b implies a = b. We shall write a <4 b for a5 — b. On 
every Boolean algebra s/ a minimal proximity b0 is given by ab0b <-> a A b = 0. 
A filter ^ on J / is said to be a 5-filter if for every ae £ there exists a 6 e { such that 
b <£ a. S(s/9 b) denotes the family of all maximal 5-filters. Set 08(a) = {£ e S(s/9 b): 
: a e { } . The family of all these sets induces a topology on S(s/, b) and we have the 
following 

1.9. Fact (DeVries [6]). S(s/9 b) is a compact space. 05(a) is a regular open 
subset of S(s/9 b)for every a e s/ and the map which assigns to every a e s/ 05(a) 
is an isomorphism of s/ onto the corresponding subalgebra of the regular open 
algebra of S(s/9 b). Furthermore: abb «-> cl(0(a)) n cl(0(b)) = 0 for all a9be s/. 

Sketch of the proof. S(s/9 b0) is nothing but the Stone space of the Boolean algebra 
s/9 i.e. the space of all maximal filters. We write S(s/) for S(s/9 b0) and 0(a) for 
Od(a). An equivalence relation is defined on S(s/) by 

£brj <-> a<5b for every a e £ and b e rj. 

Every equivalence class a is a closed subspace of S(s/) and no- is a maximal <5-filter. 
The corresponding map n : S(s/) -> S(s/9 b) is continuous and irreducible, where 
7r*0(a) = 05(a) and nO(a) = d(08(a)) for every aes/. 
On the other hand, it is easy to prove the converse assertion. 

1.10. Fact (DeVries [6]). Let X be a compact Hausdorff space and s/ a sub-
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algebra of the regular open algebra of X and a base of the topology on X. Then: 
a) U~xV<r+ Q\(U) n cl(V) = 0 defines a proximity Sx on s/. 
b) £x = {Ues/ : xeU} is a maximal Sx-filter for every point xeX. 
c) The map X -> S(s/9 S) which relates each point xeX to£x is a homeomorphism. 

The reason why we need the representation of compact spaces as proximities on 
Boolean algebras can be found in the following 

1.11. Proposition. Let X be a compact space in V, s/ = RO(X) (in V) and Sx 

the natural proximity on s/. Then XG is homeomorphic to the space of all maximal 
Sx-filters S(s/, S) in V[G]. 

Proof. Remark that for every xeX £x = {Ues/ :xeU} is a maximal ^-filter 
on s/ in V[G]. Hence, X' = S(s/, S) is a compactification of X (in V[G]) and we 
have to prove that XG and X' are equivalent compactifications. If UO^Vfor U, Ve s/, 
there is a continuous function/ : X -• I in Vsuch that U ^ / _ 1 { 0 } and V c / _ 1 { 1 } . 
Since / has a continuous extension over XG, it follows that C\XG(U) n cl*G(V) = 0. 
Therefore X' g XG. 

To prove that XG = X' we check that every continuous function / : X -> / in V 
has a continuous extension on X'. Let ^ e Z ' b e a maximal ^-filter on s/ in V[G]. 
Set F{ = n{cl(/U): U e£}. F^ is a nonempty closed subset of the unit segment. 
If |F{| > 1, there exist rational intervals (pt, qx) and (p2, q2) such that [pl9 q^\ n 
n [p2, q2] = 0, (Pi, qi) n F^ ?= 0 and (p2, q2) n F? # 0. 

Ot = {xeX :f(x)e(pl9q1)} and 02 = {xeX :f(x) e(p2, q2)} are nonempty 
open subsets of X. Obviously, cl^C^) n clx(02) = 0. For every We £ we have 
Wn Ot 7= 0 and W r\02 # 0 . This contradicts to the maximality of £. Hence? 

|F^| = 1 and we define the extension of/ by/'(<!;) = fiffF^ = {t}. Applying similar 
arguments as above, it is easy to verify t h a t / ' is continuous. • 

One can easily check the following 

1.12. Lemma. Let f :X -> Ybe a continuous onto map of compact spaces. Then 
f is open if and only iff'1 cl(U) = cl( /_ 1 l7) /0r all open subsets U ofX. 

Now, we are going to prove Proposition 1.8. The proof is broken up into four 
steps. 

Step 1. By Proposition 1.7, we may assume that / is skeletal. Set s/ = RO(K) 
and £8 = RO(Y). Let nx and nY denote the canonical maps of pX = S(s/) and 
pY= S($) onto X and Y, respectively. The absolute of / is a continuous map 
pf: pX -> pY such that the corresponding diagramm is commutative, i.e. pfo nx = 
= nY of. Since/is skeletal, pf is unique (Shapiro [18]) and is open (Shapiro, Pono-
marev [15], Bandlow [1]). Let h : & -> s/ denote the dual embedding, i.e. h(W) = U 
if pf~10(W) = 0(U) for all We s/ and U e £8. Since pf is open, one can define a pro­
jection map r:s/-»@ by r(U) = W if pfO(U) = 0(W). One readily sees that 
r(hW) = JVfor every We ®. Remark that r(U) = JViff W = Intcl(/U). 
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Step 2. Now, let us assume that / is open. By Lemma 1.12, Sx is a continuation 
of SY in the sense that 

hWidYhW2 iff W1SXW2 for all Wl9W2e<%. (1) 
Furthermore, 

if Ut < U2 for Uu U2es/, then rUt < rU2 . (2) 

Indeed, if c l ^ ) s U2, then c l p n t / ^ J ) = clf/U^ <=/£72 c Intcl(/U2). 
Step 3. We prove now that h, r and the properties (1) and (2) of Sx and 5Y are 

sufficient for the openness off 
Suppose h and r are given as above and the properties (1) and (2) are satisfied 

for proximities Sx and SY on s/ and @t, respectively. 
At first, we claim that {rU : U e £} is a maximal O*r-filter for every maximal 

oVfilter { G S ( J / , Sx). It is easy to see that {rU : U e £} is a filter. From property 
(1) it follows that {rU: U e £} is a oyfilter. To prove the maximality, let JV be an 
element of a with W$ {rU: Ue £}. If VeJ' satisfies V<^ IV, i.e. VZY -W, then 
*^jr -hW and hV<| hFV. Since hW$ {, there exists a Ue { such that C75xhV, i.e. 
U < —hV, rU < — V and rUSYV. Hence, there cannot be a (5y-filter containing 
{TV} u {rU : U e £} for every { e S(s/, Sx). Of course, /(£) = {rL7 : £7 e £} for 
every £ e S(s/, £x). 

Next, we claim that /cl(Oax(C7)) = cl(0,r(rt7)) for each Ues/. Obviously, 
fOdx(U)^OdY(rU) and, consequently, fc\(08x(U)) s cl(0,y(rU)). If/cl(0,x(l7)) # 
# cl(0^(r£7)), there is a PVe^ such that W^rU and 08Y(W) nf(08x(U)) = 0. 
From IV = K7 it follows that h IV A £7 > 0. If £ e 05x(hW A U), then £7 e £ and 
r(hJV) = FPe/({). Hence, / ( { ) e 0Jy(TV) nf(08x(U)); a contradiction. 

Our goal now is to prove that / i s an open map. To this end, we check that/({) e 
e Int(f08x(U)) for every U e s/ and <J e O^(U). Fix a Ve { with V <̂  17. Then 
rV <̂  rU and cl(0,y(rV)) s 08r(rU). Consequently, / ( { ) e P*Y(rV) s cl(0,y(rV)) = 
= /d(O J x (F0s /O # x ( t7 ) . 

Step 4. We are now ready to prove Proposition 1.8. 
If/ is open in V, we have h, r, 8X on s/ and <5r on Ĵ  satisfying the corresponding 

properties, ft, r, <5X and <5r have the same in V[G]./G is defined by 

fG($) = {rU:Ue£} for every teXG = S(s/,SX) . 

Repeating what we have done in Step 3, we can check that/G is open. 
Now, le t /G be open in V[G]. Let s/' and ffi denote the regular open algebras 

of .KG and YG (respectively), s/ is a dense subalgebra of s/' and 3$ a dense subalgebra 
of $'. By Step 1, we have an embedding h! : 28' -> s/' and a projection r' : s/' -> !%' 
corresponding to /G . Since, by Proposition 1.7, / is skeletal, we have h : 28 -> s/ 
and r : s/ -• Jf in Fas well as in V[G]. From the uniqueness of the absolute of fG 

it follows that h'\® = ft and r'\^ = r. Hence, properties (1) and (2) hold for 8X 

and SY on s/ and jf, respectively, in V[G]. They are also fulfilled in V. This, by Step 3, 
implies the openness of / in V. 
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2. All classes of compact spaces under consideration in this paper may be charac­
terized by elementary substructures. We refer the reader to J. Baumgartner [4] 
for a good introduction to elementary substructures and to A. Dow [7] for an 
introduction to their applications to topology. A discussion of the general construc­
tion, which is a good tool for characterizing classes of topological spaces by means 
of elementary substructures, can be found in Bandlow [2]. 

Let X be a compact HausdorfF space, 0 a sufficiently large regular uncountable 
cardinal and Ji a suitable elementary substructure of 3tf%. 

<f)M denotes the interior product of all continuous functions f :X -* I which are 
elements of Ji, i.e. 

<t>x
M = ®(C(X, I)nJi). Set X{Ji) = <£* (X) . 

2.2. Remark. Let Jf be an elementary usbstructure of jf^101 in V[G] such that 
Jr n 3tfI = Jt. We claim that 0?G = <f>MiG. 

It can be proved: if Kis a closed subspace of a compact space Z and Ji a suitable 
elementary substructure, then 0 ^ = (j)M]Y (see Bandlow [2]). For the Tichonov 
cube IA <j>M is nothing but the projection map nAnM. 

XG is a subspace of the Tichonov cube Is where S denotes the family of all con­
tinuous functions / : X -> I in V. Hence, (j)*? is the interior product of all functions 
fG, feSnJ*. By Proposition 1.5, <^,G *s the interior product of all maps fG, 
feSnJi. Se Jf V

Q implies S c 2tf y and, consequently, S r\Jr = S n Ji. This 
proves the assertion. 

2.2. Fact (see, for example, Devlin [5]). 

Let s& and $ be uncountable sets, sf £ &. 

a) If C = \0Y* is closed and unbounded, then {X n $/ : X e C] contains a closed 
unbounded subfamily of [*s/]co. 

b) If D c [.a/]** is closed and unbounded, then {X e \0Y 'Xns/eC} is a closed 
unbounded subfamily of [^]£0. 

It is easy to see that the intersection of two closed unbounded subfamilies of 
[ j / j w remains a closed unbounded subfamily for every infinite set s/. 

Another very useful fact concerns families of countable elementary substructures: 
The family of all countable elementary substructures of an infinite set s/ forms 

a closed unbounded subfamily of [^s/]60. 

3. In this section we consider the class of all openly-generated compact spaces. 
There are several ways of introducing this class: by fc-metrik (Scepin [16]), by a spe­
cial kind of embedding in the Tichonov cube (Shirokov [20]) or as limit spaces of 
sigma-spectra with open projection maps (Scepin [17]). It is not difficult to show 
that the representation of openly-generated compact spaces as limits of open sigma-
-spectra is equivalent to the following characterization (see Bandlow [2]): 

A compact space X is openly-generated if and only if <f>M is an open map for each 
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countable elementary substructure Ji from a closed unbounded subfamily of [ j ? ^ ] " 
where 9 is a sufficiently large regular uncountable cardinal. 

3. Theorem. Let X be a compact Hausdorff space, P a proper partial ordering 
and G a P-generic set over V. 

Then X is openly-generated in V if and only if XG is openly-generated in V[G]. 

Proof. Suppose that X is openly-generated. Let 9 be a sufficiently large regular 
uncountable cardinal and let D be a closed unbounded family of countable ele­
mentary substructures of 2tf% such that < ^ is open for each Ji e D. By 2.2.b), there 
exists a closed unbounded family C of countable elementary substructures of 
^lGL such that JT n #% e D for each / e C . Hence, by 2.1, <$>*? is open for all 
J e C . Thus XG is openly-generated. Conversely, suppose XG is openly-generated. 
Assume, on the contrary, that the set S of all countable elementary substructures Jt 
of #?\ such that §X

M is not open is stationary in [«?f^]w in V. Since P is proper, S 
remains stationary in [-5f^]0> in V\G~]. Let C be a closed unbounded family of 
countable elementary substructures of ^^ C G ] such that 0 j G is open for each JT e C. 
By 2.2.a), there exists a, Jf e C such that JT n ^ = Ji e S. Hence, <£^jG is open; 
a contradiction to Proposition 1.8. • 

4. An interesting subclass of the dyadic compacta is the class of Dugundji spaces 
introduced by Pelczynski [14]. Haydon proved that the notions of Dugundji spaces 
and absolute extensors in dimension zero are equivalent. A Boolean space is Du­
gundji iff its dual algebra is projective (Koppelberg [11]). Remark that every Du­
gundji space is openly-generated (Scepin [16]). We need the following characteri­
zations of Dugundji spaces: 
(1) A compact Hausdorff space X is Dugundji iff X is the inverse limit of a conti­

nuous inverse system <Xa, 7rf, £> where |X0 | = 1 and each 7ra
+1 has weight ^co 

and is open (Haydon [10], Scepin [16]).* 
(2) A compact Hausdorff space X is Dugundji iff for every embedding i : X -> P 

in the Tichonov cube there is an assignment et: T(X) -• T(P) such that: 
a) i(U) = et(U) n i(X) for each open subset U of X , 
b) et(Ux n U2) = et{U^) n e,(U2) and 
c) e-(Ux) n et(U2) = 0 , if Ui n U2 = 0 , for arbitrary 

Ul9 U2 e T(X) (Shirokov [20]). 
Inverse systems described in (1) are called Haydon-spectra. For our purpose the 
following characterization of Dugundji spaces by elementary substructures is con­
venient to use. 

4.1. Proposition. A compact Hausdorff space X is Dugundji iff there is a closed 
unbounded family D of countable elementary substructures of J^Q, where 9 is 

1 The weight of a continuous mapf: X-> Y is defined to be the minimal cardinality of the 
system y of open cozero subsets of X such that y U {f~1U: U is open in Y} is a subbase for 
the topology in X(Pasynkov [13]). 
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a sufficiently large regular uncountable cardinal, such that for every set T^ D 
the interior product ®{<t>ji: Jt eT\ is an open map. 

Proof. To prove sufficiency we fix a transfinite sequence Jt e D, cc < Q, such that 
for every pair of distinct points x, yeX there is an a < Q and a continuous function 
f:X-+I,feJta, with f(x) * f(y). Set 

** = ®{$My : 7 < «} and Xa = n*(X) . 

For a < ft there is a canonical map rc£ : Xp -> Xa. Since n* is open, TC{[ is open too. 
Remark that, if Ve Jta is a cozero subset of X, then (n*)-1n*(V) = Vand Tf(V) is 
a cozero subset of Xa. Set 

ya = {^a+ *(V) : Ve Jta+1 \ Jta and Vis a cozero subset of X} . 

ya u {7ra+ * ) _ 1 U : 17 is an open subset of Xa} is a subbase of Xa+ x. To prove neces­
sity we use Shirokov's characterization. Let i :X -+ P and et: T(X) -> T(P) be as 
described in (2). As usual, nB denotes the projection P -> IB for each set B ^ z. 
Let ^ denote the family of all eradmissable subsets of T (see Shirokov [20]). tf 
satisfies the following properties: 

a) For each infinite set 5 c T there i s a B ' e J f such that B c B' and \B\ = |B'|. 
b) \JG eX for every a ^ X. 
c) 7rB|X : X -> %(X) is open for each BeX. 

If a E T n Jt, then there exists a countable BeX with a e 5 . We may assume that 
BeJt. Since B is countable, this implies that B ^ Jt. Hence, by property b), 
x r\ Jt eX for every elementary substructure and B = u {Jt: Jt eT\eX for 
every set T of elementary substructures. • 

4.2. Lemma. Lef P be a ccc partial ordering, G a P-generic set over V and D 
a name of an element of V[G]. If s4 is an infinite set in Vsuch that p\\- "D £ [s#y° 
is closed and unbounded" where peP, then there exists a closed unbounded family, 
C c [ ^ ] w in Vsuch that p\\-JteDfor each JteC. 

Proof. Instead of D we consider the name of a function / : [^]G> -» stf in V[G] 
such that 

p | | - {X e [by : X is closed under/} c D 

(see Baumgartner [4], 1.4). Let 9 be a sufficiently large regular uncountable cardinal 
and let Jf be a countable elementary substructure of -#^ w i t h / e J^. Set X = Jf n 
n J2/, We claim that p | | - "X is closed under/". 

p | | - (3>? e J / ) (/(*!,. . •> *„) = y) for arbitrary xl9..., xn e X. Since P satisfies ccc, 
there exist a countable set {pn : n = 1, 2,. . .} s P , which is predense below p, 
and j n e s/, n = 1, 2 , . . . , such that Pn | | - / ( * i , . . . , *„) = y„ for each n = 1, 2 , . . . . 
Since x l 5 . . . , x„, «s/,f, P and p are elements of JV, we may assume that {yn : n = 
= 1, 2,.. .} e JV. Then yne JV for each n and, consequently, 

p\\-(3yeX)(f(xl9...,xn) = y). 
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C is a closed unbounded family £ \_s/J° such that for each Jt eC there is a suitable 
countable elementary substructure Jr ofJfv with Jt = Jf n $4 (see Fact 2.2.a). • 

4.3. Theorem (Fuchino for Boolean spaces). 
Let X be a compact Hausdorff space, P a ccc partial ordering and G a P-generic 

set over V. Then X is a Dugundji space in V if and only if XG is a Dugundji space 
in V[G\. 

Proof. Suppose X is the limit space of a Haydon-spectrum <Xa, 7c£, Q} in V. 
Then, by Proposition 1.3 and 1.8, XG is the limit space of the Haydon-spectrum 
<X*,G> <G> Q> in V\G\ 

To prove the reverse direction, let 9 be a sufficiently large regular uncountable 
cardinal and let (J be a closed unbounded family of countable elementary substruc­
tures of ^ C G ] such that ®{4>xf :JT et} is open for every set t .= C in V\G\ 
Let C0 c [«?f a]" be a closed unbounded family in V[G] such that for each Jt eC0 

there exists a n / e C with JT n JfV
Q = Jt (see Fact 2.2.a). By Lemma 4.2, there 

is a closed unbounded family D c [.*#£]" in V such that JteC0 for each JtsD. 
We may assume that all Jt e D are countable elementary substructures of J^v. 
Hence, by 2.1., for each Jt e D there is an .AT e C such that <^>c = <^G-

Apply now Propositions 1.5 and 1.8 to complete the proof. • 

5. Two regular spaces are said to be coabsolute if their absolutes are homeo-
morphic. 

5.1. Theorem (Fuchino for Boolean space). 
LetX be a compact Hausdorff space, P a ccc partial ordering and G a P-generic 

set over V. Then X is coabsolute to a Dugundji space in V if and only if XG co-
absolute to a Dugundji space in V\G]. 

The proof repeats that of the previous theorem where the characterization of 
Dungundji spaces is replaced by a characterization of spaces coabsolute to Dugundji 
spaces. We need the following result of Shapiro [19], Corollary 1: 

A compact Hausdorff space X is coabsolute to a Dugundji space iff X is the 
inverse limit of a continuous inverse system <xa, 7if, o> where [X0| = 1 and each 
nl+1 has weight ^co and is skeletal. 

5.2. Proposition. A compact Hausdorff space X is coabsolute to a Dugundji 
space iff there is a closed unbounded family D of countable elementary substruc­
tures of 3tfv, where 0 is a sufficiently large regular uncountable cardinal, such that 
for every set T ^ D the interior product ® {(/>*« : Jt eT} is a skeletal map. 

To prove this Proposition we need two lemmas. 

5.3. Lemma. Let f: X -* Y, f : X' -> T, 9 - X - X' and g' : Y*-> T be conti­
nuous onto maps of compact spaces that f o9 = 9' of Iff and g are irreducible, 
thenf is skeletal iff g' is skeletal. 
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Proof. / ' and g' have the same absolute pf = pg'. The assertion follows from the 
fact that a continuous onto map is skeletal iff the absolute is open (see [15], [1]). • 

Let / : X -> Y be an irreducible map of compact spaces. Suppose X satisfies ccc 
and let T be a family of suitable countable elementary substructures of Jt?e where 9 
is a sufficiently large regular uncountable cardinal. Put </>' = ® { ^ : J e T } , 
X' = 0'(X), i>' = ® {<$>M : Ji e T} and Y' = i/f'(Y). There is a map / ' : X' -> 7 ' 
such t ha t / ' o f = \j/' of. 

5.4. Lemma/' fs irreducible. 

Proof. We regard X' as a subspace of n { X ( ^ ) : J G T } and Y' as a subspace of 
n { y ( J ) : J e T } . Fix JKU ..., Jtne T and cozero subsets V1?..., Vn of X in 
*#! , . . . , Jtn, respectively, such that n{V(: i = 1, 2,. . .} # 0. 

Remark that ( < ^ ) _ 1 <r^(JV) = TV for each cozero subset Wot X, We Jt. Hence, 
0 = {(xt)T eX' : ( ^ . ) _ 1 (xt) e Vt for i = 1, 2,. . .} is a nonempty open subset of 
X' and we have to prove that/ '*($) # 0. 

Let ai be maximal families of pairwise disjoint cozero subsets of Y' such that 
cl(U) ^PV( for each U e ah i = 1 , . . . , n. Since Ysatisfies ccc, the at are countable. 
We may assume that at e Ji{ and, consequently, at c Jf{ for each i. It is obvious, 
that u<jf is dense in/*Vf for each i. Since/*V! n ... n /*Fw ,-= 0, there exist Wx e o*!, 
..., Wn e an such that Wx n ... n Wn =£ 0. Take a point yeW1n ... nWn and set 
/ = ^'(y). We claim that/ ' - 1(>;) c @. 

If x e X and /'(<£'*)) = / = ^ ' ( /x) , then fxeW1n...nWn. From / x G Wt it 
follows that x e Vf for each i. Hence, xeVt n ... c\Vn and <f>'(x) eO. D 

Proof of Proposition 5.2. 

If X is coabsolute to a Dugundji space, there exist irreducible onto maps/i : Z -» X 
and f2:Z -> Y where Y is a Dugundji space. The conclusion now follows from 
Proposition 4.2 and Lemma 5.4. 

To prove the converse implication we apply Shapiro's result and similar arguments 
as in the proof of Proposition 4.1. • 
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