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Introduction 

Various kinds of differentiability of the norm and various kinds of smoothness 
and convexity properties of normed spaces can be described by means of the duality 
mapping (eg. [1], [3], [5], [7]). In the present paper, characterizations of another 
two geometric properties of normed spaces in terms of the duality mapping are given. 

Definitions and notation 

Let X be a real normed linear space, X* its dual space, S the unit sphere in X, S* 
the unit sphere in X*. The value of feX* at xeX is denoted by f(x) or (f, x). 
By J the duality mapping of X into 2X* is denoted. J is defined by J(x) = {feX* : 
: If I = [|x|], f(x) = ||x|2}. For xeX, by fx any element of J(x) is denoted. We 
say that J is Lipschitz-continuous if J is singlevalued and the mapping x -»fx 

is Lipschitz-continuous. We say that J is strongly monotone if there exists b > 0 
such that (fx — fy, x — y) = bjx — y\\2 for each x, yeX, fxeJ(x), fyeJ(y). 
By J* we denote the duality mapping of X*. 

According to [2], X is said to satisfy Lindenstrauss convexity condition (X is 
(LC)), if 

3d > OVx, yeS:2~lx + yl= d\\x - y\\2, 

and X is said to satisfy Lindenstrauss smoothness condition (X is (LS)), if 

3k > 0Vxe5VjeX:[ |x + y\\ + [|x - yj = 2 + k^j2. 

We say that X satisfies the differentiability condition (<5) (X is (S)), if 

3c > OVx e SVy e XVf, e J(x) : jx + y|| - M - A W = <M2-
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In [2], [6] the (LC) and (LS) conditions were defined in terms of the modulus of 
convexity 8 and the modulus of smoothness Q as follows: X is (LC) if S(t) >. at2 

for some a > 0, and X is (LS) if g(t) g fit2 for some /? > 0. 

Theorem. For a normed linear space X, the following conditions are equivalent. 

(a) J is Lipschitz-continuous, 

(b) Xis(8), 

(c) X is (LS), 

(d) X*is(LC), 

(e) J* is strongly monotone. 

' For a normed linear space X, the following conditions are equivalent. 

(A) J* is Lipschitz-continuous, 

(B) X* is (8), 

(C) X* is (LS), 

(D) X is (LC), 

(E) J is strongly monotone. 

Proof, (a) =*(b). My) = / , ( * + y) - \x\ £\x + y \ - \xj = (jx + > f -

- N |* + y\)i\x + y| _* (/„+-(* + y)- jW*))/fl* + y\- (CWI- + y\\),y). 
So \x + y \ - \x\\-fx(y) Z ((fk+J\x + y\\) -fx,y) Z | |L + , ( ( l / | x + yj) - 1) + 
+ (fx+y - fx)l Jyl = (1 + L) \y\\2y where L is the Lipschitz constant in (a). 

(b) => (c). Follows immediately by adding the inequality in the definition of (5) 
to itself with y replaced by — y. 

(c) => (d). Given f,geS* and X e (0,1), there exists zeX such that |z| | = Xjlk 
\f - g\ and(f - g, z) = k\f - g| \\z\. Now | / + 0 | | = sup{(/ + g, x) : x e S} = 
= sup{(f x + z) + (g, x - z) - ( / - g, z) : x e 5} ^ sup{Jx + z[| + Jx - z|| : 
: x e S} - X\f - g|| [|z| ^ 2 + k\z\2 - A[/ - g\ \\z\ = 2 - X2}4k\f - a|2. Thus 
2 - i / + a [ | ^ l / 4 k [ [ / - g | | 2 . 

(A) => (B). Follows from (a) => (b). 

(B) => (C). Follows from (b) => (c). 

(C) => (D). Follows from (c) => (d). 

(D) =>(E). For x, y e S , we have ( / , - / , , x - y) = 2 - f x ( x + y) + 2 -
— f,(x + y) =\ 2(2 — |x + y\) ^ 2d[|x — y\2. This proves the strong monotonicity 
of J on 5 and yields fx(y) + fy(x) g 2(1 - d[]x - y\2). Now for C e [0, 1] we have 
«/x - / „ Cx - y) = C2 - C(/*(y) + /,(*)) + 1 = (C - l ) 2 + 2dC|]* - y[|2 ^ 2d. 
. [(C — l)2 + t,2\x — y|2], since C _S 1 and d ^ ^ (otherwise the inequality in the 
definition of (LC) does not hold for y = - x ) . Since |C* - y|| .= C[|* - yQ + 1 - C 
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and i(a + b)2 g a2 + b2 for any a9beR, we obtain iflCx - y\
2 ^ f2(]x - >>||2 + 

+ (1 - C)2. Therefore ((fx - / „ Cx - y) = dflC^ - y||2. Thus (fx - / „ x - y) = 

^ dflx - j ; | | 2 holds for any x, y such that ||xfl ^ 1 and \y\ = i, and therefore for 
every x, y e X. 

(d) => (e). Follows from (D) => (E). 

(e) => (a). Since fx e J(x) oSte J*(fx) (where by * the canonical image of x in 
* • • is denoted), we have \fx - fy\ \x - y | = (/, - / „ x - y) = (* - % fx -
- / J = fc||/x-/,fl

2. 
(E) =* (D). We shall prove two lemmas first. 

Lemma 1. Let (xn), (yn) <= S, (Xn) <= (0, oo) be sequences such that Xn-*0 and 
2 - J*, + y.\ = Xn\xn - yn\2. Then (for sufficiently large n) 

\z, - xn\ = l\y„ - xn\ 

16X„\zn - x„\2 = 1 - fln(xn), 

where zn = (xn + yn)j\xn + yn\ and fZn e J(zn). 

Proof. Since \xn + yn\ -+ 2, zn is defined if n is great enough. If Xn ^ \ then 
\W ~ x„\ = \(yn - xn)l\xB + y„\ + (2/\xn + yn\\ - l) x.\ = \xn - yn\l\xn +yn\ -
- (2 - ||*. + yn\)j\xn + y,\ = \x„ - yn\l\xn + yn\ (1 - Xn\xn - y,\) = i\x„ -
- yn\ and 1 - fjx,) = 1 - fZn(x„) + 1 - fZn(yn) = 2 - \x„ + yn\ = Xn\xn - yn\2 S 
= 16Xn\xH - Z„\2. 

Lemma 2. Let x, yeS,x 4= -y, z = (x + y)/\x + y\\. Then \x + z\ ^ \x + y\\. 

Proof.Let v = (x + z)j\x + y\, then v = (x + y + (x + y)j\x + y\)J\x + y\\-
- y/\x + y\ = (1 + \\x + y\)l\x + y\ z - l/\x + y\ y, so \v\ = (1 + fx + y\)/ 
J\x + y\- y\x + y\ = l. 

Proof of (E) => (D). Suppose (D) does not hold*- Then there exist sequcenes (xn)y 

(yn), (Xn) satisfying conditions of Lemma 1. Therefore 

16\xn-zn\2
 = \x„-yn\2, 

16X„\xn - zn\2
 = 1 - fZn(xn), 

where z„ and fZn are as in Lemma 1. Using Lemma 2 and writing un = (x„ + zn)j\xn + 
+ z„\, fUn e J(u„), we obtain 2 - \xn + z„\ g 2 - \xn + y„\ =• Xn\xn - yn\2 £ 
^ l6Xn\xn — z„\2. So the sequence (xn), (z„), (16Xn) satisfy conditions of Lemma 1. 
Thus 

16\un - zn\2 = ||xn - zn\2, 

162X„\un - z„\2
 = 1 - fjz.). 
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Now , s ince / ,>» ) = /«»((*.. + 2n)/I*„ + ^1 ) ^ /*„((*„ + zn)/2) ^ / J * , , ) , we have 1 -
- / J l l , ) ^ 1 - / , > - ) -̂  16A„|xn - Znf < l&Xnhn " ^[|2. " f0ll0WS that (/,„ -
- /„ n , zn - u») = l - / J z « ) + 1 - / * > » ) -̂  512AJZ,, - wj2 . J is not strongly 
monotone. 

(D) => (A). If X is (LC), then it is uniformly rotund, and so X* is uniformly 
smooth. Therefore X* is reflexive, which is equivalent to % being dense in X**. 
Since the inequality 2 - ||F + G\\ ^ d\F - G\\2 holds for all F, Ge§, it holds 
for all F, G e S**. So X** is (LC), too. Now by (D) => (E), it follows that J** is 
strongly monotone, and by (e) => (a), J* is Lipschitz-continuous. 

Remark. In fact, the equivalence (c) <=> (d) has been proved both in [6] and in [2], 
where it was formulated and dealt with in terms of moduli of smoothness and convex­
ity (and not using the duality mapping). Moreover, in [2] it was shown that the 
spaces satysfying (c) [(d)] are just those satisfying the upper [lower] weak parallelo­
gram law. The equivalences of (a) o (b) o (c) (with the mapping x -> fx defined 
in a slightly different way) were also given in [4], 
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