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We shall prove that each scattered and hereditarily paracompact space has a continuous 
bijection onto a compact Hausdorff space. 

In 1935 Stefan Banach posed the following question [see, Colloquium Mathe-
maticum 1, Problem 26 or R. D. Mauldin, The Scottish Book, Problem 1]. 

When can a metric space have a continuous and one-to-one map onto a compact 
metric space? 

Katetov [3] was one of the first who attacked the Banach problem. He proved 
that: 

A countable regular space has a continuous bijection onto a compact metric 
space iff it is scattered. 

In 1976 Kulpa [4] observed that each completely metrizable space X, with dim X = 
= 0, has a continuous bijection onto a compact Hausdorff space. On the other hand, 
it is known that there exists a Gd subset of the plane R2 which has no continuous 
bijection onto any compact Hausdorff space. This suggests that the Banach problem 
can become interesting even for zerodimensional spaces. 

The purpose of our paper is to improve the Katetov result. Let us explain the 
terminology used in the paper. A map f: X -> Y is said to be bijective iff it is one-
to-one and onto. A topological space X is said to be scattered iff every non-empty 
subset A c X has an isolated point. For each A c X let us denote 

Ad : = {x G A: x is an accumulation point of the set A} 

ì.e. 
Ad : = { x e A: x e clx(A\{x})} 

and let us put for each ordinal 

X(1):=Xd, X(a+1):= [X ( a )]d 

and when a is a limit ordinal 
X(a):= f]{Xip):P < a } . 

*) Instytut Matematyki Uniwersytetu Šlaskiego, Katowice, ul. Bankowa 14 Poland. 
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Let us observe that a topological space X is scattered iff there exists an ordinal a 
such that X(a) = 0. 

A proof of the main result will be preceded by three lemmas. 

Lemma 1. Each locally compact Hausdorff space X has a continuous bijection 
f:X -> yonto a compact Hausdorff space Y. 

Proof. Let Y be a topological space obtained from X by inducing a new topology 
on the set X in the following way: Choose a point x 0 e l Define a set U c X to 
be open in the space Y iff U is open in the space X and X \ U is compact whenever 
x0 e U. Such obtained space yis compact, Hausdorff and the identity mapf: X -> Y, 
f(x) = x, is continuous. 

Lemma 2. Let a e l b e a point of a regular space X such that: 1. each open subset 
U e X \ {a} has a continuous bijection onto a locally compact Hausdorff space, 

2. the space X \ {a} is paracompact and dim (X \ {a}) = 0. 
Then the space X has a continuous bijectionf*: X -> Y* onto a compact Hausdorff 

space y*. • 

Proof. For each point x 4= a let us choose an open neighbourhood Ux if x such 
that a $ clx Ux. Now, according to the assumption 2 there exists a covering {Us: se S} 
of the set X \ {a}, consisting of pairwise disjoint clopen sets in X \ {a}, being a refine­
ment of the covering {Ux: x e X \ {a}}. For each s e S choose a continuous bijection 
fs:Us-> Ys onto a locally compact Hasudorff space Ys. The family {fs: se S} of 
maps induces a continuous bijectionf: X \ {a} -> yonto a locally compact Hasudorff 
space y := © {Ys: s e S}. Choose a point a* $ Y. On the set Y* : = F u {a*} let 
us define a compact Hausdorff topology such that the space Y* will become the 
Aleksandroff compactification of the space Y, i.e. U c: Y* is open in y* iff 17 c: Y 
is open in Yor U 4: yand Y\ U is a compact subset in Y. Next, let us extend the map 
f:K\{a} -> y c y* to a map f*:K -» 7*, putting f*(a) := a*. It is obvious 
thatf* is a bijection. Let us check thatf* is a continuous map. Assume that F c Y * 
is an open set. If a* $ Vthen V c y i s an open set in y a n d by continuity off, 
(f*)_1(V) = f - 1 (V ) is an open set in X\{a} and in consequence f-1(V) is an 
open set in X. If a* e Vthen V = Y*\Z where Z c yis a compact subset. We have 

(f*)-i (V) = (f*)"1 (Y\Z) = X\f~\Z) . 

From the above it follows that it suffices to show that f_ 1(Z) is closed in X. Since 
f:X\ {a} -> yis continuous, so f - 1 (Z) is closed in X \ {a}. The proof will be com­
pleted if we check that a <£ clxf~

 X(Z). The sets Ys, se S, are open in Y. By compactness 
of Z there exists a finite set of indexes sl9..., sn e S such that Z c YSl u ... u YSn and 
hence f" X(Z) c USl u ... u USn. But since a <fc clx Us for each s e S we get 

a t c\xf~\Z) c dx[USl u ... u USn] = c/x USl u ... u c/* Us„. 
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Lemma 3. For each scattered and hereditarily paracompact space X the covering 
dimension is equal to zero, dim X = 0. 

Proof. Since X is a scattered space so X(a) = 0 for some ordinal a. The lemma 
will be proved by induction on a number a such that X(a) = 0. 

1) a = 1. Let K(1) = 0. This means that X is a discrete space and it is clear that 
dimX = 0. 

2) a > 1. Assume that for each ordinal /} < a and for each hereditarily para­
compact space X, X(P) = 0 implies dim X = 0. We shall show that X(a) = 0 implies 
dimX = 0, too. There are two possibilities: 

(a) a is a limit ordinal or (b) a = /? + 1 is a successor of an ordinal /?. 
(a) Assume that a is a limit ordinal and X(a) = 0. Since for each /? < a the sets XiP) 

are closed and X(a) = n {XiP): jS < a} = 0 we get that X = \J{Ufi: 0 < a}9 where 
Ufi = X\X(P) is an open set for each P < a. But (UP)(P) = Ufi n X(P) = 0. In view 
of the inductive assumption we infer that for each /? < a, dim Up = 0. Now let the 
family {Us: s e S} be an open covering of X such that for each s e S there exists 
a /? < a with c/x Us cz U^. It is obvious that for each se S, dim clx Us = 0. 

Dowker and Nagami [see [2], p. 214] independently have proved that: 
If a weakly paracompact normal space X can be represented as the union of a family 

{ [ / S : S G S } of open subspaces such that dim c\x Us —^ n for s e S, then dim X _ n. 
From the above we infer that for our space X, dim X = 0. 

(b) Assume now that a = ft + 1 and K(a) = 0. This implies that Xm is discrete 
and closed subspace of X. In order to show that dim X = 0 it suffices to verify that 
each point xeX has an open neighbourhood U such that dim U = 0. If x $X(p) 

then we may put U := X\X(P) because the set U is open, U(p) = U n X(p) = 0 
and by the inductive assumption dim U = 0. Now, let a e X(P) and U be an open 
neighbourhood of a. Since X(P) is a discrete subspace of X we may assume that 
U n X{P) = {a}. Let us notice first that if the point a has a base consisting of clopen 
sets then dim U = 0. Indeed, let {Vt: teT} be an arbitrary open covering of the 
set U. Choose a clopen set U0 cz U, aeU0 such that U0 cz Vt0 for some t0 e T 
The family [Vt\U0:te T} is an open covering of the set U\U0. But according 
to the inductive assumption dim (U \ U0) = 0 because 

[U \ U0]
(/» c [U \ {a}](P) = (U \ {a}) n X™ = 0 . 

Hence, there exists an open covering {Us:seS}, 0 £ S, of U\U0 consisting of 
pairwise disjoint sets and being the refinement of the covering {Vt\Uo* teT}. 
It is clear that the family {Us: s e 5} u {U0} is an open covering of U consisting 
of pairwise disjoint sets and being of refinement of {Vt: teT}. 

Thus the proof will be completed if we can show that the point a has a neigh­
bourhood base consisting fo clopen sets. 

Let U be an open neighbourhood of a. By regularity of X there exist open sets W, V 
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such that 
a e W cz clx W c V c clx V cz U . 

Next, choose for each xeU \ {a} an open set Ox such that 

(1) xeOxczclxOxczU\{a}9 

(2) Ox n W =j= 0 => Ox cz V 

Since [U\{a}] ( / J ) = 0 hence in view o f the inductive assumption we have 
dim [U \ {a}] = 0. And this means that there exists a covering {Ws: s e S} of U \ {a} 
consisting of pairwise disjoint and clopen in U \ {a} sets and being a refinement of 
the covering {Ox: xeU \ {a}}. The condition (l) implies that the sets WS9 seS are 
clopen in X, too. Let us define 

A:= {a}u\j{Ws:Wsn W * 0} . 

Since the sets WS9 s e S9 satisfy the condition (2), so the set A has the following 
property 

A = WKJ \J{WS: WS n W * 0} cz V. 

From the above we infer that A is an open neighbourhood of the point a. On the 
other hand, the set A is closed in U because the set U\A = Cl{Ws: Wsn W = 0} 
is an open subset of U. The set A is closed in X because A cz V c clx X cz U. 

Thus the proof that dimX = 0 is completed. 

Theorem. Each scattered and hereditarily paracompact space X has a continuous 
bijection onto a compact Hausdorff space Y. 

Proof. In virtue of the previous remarks the assumptions of the space X imply 
that dim X = 0 and there exists an a such that X(a) = 0. 

We shall prove by induction that if X(a) = 0 then X has a continuous bijection 
onto a compact Hausdorff space Y. 

1) a = 1. Let K(1) = 0. This means that X is a discrete space and in view of the 
lemma 1, X has a continuous bijection onto a compact Hausdorff space. 

2) a > 1. Assume that for each P < a, X(P) = 0 implies that X has a continuous 
bijection onto a compact Hausdorff space. We shall show that if X(a) = 0 then X 
has such a bijection, too. There are two possibilities: 

(a) a is a limit ordinal or (b) a = jS + 1 is a successor of an ordinal /?. 
2a) Assume that a is a limit ordinal and X(a) = 0. Since 0 = X(a) = n{-* ( /0-

p < a} we get X = \J{Ufi: p < a} where the sets Up = X\Xip\ P < a, are open 
in X. But dimX = 0 implies that there exists an open covering {Us: s e S} of X 
being a refinement of{Up: P < <x} consisting of pairwise disjoint sets Us. The sets Us, 
s e S have the following property: 

(*) for each se S there exists a P < a such that U(/0 = 0. Now, from the inductive 
assumption for each s e S there exists a continuous bijectionfs: Us -* Ys onto a com-
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pact Hausdorff space Ys. The maps fs9 s e S, induce a continuous bijection f: X -> 
-» ®{YS: s e 5} onto a locally compact Hausdorff space Y = ®{YS: s G 5} and by 
the lemma 1 X has a continuous bijection onto a compact Hausdorff space. 

2b) Assume that a = P + 1 and X(a) = 0. This implies that X(p) is a closed and 
discrete subspace of X. For each x e X let us choose an open set Ux c= X, x e Ux9 

such that 
(1) if x £ X((i) then Ux n Z(/*} = 0 (for example let Ux = X \ K(/?)), 
(2) if x e X(ii) then U^ n Z(/?) = {x} (such a choice is possible because X(P) is 

a discrete subspace of X). 
Let {Us: s G S} be an open covering of X consisting of pair wise disjoint sets and 

being a refinement of the covering {U :̂ x eX}. As in the above, it suffices to show 
that for each se S there exists a continuous bijection fs:Us-+ Ys onto a compact 
Hausdorff space Ys. There are two possibilities: 

(a) Us n X(P) = 0. But then (US)
(P) = 0 and according to the inductive assumption 

there exists a continuous bijection f s : Us -> Ys onto a compact Hausdorff space Ys. 
(b) Us n X(p) = {a}. But then the space Us and the point a fulfil the assumption 

of the lemma 2, so in this case Us has such a bijection, too. 
The class of hereditarily paracompact spaces contains countable regular spaces 

and metric spaces. Thus we get the following 

Corollary (Katetov): Each countable regular scattered space has a continuous 
bijection onto a compact metric space. 

Corollary. Each scattered metric space has a continuous bijection onto a compact 
Hausdorff space. 
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