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Let (X9 d) be a metric space. For a subset A = X and a positive real number 
q > 0 we consider 

(1) N(A9q) = inf{ke N; 3Ai9...9Ak9 diam (At) = q for i = l,. . . ,fc 

U -4| 2 A} 
i = i 

the so called covering number of A. Two notions of dimension based on covering 
numbers were introduced by Wegmann [9] respectively Kahnert [7]: 

(2) dimw (X) = inf {a > 0; 3(X„)„eN, X = U XH => lim sup N(Xn9 q) q* = 0} 
rt=l cJ->0 

respectively 

(3) dimm (X) = inf {a > 0; 3(Xn)neN9 X = U *„ => Km MN(Xn9 q) q" = 0} . 
« = 1 4->0 

They called them upper resp. lower metric dimension. We remark that for countable 
X dimm (X) = dimm (X) = 0 always holds. One reason to consider alternative 
notions of dimension is that the most used Hausdorff dimension has a bad behaviour 
w.r.t. sets which are large in the sense of category. Remember that the Hausdorff 
dimension is defined by 

(4) dimH(X) = inf {a > 0; ma(X) = 0} 

where 

(5) m\A) = sup inf { £ (diam (An)f; A = ^ An9 diam (An) = s} 
e>0 n = l n = l 

is the a-dimensional Hausdorff measure for a subset A — X. One may also consider 
all these dimensions in a generalized sense [4] [5]. Let us present an example de­
scribing the situation mentioned above. 

*) E.-M.-Arndt Universität, Sektion Mathematik, F.-L.-Jahn-Str. 15a Greifswald, GDR-2200. 
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Example 
Let 

L = \x; x irrational such that V n e N ] rational- such that x < —I 
1 q 1 q"J 

be the set of so called Louiville numbers. Then L is a dense Gd — set of U equipped 
with the Euclidean metric. We obtain dimH (L) = 0 [8], but dimm (L) = dimm (L) = 

= 1 [5]-
It is clear that 

(6) dimH (X) = dimm (X) = di mm (X) 

and it was easy to give examples of spaces (X, d) such that all three numbers coincide 
(for instance self similar sets [3]). 

The basic difference of dimH and dimm was found out by Cajar and Sandau [ l ] : 

Theorem 1 
Let A be a closed subset of a complete separable metric space (X, d) satisfying 

0 = dimm(A) < co. Then there is a closed subset D of A such that dimH(D) = 0 
and dimm (D) = dimm (A) hold. 

This result is applied to obtain 

Theorem 2 [1] 
For given real y, d, e with 0 = y = 5 = 8 = l there is a perfect subset P of the 

reals satisfying 

dimH (P) = y , dimm (P) = S and dimm (P) = s . 

One problem in using dimension is to find compact sets K within a given set A 
with a dimension close to the dimension of the given' one. To make this precise let A 
be an analytic set, i.e. a continuous image of the Baire space NN, does there exist 
compact sets K = A such that dim (K) is arbitrarily close to dim (A.)? dim stands for 
one of the introduced three notions. Since analytic sets cover the most classes of sets, 
for instance all Borel sets, this seems to be a sufficient approach. The positive answer 
is wellknown for the Hausdorff dimension for a longer time and it has been an ad­
vantage for the use of Hausdorff dimension. 

Theorem 3 [2] 
Let A be an analytic set of a complete separable metric space. Then dimH (A) = 

= sup {dimH (K); K g A, K compact}. 

In [2] it is actually proved that ma is a tight measure (a > 0). Under the same 
assumptions as for Theorem 3 we could obtain 
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Theorem 4 [6] 
a) d im m (A ) = sup{dimm(K); K _ A compact}, 
b) dimm (A) < oo => dimm (A) = sup [dimm (K); K _ A compact}. 
The proof uses a refined method of [1], The restriction for b) is due to the fact 

that for dimm (A) = oo it may happen that A is non-c-totally bounded (i.e. it is 
not the union of countable many totally bounded sets) and then our proof in [6] 
breaks down. This case is an open problem. 

Finally, we would like to discuss the condition under which dim (̂ 4) = dim (K) 
holds, where K _ A is a fixed compact set. 

To unify our definitions (1) (2) and (3) we introduce certain outer measures, 
namely 

oo oo 

(6) m"N(A) = inf { £ liminf JV(A„, q) q"; A s U An] 
n=l q-+0 7i = l 

for A _ X and mN, where liminf is replaced by limsup in the last formula. It is 
then easy to see that 

(7) dimm(A) = inf{a; m«N(A) = 0} 

respectively 

(8) dimm (A) = inf {a; m'N(A) = 0} . 

If one defines for a point peX 

(9) dim (A; p) = inf {dim (A n U); U is a neighbourhood of p} 

as the local dimension of p, then we have 

Theorem 5 
Let A be an analytic subset of some complete separable metric space. Assume 

dim (.A) < oo if dim = dimm. Then there are equivalent: 
a) There is a compact set K g A such that dim (K) = dim (A). 
b) There exists a point pe A such that dim (A; p) = dim (A). 

Proof, b) => a) 
Since dim (A; p) _ dim (A) we obtain a sequence of neighbourhoods (Un)neN 

of p satisfying diam (Un) [ 0 and dim (Un n A) = dim (A). Apply Theorem 3 and 4 
to find compact sets Kn _ Un n A (Un n A is analytic) such that dim (Kn) -> 
-• dim (A) = dim (Un n AT). 

00 

Then K = U Kn u {x} is a compact subset such that dim (A) = dim (K). 
n= 1 

a) => b) For dim (̂ 4) = 0 is nothing to prove. If dim (A) > 0 choose a sequence 
(Pn)neN Wu;h Pn t dim (A). Let mn the outer measure according to Pn, i.e. mn = mpn, 
mn = mp

N
n and mn = m ^ , and consider the support supp (mn) of the outer measure 

mn in A defined as 

(10) supp (mn) = A - U{tf; U open, m„(-4 n U) = 0} . 
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We claim that f| s upp (mn) is an non-empty set. We prove this by showing 
n = l 

00 

fl supp (m„) n K =# 0 . 
n = l 

Otherwise there are ml9 ...,mt (outer measures) such that 

i 

H supp (mt) n K = 0 

by the compactness of K. Hence, K can be covered by open sets Ut with mt(Ut n K) = 
= 0 for i = 1, . . . , /. It is easy to see that 

mjiPi n K) = 0 

for / = 1, ..., / and j > I. Hence m7(K) = 0 and this implies 

dim(K) = pl+l < dim (A) 

00 

as a contradiction. For p e f) supp (m„) n K we obtain for all neighbourhoods U of p 
« = i 

dim (U n K) = dim (K) . 
Hence 

dim (A; p) = dim (A) . • 
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