WSAA 14

Demeter Krupka
Geometry of Lagrangean structures. 3

In: Zdenék Frolik and Vladimir Souc¢ek and Maridn J. Fabidn (eds.): Proceedings of the 14th Winter
School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1987. Rendiconti del Circolo
Matematico di Palermo, Serie II, Supplemento No. 14. pp. [187]--224.

Persistent URL: http://dml.cz/dmlcz/701896

Terms of use:

© Circolo Matematico di Palermo, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/701896
http://project.dml.cz

GEOMETRY OF LAGRANGEAN STRUCTURES. 3. ¥) *%)

Demeter Krupka

Abstract. The concept of a Lepagean form, and its meaning for the geometri-
zation of the higher order calculus of variations, is discussed, It is shown
that in the first order case this concept leads to a unification of the theory of
fundamental forms of the Hamilton-Poincaré-Cartan type; a Lepagean form of a
different type is also considered. The global infinitesimal (higher order) first
vartation formula expressed by means of a Lepagean form is derived in terms of
differential-geometric operations, and the Euler—Lagrange form is defined. ALl the
differential forms used are odd base fbrﬁs; this extends the variatiomal theory to

fibered manifolds with arbitrary (not necessarily orientable) bases.

Key words., Lepagean form, lagrangian, Euler-Lagrange form, jet prolongation
of a vector field, variation, vartational function, extremal, first variation

formula.

MS classification., 58 E 99, 49 F 05,
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3, LEPAGEAN FORMS AND THE FIRST VARIATION

In Parts 1 and 2 of this work we have developed the basic theory of odd base
differential forms, and the theory of horizontal and contact forms on a fibered
manifold; some other adequate references to these topics are e.g. [4], [7], and
[9]. In this part of the work we begin to study the caleulus of variations of
differential odd base forms on a fibered manifold, Our goals in the next sections
are the following: .

(1) To explain the theory of Lepagean differential odd base forms which
constitute, in our opinion, an adequate fundamental concept for geometrization of -

the classical calculus of variations, These forms allow us to investigate the

*) This paper is in final form and no version of it will be submitted for
publication elsewhere, .

*%) parts 1 (0dd base forms) and 2 (Differential forms on jet prolongations of
fibered manifolds) of this work have been published in Arch, Math, (Brno), (3),"
(u) 22 (1986).
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invariant, coordinate-free structure of the calculus of variations, to generalize
the main concepts, methods, and resulgg of the classical theory to higher order
variational problems in many independent variables, and to extend them to a wider
class of underlying spaces - smooth manifolds and fibered spaces,

(2) To describe geometrically variations of sections of a fibered manifold, and
their prolongations to higher order jet prolongations of this fibered manifold; to
derive, with the help of a Lepagean form and the exterior derivative operator, the
global first variation formula, These considerations lead naturally to a global
notion characterizing the extremals - the Euler-Lagrange differential odd base
form,

Our exposition is based on a non-standard understanding of the so called
second Lepage’s congruence for the first order variational problems on Euclidean
topological spaces [43], the "congruence mystériense de Lepage" [20, p. 152], and
differs from the other authors in many respects, We see the meaning of the second
Lepage®s congruence in its relation to the first variation formula, Following [9]
(see also [7] and [8]) we introduce a Lepagean form as a differential n-form on
the 8g-jet prolongation of a fibered manifold with n-dimensional base, whose
exterior derivative defines, in a sense to be precised below, the correct'infini-
tesimal first variation formula', Then using an analogue of the first Lepagean
congruence we define a Lepagean equivalent of a lagrangian A of order r as a
Lepagean form p '"variationally equivalent" with A, i,e, such that the integral
variational functionals defined by p and A, coincide,

From now on, Y denotes a fixed fibered manifold with base X and projection mn,
and we set n = dim X, m = dim Y - 7, Notations of Secs. 2.1 - 2,4 concerning jet
prolongations of a fibered manifold, horizontal and cdntact forms, are used, In
order to simplify the language, we mean by a (differential) form, when there is
no danger of confusion, a differential odd form, a differential odd base form,
or an (ordinary) differential form; the exact meaning will usually be clear from
the context, We note that in general, there is no need to suppose that X is
orientable; if X is orientable and its orientation has been chosen, differential
odd forms, and differential odd base forms are canonically identified with
(ordinary) differential forms (see Sec, 1.1). The reader who wishes to work with
oriented X, may simply omit the factor '§" in all the local formulas below, and

think of the "forms'" as "ordinary forms",

3.1. Lepagean forms, We start by a simple lemma,

Lemma 3.1. Let P be a fibered manifold with base S and projection t, let £ be
a vector field. There exists a t-projectable vector field = on P whose projection

18 £, To€¢s TT . % = EoT.,

Proof. Let (VL,¢L), ¢L = (xz,yz), L € I, be fiber charts on P, defining an
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atlas, (UL."’L)’ 9, = (xi) the associated charts on S. Let (X ), v €I, be a

1ocally flnlte partition of unity, subordinate to the covering (V ) of p, let £ =
= £ (a/amb) be the expression of £ with respect to (U 1N ). We put = =z

= szgb(a/axb) (summation over L and 2)j E is a vector f1e1d on P, Expressing =

with respect to a fiber chart (V,¢) such that only finitely many functions X, do

not vanish on V, we easily obtain that £ is t-projectable and its t-projection

is &. ‘

Let s 2 0 be an integer, and let ¥ C JSHY be an open set, Recall that each
element n € Q}‘Y(W) can be uniquely expressed in the form n = In_ (summation
over q = 0,1,...,p), where ng = pq(n) EW VA, py = h» and p (g 2 1) is the
g-th contact pro_]ectlon (see 2,3).

Let (V,¢), ¢ = (x* WY ), be a fiber chart on Y, We denote as before

(31w = dr' Av..A da®,

)
w, = GO An @t A & A a
g dxl’

w = dy’ -4
Fyeeedy yj,...jk Y eeedyl
where 1< ¢<pn, 1<o0<m 0L k<sg, 1< j1,...,ij n. These forms are usu.ally

considered as defined on Veye Denote by N(jl'”jk) the number defined by (2,2,10),

Theorem 3.1. Let W C J°Y be an open set, and let p € W (W). The following five
conditions are equivalent: '

(1 “§+1,3d° has the form

% -
(3.1.2)  wh, do=E+F,

where E is a 1-contact, = ~horizontal form, and F is a form of order of

s+1,0
constant 2 2,
(2) p, (n* 41, 41,0

dp) is a .
(3) For e‘ach . g Projectable vector field E on W the form h(Z_dp) depends on
£l -

-horizontal form,
the L O—projection only.
(4) For each T, g vertical vector field E on W, h(i_dp) = 0.
k]

(5) For any fzber chart (V,¢), ¢ = (z*,4°), whose associated charton X is (U, 9)

“3+1 P has an expression
3

(3.1,3) n*

s+1‘,s‘p =0 ® Po v,

where the order of contact of p, (resp. v) is < 1 (resp, 2 2), and
Tyfyeesd '
(3.1.4) Po fowo + ZZ f ! k"’c1...gk wes

where the components of fo satisfy
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JA Gi,  d

(3.1.5) - -, - fc1 =0,
yu
J s
1
af Ty oned fiedyeed
' . . . X 1 k91 k=1
-d.f - VG ) (e
ay§-1...jk ilo [ A S (O
Jrsdoeesd
1 1: 2 k
— - <
P N(jz"'Jk)f; 0, 2<k<s,
af J' j -o-j
0 Lo sy (et Jev1sdneeds
a_y_o_.___. - PYY] N(J1"’J3+1)(N(j1o-ojs)fo
j1c--js+1
Jsdoeeed
I R
. 1°92 S."1) = 0.

vt T ; f
N(JZ...J€+1) IS

4 .
Proof., Let (V,¢), ¢ = (2 ,y ), be a fiber chart on Y, The form nﬁ+1 s° has a
ST,
unique expression (3,1,3) (Theorem 2.6), and ° has a unique expression (3,1.4),

By a direct computation

3fo Z\ o 3y 7'."7.1 j1 o
(3.1.6) n§+1’sdpo = [(——— - dif;>m + (ayc - dif; - f; “j1

[0
F) A
Y i
s df Tyd eeed
+ zz(_O___ d.f’ 1 k
- [¢) 10
k=2 oy .
‘ J1.-.Jk
J1sd eeed
1 . . 1 kY1 k-1
-—=NJ,...d )(———. - +...
% 1 k N(J1...Jk_1) g
1 129009k} o 5%y
M TR L % eidy T E\ o
2 Ik 1ok a4° i
J1"'Js+1
J Fyeedd
_ 1 . . 1 S+1°91 8
avi Vqeeedyy) (N(j1...js)fo Fee
Jyydoeeed )
1 1°92 s+1 o
+ f dy . :l/\m
Jyeesdg,y)o by d gy 0
8 - i,j "'jk
ar ! ' o . .
+k§0):p( 5 )Awarngk/\wt,

where d; stands for the formal derivative with respect to z (Sec, 2,2), and we
have used (2,3,20) and (2,3,31).

By definition, the 1-contact form pi(n§+1’sdp) is equal to F in (3,1,2), and
is precisely, up to the factor g, the 1-contact term in (3,1,6), Thus conditions
(1), (2), and (5) are equivalent,

Let Z be a us’o—prOJectable vector field on W, and let 6 be any “s+1,sf
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-projectable vector field on '’ = n_1 (w) whose n -prOJectlon is £ (Lemma

s+l,s s+1,8
3.1). We have h(Z_ dp) = h(n* L dp) = n(Z u* 1 dp) (1.3.22). Applying (1.3.,6)
’
we get at once that (3) is equlvalent with (5) 2 isn 0-vert1cal we proceed
’
in the same way, and we get that (4) is equivalent with (5). This proves Theorem

3.1,

A form p € En(W), satisfying one of the equivalent conditions (1) - (5) of

Theorem 3.1, is called a Lepagean form.

Corollary 1. Let p € W'(W) be a Lepagean form.
(@) Ifv € Q' (W) has the order of contact 2 2, then p + v is Lepagean.

(b) If n € W' (W) is a closed form, then p + n is Lepagean.
Corollary 2. (a) Let p € Q'(W) be a Lepagean form. Suppose that py(n¥,, o) =

= 0. Then to each point J 1'y G 11 -1

s+1 N
(W) there exists a Lepagean form p',

defined on a nezghborhood of J Y, such that
(3.1.7)  h(p) = h(p'), dp' = 0.

(b) Let r 25, W' = n;1 (W), and let p € F*W), p* € F*(W') be Lepagean forms.

1 -1 .
e, gd0) = p‘(nlﬂ+1 dp’). Then to each point Jr Y€, r(W )

there exists an (n- 1)—fbrm n, defined on a netighborhood of Jr+ vy, such that

Suppose that p, (€3

(3.1.8)  h(p) - h(p’) = h(dn).

Proof. (a) 1f p1(ng+ sd0) = 0 then n% sdp = F = pylnk . sdp) *oea

+ pn+1(“s+1 sdp) Let J,, 17 € “s+l s(W) be a point, Since dF = 0, there exists a
S+
form n, defined on a neighborhood of J 1y, whose order of contact is 2 1, such

that F = dn (Theorem 2,7). We set p' = n§+1 Sp - n. p’ is defined on a neighbor-

s
hood of Jx+1y, and we have dp’ = E + F - F = 0 (3,1,2); in particular, p’ is
Lepagean. Moreover, h(p') = A(n#
(3.1.7).

(b) By hypothesis, p (nr+1 d(p' - p)) 0. Thus, locally, A(p' - ni Sp) =

= h(p"), where dp" = 0 (this Corollary, (a)) Writing p" = dn we get (3.1.8;.

841, gP) since n is a contact form. This proves

We note that relations (3,1,5) contain formal derivatives of functions, defined
on an open set in JS+1Y; since these formal derivatives aré; by definition,
functions on an open set in Js+2Y, depending polynomially on certain variables,
conditions (3,1,5) split into a rather complicated system of equations for the
components of p, and their derivatives, One could write down these equations

explicitly; we shall study them however, in the next section in a simpler way,

Convention 3.1, Symmetrization in the indices j1,...,jk is denoted by placing
parentheses around these indices, that is, by writing (j1,...,jk). Later, i% non
standard situations when this notation is not possible, we shall use another one,
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Conditions (3,1.5) can be expressed in a recurrent way as follows:
1 Jk’Jl”'Jk—1 _ s

SRR ¢ A L

s+1-k ) :
= r 1 - — —d. «v.d.
120 7,000, 7 MJpeeedylyenety %707

afb

A 3y . . .
J1.lleL‘1.0l1/Z

Gundiesndy . sHI-k ' Ty G vnedy e ety
+gk 1 k=1 + ¥ v (—1)Zd-...digl 1 k™1 11’
o A 10

<k< s+ 1,

7 ror et 1 d; v..d 2
f = -1 ”(—' © seeds
‘o . I, T eealy) 2 T o

B0 fppeennty R
s Ty d, Tyenets_
L entaaad g BTTTTE
1_111""’11 1 7

Jgpdqeesd
where g K k=1 are some functions such that

(Grsdqeesdy_q)
B.1.10 g fedir k=T,

Corollary 3, If p € W) is Lepagean, then the (n+1)-form E, defined by
(3.1.2) is expressed, in terms of the fiber chart (V,{), b

(3.1.11) E=E3® (" Auw),
[of 0

where

af.  s+1 of
Ga12) E =—L4 ¥ r nt—er~>1—g .,.4 —o—

9 oy’ =11 z R
¥ preeeaty Lyeent;
af s+1 of
e R 0, o, —2—
ay° 4 l ay

1"‘$Z
(summatzon over 11 Se S 1 ) In particular, the (n+1)-form E depends on h(p) =
= fb ¢ ® W, only.,
Proof, This follows from (3,1,9) and (3.,1,6),

The (n+1)-form (3.1,11) is called the Euler-Lagrange form of the Lepagean form
p. The components E  (3.1,12) of the Euler-Lagrange form are called the Euler-

-Lagrange expressions relative to the fiber chart (V,¢).

3.2, Lagrangians and their Lepagean equivalents, Let W C J¥Y be an open set, An
element A € 7} y(¥) is called a lagrangian (of order r) for Y. Let 8 2 0 be an

integer, and put W= o) (W) ifs2r, or W' = L s(W) if 8 < r, A Lepagean form
’ El
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p € T*(W') such that A = A(p), is called a Lepagean equivalent (of order s) of A,

In this definition of a Lepagean equivalent we have applied our notational
convention on projectable forms (Sec. 2.2),

Each Lepagean form p is a Lepagean equivalent of a unique lagrangian Aj
obviously, A = A(p). .

If a lagrangian A of order r is not nr,r -projectable, then the order of an&
Lepagean equivalent p of A-is 2 r - 1; this follows from the condition A = A(p).
On the other hand, if p is a Lepagean equivalent of A of order & and n is any
n~=form on J3+1Y whose order of contact is 2 2, then n%,, oo + n is a Lepagean
equivalent of A of order s + 1 (Corollary 1 to Theorem 3:1).

Our main problem to be considered in this section is the problem of existence
of Lepagean equivalents, According to Theorem 3.1 we may restrict ourselves to

searching them among forms whose order of contact is < 1,

Convention 3,2, Let (V,4), ¢ = (x*,3°), be a fiber chart on Y, f : VS - Ra
function, The partial derivatives af/ayJ“__J , Where 2 £ k < s, j1 <ea S jk, will

also be denoted by af/ay pe? where (p1,...,pk) 18 any permutation of
L) k
(G ypeeesdy)e

In the following theorem we consider Lepagean equivalents of order s = 2r -1

of a lagrangian of order r.

Theorem 3.2, Let W be an open set, let X € o (W) be a lagrangian. Let
p € T ); where s 2 2r ~ 1 and W' = 1 (W) be a form whose order of contact is
< 1. The following two conditions are equzvalent:

(1) p 18 a Lepagean equivalent of A. ) _ _

(2) For any fiber chart (V,¢), ¢ = (xt,yc), with assoctated chart (U,¢) on X,
pz9® pys Where

8 Tydqened

(3,201 wh,, og = Luy + (kgoz fU’J' ka;{r"jk

)/\mi,
L i8 defined by the chart expression

(3,2,2) A=Lop®uw

O,
:|71‘-th

and there exist functions 9y : Vg = R such that

J1 _er tsdy
(3.2.3) J5 Y - dify

4
Jpad yoeedrey i oL sdyeeedy
; : f, - d.f +
N(J1...Jk_1) o =N ...JZ? a g
31...Jk

j:j"'j_
+g k! 1 2<k s,
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1 jk,j1...jk_1 1 4. ,J1-0'Jk jk,j1..-jk_1
N(jl"’jk—1) o = N(Jl"'Jk) 10 95 ’

r+1<k<s,

1 / s+1’J ---J B s+1’J --tJ
— = ,
N(J1...Js) o o
and
(2,5 0esd,)
3.2.0 g ' K =

Proof, 1., Suppose that p is Lepagean. Since the order of contact of p is < 1,

3 = ® i¢ iti = i =
"5r,2r—1° 9 ®p, where (3.1,5) Holds, The condition A(p) = A gives fo L, and
we get n%,., .8

(1/N(J1...Jk 1))fJ’J""J* into the symmetric and complementary parts, we obtain
(3.2,3) and (3,2,4) from (3,1.5).

2, If (2) holds, we obtain (1) from Theorem 3.1,(5),

p in the form (3,2.1).Decomposing now the functions

Remark 3,1. Conditions (3,2,3) are a particular case of (3.1,9). This implies
(see fg1 in (3,1,9)) that they cannot be satisfied, for a general lagrangian A of
order r, unless s 2 2r — 1, For 8§ = 2r - 1 conditions (3,2.3) can be expressed in

a recurrent way as follows:

Goadieend,
(3.2.5) et KTV
N(JI--.Jk_1) o
rff T (-nt ! 3
=. -1 - . S L
1=0 < iz N(J1l-oJk7’1-o-1Z)d'L1 ’LZ ayU
1"'.’ . a . .
J1"ldk11--u7rz
Jpsd qeeed _ r-k J ..-J el
T R N S L PN gol’ RS
151 2,000, i ’
1 A
2<k<n,
Jy rod z i d
£l ¢ et ——y g —%—
¢ 120 4y,000,1 WG qeeedilyeet) 070 0
: Ity

N St L S Sl LR
121 4,00,7 o e
We shall now discuss some particular cases,
Let us suppose that dim X = n = 1, and introduce the following notation. Let
(V,¢), ¢ = (t,q°), be a fiber chart on ¥, Vb)), b, = (t,qo,q?1)....,q?8)) the
associated chart on J°Y, We denote q?o) = q° and set for each 0 S k<8 - 1,

6 _ ;0 _ 0
(3.2.6)  wpy = Az T Upanydt
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The formal derivative with respect to ¢t will be denoted by d/dt. Since every

1-dimensional manifold is orientable, we may restrict ourselves to (ordinary)
forms,

Corollary 1., Suppose that dim X = 1, Then each lagrangian \ ‘€q (JrY) has a

unique Lepagean equivalent p. This Lepagean equivalent belongs to Q 2= 1 ),

Jr1(J
and for any fiber chart (V,4), ¢ = (t,q°), on ¥,

r-1(r-1-k 1
(3.2,7) o = Ldt + Z( y (-ntd- -—aL——-)w‘(’k),
k=o0\ 1=

where \ = Ldt.
Proof, Let p € Ql(JSY) be a Lepagean equivalent of A. Then locally,

_ (k+1) W
(3.2.8) “g+1,s° Ldt + Z f Weg)*

By Theorem 3.1

(s+1) _ 0L () 3L d (j+1 .
(3,2.9) f = — f :————-——f 14 < s,
o] * Yo (o] dt ’
9q(s+1) 34 ;) ’
Hence
() i 1t oar
(3.2,10) £97 = Z (N Em S, 1siss 1,
- ° dt aq( ~

Since BL/aq(S) = 0 for 8 > r, substituting this expreSSLOn in (3.2,8) we get

(3.2.7). Since the chart expression of p is determined unlquely, p is globally
well-defined,

Remark 3,2, If r» = 1, (3,2,7) is usually called the Cartan form, with reference

to [ 17) 3 the same form had been used earlier in analytical mechanics (see
Whittaker [53]). For gemeral r, (3.2,7) appears in the papers by Gelfand and Dikii
[32] and Sternberg [ 50] (see also Dedecker [ 23] and the references therein).

The following

two corollaries are concerned with the case when r = 1 and n,m
re arbitrary.

Corollary 2, Each lagrangtan of order 1 X € EZ(W) has a unique Lepagean
equivalent p of order 1 whoee order of contact is < .1, Ebr'any fiber chart (V,¢),

7 . . . ~
= (x ,yc), with (U,9) the associated chart on X, p is expressed by p = ¢ ® Poe
where

G210 gy = Luy + 2= W7 Ay,
%y ;

and \ = Ly ® wge

Proof, This follows from Theorem 3,2,
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Notice that for n e'ﬁ"(y), the lagrangian #(n) € En(J1Y) is a multilinear

%

n is a Lepagean equivalent of hA(n), Thus the components of mu#

expression in yc for any fiber chart (V,¢), ¢ = (z*,y°), on ¥, and the form

1 0 1, oh can be

obtalned from A(n) by means of a differentation procedure with respect to y ., and

the Lepagean equivalent nI n can be reconstructed from #(n). Generalizing this
k]

procedure to any lagrangian A € En(JIY) we .obtain a new example of a Lepagean

equivalent, differing from (3.2, 11). .

Taesa?,

RTINS
k¥ and EJ: * are totally antisymmetric symbols,

Lemma 3.2, Let p be an n—form on Y. For any fiber chart (V,¢), ¢ = (xl,yc), on

In what follows, ¢

Y n? 0P is expressed by -
£}

k
0 1o
(3.2.12) % o= fode AAds roox L —

1,0° :
. k=1 ¢ <--o<7'k 15""01( ayil..-ayik
1 K

r-1 o r+1 = 1i,-1 o 7 +1

e Aendz b Aw Iz Y Acends B oAw Fade B OAv. AT,

where f, : v, R 8 a function.

7
Proof. 1. Let p be an n-form on Y, (V,¢), ¢ = (x ,yc), a fiber chart on Y,

p has a unique expression

n z
(3.213)  p= hdzt Ae A&t + T Tre—mhs dz AL,
0 Kin-k)"™ ... .0 ...0
k=1 n~k 1 k
z <] 54
-k k
cAdz "R Ay Y AL dy K,
where hz i 5, are functions on V, antisymmetric with respect to
Tecelpy=pxUteeeUp
l""’ K and with respect to T1seeesTpe The n-form n? Op has a unique
expression
1 n I 1 2
(3.2,14) 1% p=gdr AceAde + )L 77759 . . dr ~ Ades
1,0 0 kop K1 (n=k) Tieealy 3010000y
7 o g
velhde KAt A K

3

where g. are functions on Vl’ antisymmetric with respect to

11...1n—k01...0k
l""’ % and with respect to OpveaesTpe We shall find the relations between

the systems of fuqctlons hO’ h. and g,

p; T10eeln-kT1e00.0 91,1...%,-,‘01...0,‘
We substitute w for dy® in (3,2,13) and substract the added terms. Let us

compute the coefficient at dz®' A...A de™n=% A W% A...A %%, This coefficient is
defined by the summand
7 Z IS4

1 1 n=k 1 %
(3.2,15) 35— 77h. , AeooA dx Aw AceeAw
kl(n-k)! Tiesely g Opeee0y

and the contributions from the summands
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S S Cnk-l 91
(3.2,18) =T . de “A.,.Adx A A

(k+?,)!(n. ¥ 3-)1 1;1...‘Ln-_k_101...0'k+z w

aJ
vesh @ k+1’ 1 =1,2,.,.,m =k,
Using the antisymmetry properties of the functions h£1‘..,b"_k4 01...6,,““& get for
these contfibutiomns
fie+1 Y1 V1

(3.2.17) ——l—_-_—-("') R 4. L

(k+IX1{n-k-1)1\ 2 N SRR RL A LETA P A W T Rt

i T o a T i
e L Aeh e PR A G L AL A B A e PRI A A g R

1 kL v, v

i
—Je - P Y. seelf s
klz‘(n k ?’)! ‘Ll...’bn_k_zﬂl...crkvl...vz 'Ln_k_z_'_l tn_k

T a o .
vdz L AL A de nek B AveeA 0 k, 1=1,2,.004n -k,

Thus the ccoefficient antisymmetric in il""’in—k and in TypeansOp equals

ki v

(-1) 1
(3.2.18)  TOeT Tt eDyi” RO IO R/ SN

Motice that for I = 0 this exzpression reduces to the coefficient in (3,2,15).

Hence
( 9) ngf -1 ki i
3.2 1 g8 . = . .
1-1...3’1_}(010-40]( 1=0 1{n-k-1)! 'Jl-oaJn_k_zﬂlncon\’lcco'\o'ln
Y1 Vi J1 Tk

o e olf . E + N
In-k-T+1 In—k tiectu-k
For g, we get from (3,2,13)

= 1 . k
(3.2.200 g = g + E T Jieend, g8 e g

k ‘731. k41

These are the desired relatioms,

2, Let (pl,...,ps), (vl,...,vs) be any sequences such that 1 <p, <.e.<p S,
1% vy
1£qq <€ q, Snandq; * P; for all < and j;, thus (ql_,...,qn_a) is the

<esel v S m, and let (ql,...,qn_s) be the unique sequence such that

complementary increasing sequence to (pl,...,ps) in the sequence (1,2,,.,,7). We
shall show that
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akg Qyeeeq

(3.2.21) ——0— - L 177 nms, ,

ayvl ayvs s! qqeeedy gVqeeeVg

by,
where
1

Qyeeeq, _ ns=n(n+l)+q. +...1q -Ls(s+1)
(3.2,22) el "y 2 1o ome 2
(no summation in (3,2,21)).

Write (3,2,20) in the form
ag

% Jl...Jn_kll...Zk

1
Y, ooy, € .
LU

(3.2.23) g =
0 k

1
h_+ et ,
0 k§1 k!(n—k)!¢gl...gn_kol...c

. g g :
Since the coefficient at yll...yz is symmetric in zl seves ;k s we have
k 1 k

k . . A
g Jieeed L. ..ul
0 1 % 1
G220 — == 2 TGt A A ke
5 1 8 -k 1 k
Y T eee0Y
Py s
a° 9 %%y _ B 1 k
ey eyy) = Z kKtn-k)t\s ) *
1 s 1 k
Y. T eeady,
pl 8
" Jl.o.Jn_kzlc-cZk 1 6(1 Pl éps
Jl...Jn_kol...Uk ; l gt
g a n-s .
8+l k _ 1
SR A ZE; stil(n-s-1)1 °

JienedygogProePglyeests 9; o,

. h. € Yr eeols
Jl...J -1’1V 01"'01 i i
But
Fieeedyg_7PqessDalqeesl Faeeeda7lqseslqPqessD
(3.2.25) ¢ 1 n-s=1-1 81 l - (- 1)31 1 n-s-1"1 1 s _
I FULE L AL PELEL v SETD 8
= (-1) €
ql... qn_s
(no summation), and
Gieeeq, _ DieseD n-g-p n-g+l-p n-1-p
(3.2,26) el " 1P (-1) Lo 2 (=D g =

nB—pl-p2-...—ps-1—2-...-s ns-pl-...—pa-(1/2)e(e+1)

= (-1) = (-1)

so that
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j...j__P ...pi...i . 3 q_'.q_ j--.j;_i...i
(3.2,27) ¢ . n-e-1"1 51 L s (-1) Z.c . n 5 e 1 n-s-1 1 l .
Gqeee 9yg
Substituting these expressions in (3,2.24) we obtain
d'g n-s q ...q
0 _ 1 SZ 1
(3.2,28) 5 ol Z? s!ll(n-s—l)'( -1)
-9 s =0
Y teeady
pl Pg
4 EJ "'Jn-s—lzl"'ll yol yo
Jl...Jn_s_Z l...\l 01...UZ ql... qn_s ¢1 7

(no summation over ql”"’qn—s)' Comparing this result with (3,2,19) we get the

formula
akg 9....q
(3.2.29) +——V— = ::Tic 1 n_sg N
oy 1.0y ! QqeeeQy_VqereVg
pl Pg

(no summation),
3. Let (PyseeusPp)s(Vyseae,vy), and (ql""’qn—k) be as above, Using (3,2,22)
we easily get

+1

p.-1 v p.+1 p,-1 v n
AeooA dx

: p
(3.2.30) dr' Avehdr * AwlAdel Aends K AwFAdz X

10044 p.+1 - p,-1 p,+l
o nkdxll\.../\dx /\dxl Aehde® Adz® A

v v q..e0eq 5, 4 v v
P N AL B A W NP
(no summation). Let us consider the form p (3. 2 13). ¥ Op (3.2,14) can be
uniquely expressed by
n “d, d
(3.2.30) o fode'heen &+ T £ £ £t et
. K21 § <<y, 0,<ennsoy 0100k

J.-1 o J,+1 P Jk+l n
ond At AAdE Awfad A

Obviously fo = 9o+ Thus, using (3.2.30) and (3,2,29) we get

o . .
: 1 Ik
(3.2.32)  w p = fde’ Aeeh a4 oI L f g
L kl,]<...<,]k <ora<oy %1%k
Loeeal 4, T . o, O
el nkd'cll\.../\dxnk/\wll\...Am,
where (11,...,1 k) is the unique increasing sequence, complementary to

(Jl,...,Jk) in the sequence (1,2,...,%). Obviously
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’ Toeeal 4, d J
(3.2.33) g. . N A P T
Tyeest, 2010000y O1ees0y
so that
. . . . k
Toeesl, _ Jqeeed 9 f,
G230 5o ey o T T e
A 1... n_k 1'.. k . . 1... k a l k
yj ...ayj
1 k
Now (3,2,31) is written in the form
n Jieeed
(3.2.35) = op:fod:cll\.../\ &+ 5 T . T i—,fol dexl/\
. k=1 § <oy 0 peens0, 01 %k
Jj,-1 ¢ J.+1 J o Jo o+l
vhde Y A drt Aehds FAw A K Aeen &
k
] ks
:fodxll\.../\dxn+ L ., r —-O—O"dexl/\
k=1 Jl<...<Jk T seeesy ay.l...ay.
I Ik

1 o j.+1 jk—l 9% jk+1

J,- J
vehde Y AwIAdel A AdE O Aw A de S Adlln de

This proves our assertion,

Corollary 3. Let A € E;(JIY) be a lagrangian. There exists one and ang one
Lepagean equivalent p of A such that for any fiber chart (V,¢), b = (x ,y ),
with the associated chart (U,g) on X, p'= ¢ ® Py where

n . akL
(3.2,36) p - =Lw + L z z —_—
0 0 kai<ii<d, o o %1 %
17"k 12Tk dy ... W0y,
Z <
. 1
-1 o

7 7. +1 ,-1 o 7,41
Lt Aende Awindt A.Ad K k

Awfhde © Ao d&,

and L is defined by the chart expression A = L.; ® w,e

Proof, By Theorem 3,1 and Theorem 3.2 it is enough to show that the form
7 ® °o (3.2.36) is globally well-defined, The proof involves essentially the
Laplace’s theorem on expansion of a determinant, and is in fact elementary; we
shall present it here for the sake of completeness,

Let (V,$) be as above, and let (V, ¢), ¢ = (Eﬁ,@“), be another fiber chart,
with the associated chart (U,9) on X, Using (1,2,5), (2,1,3), (2.3.8) and
(3.2.30) we obtain, with the obvious notation

-k ji-1 v
(3.2.37) T % —v—a-r—vﬁlrx.../\dil AT A dE
J1<ees<Ty, VigeessV — 1 —.k
1 k"1 ’kale.._.aka

J,~1 v Jo t1
Ach ZK AGIAGE K Aooh & =



where (1,...,8
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. . loood -1 Jo+liid, -1 jotlem
= det Dgg 1, - b N c . 1 1 Kk .
gl<...<gk cl,...,ok

okr, ax 1 B'x'Jk Py p,]l-lpgl+l. pgk-—lpgk+l Py
. o o 7: cee

ayil...ayik ox L dx
1 k

T E
7 ees8. = veeS;— o
k 1 s -1 sl+l Sk 1 sk+1 n

1

20 S O U SEC R ]

oz oz 1 oz - o= K sk oz
B P, B T o
ox * AR AN ox Ik L ap Jktl ax "

—1

-1 s_+1 8,-1 8, +1

s .
cdeAehde t Ade Y AeAds K Adz K Ac.A et A

o o
1 k
e AedAw

l-l,sl+1,...,sk—l,sk+1,...,n) is the unique increasing sequence

defined as a permutation of (pl""’pj1—1’pj1+l""’pjk-l’pjk+1”"'pn)‘ This
expression takes the.form

(3.2.38)

veed. =l g +le..d,~1 G, tl..am
Leeed = gty ml 3y

det Dgg t. I . r e .

8150 e e<8y 015000507 j1<°"<jk

- Y ‘e k
cl sl 1 sl+1 sk 1 sk+1 n oL
* ‘T 0o, o, °
dy L...oy K

o %

. | d
Tieesly o7 1 3 k

'7<—!eq eesq Z_ Z.
f1 k - 1 oz k
ce D . el . e J,-1  _g.+1
PyrePi -1Pj w1 PPy Pn o 2T 2
.£ e cer
1 8.-1 8, +1,..8,~1 s,tl...n p D _ p.
1 1 k k ox b oz 91 19111
Il gyt o s.-1 o s +1
L= 3z L= N A nde D Awtade !
Pie-1 Pin Py
ox Ik ax Ik dx
g,~-1 o s, +1

' —1
Aehde & AwHAde © Avuuh do = det Dog .

looid,-1 g +1...jk-1 Jotleeen
R R chlik
sl<...<3k TyseeesTy \Jy ...<Jk
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l...8,-1 s_+1...8,-1 s, +1...n k
.c 1 1 k k . )3 0 L

o i
ql<...<qk oy l...ay k
q; qx
J J PieeeDs _iPs qessDs _Ps oqeeeD
Ez ...1k oz L 'k ) _ 1 Jq 1 Jl+l Jy~t Jk+l n
qpe- g Lk 1"381~l sl+1...sk—1 sk+l...n
Bm ox
J.-1 J.+1 g+l
oz ! L ozt z X oz K oz
P T p =y ST . =
ox * EAREIPE RS ax 9L gp detl ax "
s, -1 ‘G .8 +1 s, -1 g s
cdt Aehde Y A A de L ALAde B A w FA de KT AdLuA a2
Let us consider the determinants
_J1 J Ji 0 _d
Z IR Kk 1 Kk
(3.2.39) Eq qk axl . axi - a(xq ..,.,xq ) ,
K og 1 oz K 8zt 25
Pie+eP; _1Ps 41e0Di _1P; 410+°Pp _1 _dm1 _gqt
el I I T " oz T
1...sl—1 sl+1,..sk—1 sk+1...n axpl abdn-1 gt
J,-1  J
o K o K1 ozt .
o 5 g
am kL oy kL ox
_ g1 gt g1 g4l
- 3G ...zt Y % k .z K 4}
Sl—l Sl+l sk~l sk+1 "
3z ,...,x ST seeesT , X seeesT )

Considering the first one as the algebraic complement of the second we get

J J,
Jotee tj s +...+ 1 'k
(3.2.40) Tt K <xq e )
J1<..-<<7k a(z ]_,...,x k)
—~1 __Jl‘l __Jl"‘l _Jk‘l __Jk+l
a(x ae e X 2L a0 03X WX ‘......’E)

1 1 k k

1 n
CIC N ,& sese sk » & seessX )

. _ - 3 -0 - . 3 +l
79y gyt It Ik Ik

—1 n
_ oz as s X 2L WX Y4 oL 2 X 2000,% ) .

* s -1 8 _+1 s, -1 s +1 -

-1 +1 -1 +
sl ql s1 sk 1 qk 8, +1

1 7
CIE N WL ,T sese T T T seeasd )

this expresslon vanishes whenever (ql,...,q ) # (s JEREED k) and is equal to

det U“¢ if (ql,...,qk) z (sl,...,s ). Since by (3 2,22)
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leeog -1 Jd +1.0.4,-1 4 +1.0un 1...8 -1 s +1,..5,-1 5, +1.,.n
(3.2,41) ¢ 1 L k k e 1 1 k k =
Jitestipt Sqteait 5
= (-1) >
(3.2,38) redices to
. k s-1 o s_+1
9 1
(3.2.42) ) T =L — &'nndt Awaa A
31<...<3k 01,...,0k aysl...ay k
1 %
s, -1 g 8, +1

k

Az K AW A e Aeooh dz’t

as desired,

Remark 3,3, The form (3.2.11) first appeared as one element of the family of
forms introduced by Lepage [43] in his theory of geodesic fields. This family was
defined by means of two congruences which have become known as the. first and the
second Lepage’s congruneces, Later, the congruences of Lepage were interpreted
and generalized by Dedecker [25], [21], [24]; he extended his approach also to
higher order variational problems [20]., The class of problems he considered
sub;tantially differs from that one discussed in this work, which produces
serious difficulties in comparing of the methods and results, For some special
fibered manifolds, the form (3,2.11) was used by Sniatycki [49], Garcia and
Pérez-Rendon [ 31] (see also [29]), and Néno and Mimura [47] ; Goldschmidt and
Sternberg [33] introduced it formally by means of some geometric axioms.

Lepagean equivalent (3.2,36) was introduced independently by Krupka [ 39] and
" Betounes [16], [15]. In our exposition in this paper we have followed [39], with
the basis of forms (d&t,wc) instead of (dxi,dyc); this enables us a direct
comparison of the results of the above mentioned papers.

Our definition of a Lepagean form is taken from [9] (see also [7]); an

equivalent definition has been given by Mangiarotti and Modugno [44] .

Remark 3.4. Restricting ourselves in (3,2,36) to terms of order of contact < k

we obtain another Lepagean equivalent of A,

We shall need the transformation formulas for the components of 1-contact .

n-forms, In the following, obvious notation related to fiber charts is used.

Lemma 3.3, Let (V,4), ¢ = (z5,5%), and (V,F), T = (F,7°), be two fiber charts
on Y, and let n € Qn-l’l(Vé) and 7 € gt Lt

(V,) be two l-contact forms expressed
by T
©o8-1 'l:,jlo..jk g
(3,2,43) n= L Ln, W, N g
et k=0 Jyeeedg
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s-1 q;p Y% s
n= LIn ! Z—v ANw .
1=0 p n--pz q
Then n = n on v, 078 if and only if
1y J ’ a"‘; 14 a,p p
£ LY . cee 3 ) cee
o248) o ET s ger (@), T Sk fq Rt
1=k P SeeeSpy y i x
condy
Proof. We have
| (ax) ac® (aE) 2z’
(3.2,45) ©_ =1 = Z w_ = det(= W..
4 ot 0 0x axq a/axl 0 0’ ot

Applying this formula and Theorem 2,4, (2.38) we easily get this assertionm,

Now we take r = 2 and let n and m be arbitrary.

Corollary 4. Each lagrangian of order 2 A € EZ(W) has a Lepagean equivalent
whose order of contact is < 1. If (V,4), ¢ = (z*,4%), is a fiber chart on Y with

associated chart (U,9) on X and A is expressed by A = L.; ® wys then p = :5 ® g,
where

O A 3L o
(3,2,46) 0. =Lw. +1 [(— -y —=—xd.—/ w
0 0 0 [} ? N(ZF) g g
ay° ’
. T y; J ayw

1 oL o
YL 9GD o “’j] A
J i :

Yy
is such a Lepagean equivalent,

Proof, By Theorem 3,2 and Lemma 3.3 there exists one and only one Lepagean
equlvalent P of A whose order of contact is S 1, such that p = (p ® Pgs Pg = Lwo +
5
+ (f w o+ fl’ )N w. 2o and the components f taf satisfy the invariant conditions

f‘;:ﬂ = f‘7-’7’; this is precisely o ® R (3.2. 46).

Remark 3.5, Lepagean equivalent (3,2,46) was derived by Krupka [9, p. 26], An

analogous form has been discussed by Dedecker [22],
Conditions (3.2.5) of Theorem 3,2 can be always satisfied locally, which
ensures the existence of local Lepagean equivalents in the following sense,
Corollary 5. Let A GA‘"(J”Y) be a lagrangian of order 7 7,6), ¢ = (2%,y9), a

fiber chart with assoczated chart (U,¢) on X, let X = L. tp ® w, be the expression
of \ for this fiber chart. We put

(3.2.47) 5, ;=9 ® %o

r-1 ,J..-J
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er”Jl' cdpy  NGgedny) g

o H(jl...jr) ay° o
'71“.'71'
Goodieendy . WG auid >/ S
PRI R 1t ke (Bl —df VUR) ocksw-a,
o N(Jl...Jk) kyc‘ . %0
Jl...Jk

- 9L 5 d
fo =75 40770
ayj

Then N 18 a Lepagean equivalent of the restriction of A to Ve
L]
Proof, Substituting (3.2,47) in (3.2.1) we obviously obtain a Lepagean
“equivalent of L.‘t; ® Wy e
Relations (3,2,18) can be written in the form

1 Iped e Ig-1 _

G.2.88) §G g, T

= P:‘?k > S LA oL
120 7 yeeeyi, NG qeeedplyeesty) 817" g 0 e
1 1 J J % 7
: 1... k 1'!‘ Z
2<k<r,
r-1

T N D LA PR A
N(Ji«l...zl) 7,

g . . a
120 2. 5e04,T 1 dy.. ,
1 71 Jtiesely
If we denote
3,3 eeid, Goodeeedy, 0 . s
(3.2.49) Pckl k-1 _ 1 kY1 kl’ P'Z,=f‘z, ,

N(Jl...Jk__l) o
then the local Lepagean equivalent Py = ;@ o of A gets the form
£

r-1 2§ ...d

(3.2.50) pg=Lug+ T Py L Kl
k=0

W . ANw. .
Jyeesdy 7

If p is any Lepagean equivalent of A whose order of contact is < 1, then by

(3.2.5) and Theorem 3.2, (2)

(3.2,51y p = p)‘,V+ ¢ ® vy,
and v, is given by

' =1 Ti,e.ed
(3.2.52) v = T ke A,
k=0 - d1eeedk
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QJk'jl""?k—l ~ Jk’Jl“'Jk-jl +
o = Y
r=k 2 10 genndyiyenniy )
+ PN (-1) d, "'dv,' g, .
1=1 'Ll,.o- ,il 1 l
. -1 Toyd enedplyeeel
l Y1 k71 -1
d=3% T (D4 ..dg ,
o ol . 7 1,70
1=1 Lisennsly 1
(Fpsdqeeeds_q)
where g _ A A

We shall now show that if n # 1 and r > 2, then the local Lepagean equivalents
(3.2.47) of a lagrangian do not necessarily define'a global differential form on
JZP-IY. Following Kold¥ (private communication) we shall analyze transformation
properties of the functions (3.2,49). For this pu;rpose it is sufficient to
consider the case r = 3 and ordinary differential forms, although the general case
does not require additional, other than typographical, efford.

Let (V,¢), ¢ = (:ci,yo), and (7,¢), ¢ = (;L._,EG), be two fiber charts. Denote by
:;0, ‘—‘;q’ Z)—v, @, and @ _ the forms (3.1,1) related to the fiber chart (T/',E). Let
A € Q’}(JaY) be a lagrangian, Consider the local Lepagean equivalents p v =
=¥ ®p, (3.2.50) and o, 5= F ® 75, o = La, + FIL + ;31’5; + BT )N .

pr’ " “q
i N
Using (2.3.8) and (3.2,45) we get on Vo1 V2r—l .

- i 5\ o’ (=g 95 , %,
(3.2.53)  p - o, = [(pc - det(a%)—x- (1':’7 % 7P _E

0 fad \ Y oy Vv oy’
3y . —\ . 7 3y
+ papPT __Lr)) W’ o+ (1:7"7 - det(a_x) Sz (EQP_E. +
v ayo [+ ox azd \' Vv ay:;

—)\) . —)
oy ‘s — z Ay
s pPr e} O (pEIK e (2 )28 papr L pr
v ay" J [*; ox
d

o
. wjk] A Wy e

By definition, ¢ ® (p0 - —;;0) is a Lepagean equivalent of the zero lagrangian,

. . k .
Hence by Theorem 3,2 there exist functions gz"j *s9 such that gc(:"‘jk) =0,

and g
gél’J) = 0, and

o

. —V
Y — 7 oy ..
(3.2.54) 59K - ger(0Z) 32 gzapr _1__ Tpr _ 7,5k
o dx) ~—q v N(Gk) | o g

ox Byjk

14 AR —qp oy —qpr Yy i,d 8,14

pd - qer(ZE) & (P TR g TRL ) | Ted g %

o ox/ .—q\"v [+ v () o 8’0
ox ayj ayj
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g

pt - det(g‘:) oz ('“7—-11- +—qp_p_ +-—qpr_p_)

ot 3y ay° 3y
_ s,7 5,7k
.= dsgU + dsdkg0 .
Since
—
dy (7 5,.%)
(3.2.55) _l;l—zv(gk)iax o
%y oy’ o 8z

(symmetrization in j,k) and the first expression on the left is symmetric in 253 5K

1,9k _

we have 9s 0. The second equality gives by a simple calculation

.. WRE "\ i gy
(3.2.56) g7 = L gec[%E) (22 Zpr _ 3= Tpr)pupr .
o 2\ \ek eyl ol eyl ) Y
: i y

= = det( ) 7 -__823:1 2z’ ____62:1:‘7 A’ papPr
2 2/ a° \ oo’ ol ooz oxd) ¥

This expression is seen not to vanish unless additional assuﬁptions are imposed
on the lagranglan A, or on the topological structure of the manifold X, or both.
Thus in general, w ® (p0 - po) # 0, and the local Lepagean equivalents do not
agree on intersections of coordinate nelghborhoods.

These remarks show that so far the problem of qxistence of a Lepagean
equivalent of a lagrangian remains open; positive answer-has only been given for
a few particular cases. To obtain the fundamental existence theorem, notice that
if for a lagrangian A € 5§(JrY) there exists a fiber chart (V,¢) such that
supp A C V}, then by Corollary 5, or by (3.2,50), pA,V can be extended to a
global Lepagean equivalent of A by putting W 0 outside V,,, ;. We can now

prove the following result,

Theorem 3.3, Each lagrangian of order r has a Lepagean equivalent,

Proof. Let (VL,¢L), L €I, be fiber charts on Y, defining an atlas, let
((VL)S,(¢L)S) be the associated charts on J°Y (see 2,1). We may suppose that (VL)
is a locally finite covering of Y. Let (Xu)’ v €I, be a partition of unity,
subordinate to this covering. Consider any lagrangian A E'HQ(JTY). For each v €I,
X,A is a lagrangian for which supp XLA c (Vb)r, where supp XLA is the support of
X,A. Define a Lepagean equivalent e of XLA as the local Lepagean equivalent

(3.2,47) on (VL)Qr-l’ and the zero form outside (V )

op-10 and set

(3.2.57) p=Y% o, -

% = %* o . .
We have “2r,2r-1dp E n?r,2r 1dp . Slnce pl(u dp ) is “2150 horizontal for

2r,2r-1
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each L, so is pl(an g ld p), and by Theorem 3.1, p is a Lepagean form. Moreover,
k]

h(p) = Zh(pL) = ZxLA (ZXL)A =2, and p is a Lepagean equivalent of A.

The Lepagean equivalent constructed in the proof of Theorem 3,3 can be
characterized more precisely.,

Theorem 3.4, Each lagrangian \ € Q (J Y) has a Lepagean equivalent
p € ~n(J2 YY) such that the fbllowmng condttzon holds: To each point y € Y

there exists a fiber chart (V,¢), = (2" Y ), at y for which P zs expressed by
(3.2 54), (3.2. 55) where QW""J’ =1 = 0 and the functions QW“"J" =1 depend on
,y ,y. ""’yg1...j, s8 = 2r = k - 1, only.

Proof. The proof consists in finding the expression of p (3,2,57) for a proper’
fiber chart.

1. Let (VL,¢L), (XL)’ A, and o, be as in the proof of Theorem 3,3. ExpreSSLHg
P with respect to (VL,¢L) we obtaln with the obvious notation, p = m @ o, ,0°
where
r-1 qqq-++44

(3.2.58) o g P)v(b) wa.-'qs(b) A wq(u)

L,0 : XLL ®

+
o(v)
L is defined by the chart expression A = [ .w ® Yo(L)? and the functions
Fq?1"'q’ are obtained from x L, by means of (3 2,49) and (3,2.48), Let (V,¢),

= (2" Y 9), be a fiber chart such that ¥ N V # ¢ for only firitely many \ € I,
let (U,p) be the associated chart on X, erttlng A= Ly ® w, with respect to

(V,¢) and u81ng the transformatlon formulas between L and L, w (L ) and o,

(3,2,45), and wq1...q,(u) and wJ1--~jk (2.3.8) we obtaln "
B - r-1 s yql...qs(b)
(3:2.59) ¢ ®p =9® (x Lw + |det Dy ¢ I.Z % % _—
LoL,0 L0 L 520 k=0 f S..0Sj ay° ,
k JlnooJk
T qq eeq
)
. xq \)(i) .lﬁ; . J A wl) .
Bx(b) 1 k
Let us subtract . from this expression the local Lepagean equivalent DX AV of
9

XLA, expressed by .

r-1 zj ...J

- k PO
(3.2.60) Py AT 7 ® (x, Lowy + g} Sc(u) Wi Aw).
v 1 k
We get on Vér 1P DX,A Ve 0o ® VL,V’ where
r-1 iJ eeed
1 ko
(3.2.6D vy = Q) 9 g N

and
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.. . &‘ﬁy\J .
(3.2 62) QiJlaquk _ 1 dot ax(b) r-1 ql...qs(b) gai pql...qs _
. *ee a(v) - N(jl..‘jk)~ ox ok ayo o “v(u)
jl"'jk ()
‘L,jl...,jk
O(la) 3 1<k<r- 1,
ay“ .
; i (ax( ) r-1 ql...qs(u) o’ pq eedy :
Q = det ): -3 .
a(v) \ o /.2y 5y° axzz v(l.) a(u)

Since ; dv is a Lepagean equivalent of the zero lagrangian, it is completely

determined, :,ia (3.2.52), by the non-symmetric parts of the components (3,2,62),

i.e., by the functions

Tydieeed TFieeed (T4, 0eedy)
(3.2.63) A IR T 1k

LI0) "~ Fo(u) RG] )
R Ti1eeady - ) ' . .
It is easily seen that g i:) Ir-1 QGJ1 Ir=1 0 and that ¢(3,2,63) implies
J1quk . v v
that the functions gc( ) are independent of YP1eeeDrr k- 1,..-,yp1_”p2r_1.

2, Let us put p = Zp and con51der this form on V

th ® = + ®v .U 3 2, 52 d
+ cp@ vy (3.2,51) so that E("x‘x,v \)L,V) A,V °® v, sing ( ) an

comparing the non-symmetric parts of the coefficients on both sides we get

1" We have p = p)\ V

Lyf eeed Tyd eeed Tf. eeed (25, 00edy)
(3.2.64) gc’ 1k 0’“% k;Qo‘l k—QU A

These functions determine uniquely vy by (3.2,52), Thus, using the first part of

the proof, we obtain that 0 has all the required properties,

Remark 3.6, Higher order Lepagean forms have been introduced by Krupka [ 9] [8]

in full analogy with [ 7] (see also [3],[41). The local Lepagean equivalents

(3.2,50) have been considered by Aldaya and Azcdrraga [ 13] (for vector bundles),

Krupka (see the above - mentioned papers), and Shadwick [48]; in fact, the

quantities (3.2,49) appear in the classical first variation formula, and are

called the variational derivatives of L (see de Donder [ 26, (27) - (30)]). Follow-

, some authors have been developing
the theory of "Poincaré-Cartan forms" (i.,e., Lepagean forms whose order of.contact

ing the approach and terminology of Garcia [ 29]

is < 1) with the help of auxiliary connections, or fibered connections (Ferraris
and Francaviglia [ 28], Garcia and Muhoz [ 30] , Ferraris [27], Kold¥ [37]), or in

the language of morphisms (Hordk and Kold¥ [ 35] , Kold¥ [38]; see also [27 §2.3]).

In [27], the third order case has been analyzed in detail, The same axioms and

motivation for the fundamental variational form (Lepagean form) as those of our,

(see [9], [7]) were re-discovered by Kupershmidt [ 10, (1.7)]. Marvan [ 45] has
proved the existence of a Lepagean equivalent by means of elementary sheaf theory.

The proof given in this paper is taken from [42].
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We shall give an example of a second order lagrangian which has a first order
Lepagean equivalent., Our discussion is’based on [9, p. 26], and on the papers by
Szczyrba [51], Kijowski [ 36] , and Novotny [ 46] .

Let X be an n-dimensional manifold, T*X © T*X the vector bundle of symmetric
covariant tensors of degree 2 over X, Let x € X be a point, (U,9), ¢ = (xl), a
chart at . Each tensor % € T¥X © T*X at x has a unique expression %z =
= 9;; (h)dz* © dx'] where g..(h) = 9; ;(); h is called regular, if det(g (h)) # 0,
Denote by T_ X C T%X © T*X the open subset of regular tensors. Tmetx’ v1ewed as a
fibered marnfold with base X and projection t, defined as the restriction of the
vector bundle projection of T*X @ T“X is called the fibered manifold of metrics
over X. For any chart (U, 9), 9 = (:L' ), on X, the pair (V,¢), where V = 1t l(U),

= (z" g k) < k, is a fiber chart on T epXs called assoctated with (U,9). The

et
correspondmg assoclated chart on JrT X is denoted by (V (b ), where V =

(U), = (2" 595k Jk’Z1"”’ng’Z1...Z,) <k, 11 S..._ Z . We deflne g

as the elements of the inverse matrix of (gt , and denote g = ldet(g Dl 9,

<

2 74’
g1"7, and g may be considered as functions on any of the sets U, V, Vs’ 1<s=<nr

For a function f on V we denote d. L f = f

The Hilbert Zagrangzan for T_ X is the 0dd base n-form A € @ (J Tret X) such
that for any chart (Uy9), o = (x'“) A =R, (p ® wy, where wy = dr’ A...A dx?, R =
=R\VG, R=g° 9‘7 R, ikl and R. Jkl are the components of the formal curvature

tensor,

K

ik

.1 _ _ q
(3.2.65)  Byy = 30950 5k ~ Gin, g1+ Gk, i1 T 951,480t 9pgTixTir T TiaTs

where

1 pm
(3.2.66) r?k ) gp (gmj_,k * Ik, 5~ gjk,m)

are the formal Christoffel symbols, considered as real valued functions on T (U),
T, (U), 1<s=<r.
Denote w; = dgp; = gz, pdxp w1, 7 dg’d 4 9 dex'p According to (3,2.46)
the Lepagean equivalent of A has the form p = ¢ ® Pys where

18R
(3.2.67) = Ru + R vg A R
Po = Rog EIEZ [( 1,4 )3 ERUC ag'kz,ij) ‘it

1_ 9R Aw
F N(ZF) agkZ “%kt, 4 z
After some calculation we obtain

k Z
(3.2.68) o = [gpq(r o Tog = qurkp)wo + Z(r (gp tq _ P ”)dgkZ
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+ (g9 - gklgw)dgkl,j) A m;I .

Using the relation

P

1§ 9

.

(3.2.69) X

Ikt,i ~ Ipk
. . . i 1 .
we can express p, in forms of the coordinates (xz,g..,rj ) on T _X. We obtain

met
(3.2.70) ° =\@'%pq(r§qris - r rkp)m0 + }j((ng o

kp %) ki, i _ 13,1
g ) gkl +g drkj g drlj) Aot

3.3. Variations of sections and their jet prolongations, Let E be a vector

is

(¢4}

field on'Y, o, its local one-parameter group., It is easily seen that
n-projectable if and only if each point y € Y has a neighborhood V such that o
is defined on V for any sufficiently small ¢, and is an isomorphism of the

fibered manifold V onto ut(V).

Suppose that £ is a n-projectable vector field on Y, and denote by & its -

. : r - . s e . .
n—projection, For each t, denote by J o, the r-jet prolongation of the isomorphism

t
of fibered manifold a, (Sec. 2.1). Jrat is an isomorphism of J¥Y considered with
any of the projections n_, = , and these isomorphisms define a local one

- r 'r,s .
parameter transformation group of JrY. We put for each point J;y from the domain

of definition of Jrat
(3.3.1) =Ty = {g;ﬂat(J;y)}o.

This relation defines a vector field J°E on JPY, called the r-jet prolongation of

the n-projectable vector field =, JE is n -prOJectable (resp. © -prOJectable

. r,
for any s, 0 < 8 < r), and its ur—projectlon (resp. LI —prOJect1on) is £ (resp.

s J
J E2). N
The following theorem describes the local structure of JE. In its formulation

we use the notion of formal derivative of a function (2.2.15).

Theorem 3.5, Let E be a n-projectable vector field on Y, (V,¢), ¢ = (x?',yc), a

1

fiber chart, and let = be expressed by

(3.3.2) E = gq'-a—-i + g° _a; .
dx " 9y
Then J'5 is expressed with respect to (V}’¢r) by
r
(339 Sr=gf %+ §opsd . —2—,
sz k=0  J1°*9x ;L ..g
109
where E§1. ., are functions on V, determined by the recurrent formula

Knihovna mat.- fvz. fokulty UK
odd. maumatlcké

186 00 Prabo-Karl, Soolomkd 83
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(3.3.4) =% . =d, = -4 e
Jyeeedy I dqeeedyq Jl'“Jk-lZ ax
Proof. Llet J:y € Vr' By definition,
(3.3.5 =2 P ={L 0 oFanY,
Jeeedy = dt Jyeeedy tx }0

where a, is the local one-parameter group of E. Let Bt be the n-projection of a

t’
z
and let (U,9), ¢ = (x ), be the associated chart on X, We have

' k
Koj _ 9 (o) -1-1
(3.3.6) ¥ oJ"at(J:y) -{————j Y o 8, @ }

oz T...oz 08,(z)

Since this expression is equal to

k-1

(3.3.7) IR - A

I 91 Ik-1 tt B, (x)
ox or ~,..0x Py

k-1

- 7 i i t'Pt t .
J J o)

oz dx 1...6.7c k-1

3 7 -1-1
'{—T X Bt ] } )
dx k q)Bt(x)

we obtain

(3.3.8) =% . () =
chuan X

:{.a_. 4 <(—-———ak_l ycu YB_lcp—l o B w-l)} 6i -
ox” ¥\ J1 Tk PY VAL

ve o OX

[$3]

_yc agl
J ...j_i J
1 k-1 axk

In this expression, we have the derivative of the mapping

k-1
1 [¢) -1 -1 -1 1
(3.3.9) (t,z ,...,xn) - T o yoa YB,79 JoogB,o " J(x ,...,xn).
J J1,- t't t
1 k-1
ox ~...0x .
Since the derivative with respect to t at ¢ = 0 is the component ':"3-1 Geon of

JE, (3.3.8) immediately gives (3.3.4).
In the proof of the next theorem we use the non-holonomic jets (Sec, 2.1).‘

Theorem 3.6. For any two n-projectable vector fields £,; on Y the Lie bracket

[£,z] 28 also a n-projectable vector field, and
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(3.3.10)  JMe,cl = [/%, 77l .

Proof, 1f » = 1, (3,3,10) can be proved in fiber coordinates by a direct calcu-

lation,

‘ -1 -1 -1 ]
We shall now suppose that & 1&,zl = [J° €, & cl. Let L : &Y = dJ (7 7)
be the canonical embedding (2,1.9). Let o be an isomorphism of Y, defined on an

open set VC Y, and ag = PT & We have for each er € n (V)

o1 -1 -1
(3.3.11) qu”a(JZy) = Jao(x)(Jr ayag ).

Let us consider the 1-jet prolongation Jl(Jr-la). We have

1, p-1 1 -1 op-1 -1
(3.3.12) (" a)(u(J;'y))-Jao(x)(J" 0w yeag’)
Put Jr_laqu—lyoaal = Jr-l(ayaal)oaonaal = (aYa ) so that
(3.3.13) Jl(Jr-la)oL = wda .

Denote by J (Jr £) (resp. J (Jr t)) the 1-Jet prolongation of the w,_,-
- projectable vector field Jr E (resp. 7 _r- t). Applying (3.3.13) to the local

one-parameter groups of these vector fields we get
(3.3.14) Jl(Jr—lg)o-b =r L%, ST =L ST
Let us consider the vector field J'L£,z]. By ('3'.3.14),'.
(3.3.15) T . Sl = ST e e = S, FTR)eu
= [N ), ST,

where we have applied our inductive assumption. On the other hand, (3.3.14)

implies
(3.3.16) [/ ), oM T ol = T L 10T, ST

Comparing (3.3.15) and (3.3.16) we get Tu.(J'[£,2] — [J7E,7 ¢]) = 0, and (3.3.10)
follows from the fact that Tu is injective, '

We note that for any n-projectable vector field £ on Y and any form

o € PJIY) )

(3.3.17) aJr+1=h(p)=h(B p)e

" This follows from Theorem 2.1 (f).
The concept of the r—jet prolongation of a n~projectable vector field can be

generalized to vector fields along séctions of Y, Let y be a section of ¥, W its
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domain of definition, Recall that a vector field along y is a mapping {: W = TY
such that for each x €W, t(x) €T (& ;Y A vector field almgy is also called a
variation of y. 1f ¢ is a variatlon of y, then the formula

(3.3.18) ;0 = Tn.g

defines a vector field on W, called the n-projection of 7.

Theorem 3.7. Let y be a section of Y defined on W, t a variation of v.

(a) There exists a m-projectable vector field =, defined on a neighborhood of
the set y(W) CY, such that for each x € W

(3.3.19) E(y(x)) = g(x) .

(b) For any two n— projectable vector fields E158,, defined on a neighborhood
of y(W), such that 2,(y(x)) = E,(y(x)) = t(x) for all x EW

(3.3.20)  J7E,(Tpx) = JE, (oY)

Proof, (a) Let (VL,¢ ), = (xi,yi), be some fiber charts on Y such that
UVL O y(W), and let (U 1N ) be the assoclated charts on X, With respect to
(v 0% ) and (V ,¢ ), c is expressed by ¢ = ; (a/aml ) +2° (a/ay ), where ; o ZZ
are some functlons of x ,...,xt. Let (x ) be a partltlon of unlty, Subordlnate to
the covering (V ) of UV We set for each L EZ‘ Zb. E = s and define a vector
field £ on VL by cH gi(a/ax ) + :€(a/ayi). Now it is eaSlly verified by means
of a fiber chart and the transformetion properties of the components of f, that

the vector field E = ZXLEL has all the required properties,
(b) Let (V,¢), ¢ = (xi,yc), be a fiber chart, (U,¢) the associated chart on X,
By (2,2,15), for any function f : V - R and any section of Y over U, d. fBJr+l =
a(berY)/ax , and d;f depends only on the restriction of f to er(U). Thus the
components of JI._l depend only on the components of Z, resctricted to y(W), i.e.,
on the components of ¢, by (3,3,4); this implies (3,3.20).

A mt-projectable vector field E satisfying condition (a) of Theorem 3.7, is

called a m-projectable extension of the variation r., According to Theorem 3.7 (b)
we may put )

(3.3.21) c(er) = J”"(J )
where £ is any n-projectable extension of £ and x € W, Jrc is a vector field along
the r-jet prolongation J7y of yj we call it the r—jet prolongation of the

variation z,

Remark 3,7, The notion of the 1-jet prolongation of a projectable vector field
has been introduced,in the case of the product of Euclidean spaces, by Trautman
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[52] to obtain a geometric characterization of one-parameter symmetries of a
lagrangian, and was easily transferred to r-jet prolongations of arbitrary
fibered manifolds; the prolonged vector fields turned out to get the meaning of

"prolongations of variations" of sections of fibered manifolds (Krupka [40]).

3.4, The first variation formula, Let W C X be a set., From now on, TW(W)
denotes the set of sections y of Y such that the domain of definition of y is a
neighborhood of W,

~n . . .
Let X € QX(JrY) be a lagrangian of order r for ¥, @ C X a piece, i.e., a

compact, n-dimensional submanifold of X with boundary. The function
(3.4.1) FQ(H) Dy - Ag(y) = Qf JTY*X €R

is called the variational function, or the action function, of the lagrangian A
over Q, Our main purpose in this series of papers is to investigate the family
{An} of variational functions, labeled by Q.

Let £ be a n-projectable vector field on Y, £ its m-projection, o, (resp. aot)
the local one-parameter group of Z (resp. £). Let y € FQ(n) be a section, U D Q
its domain of definition, To each point zy € Q there exist ey > 0 and a neighbor-
hood U, of z, such that the mapping (s,x) - aOS(x) (the global flow of E) is
defined on (—eo,eo) X Ub. Since Q is compact, we can find finite sequences

Tysenes®, € q, € seees€y > 0, and Ul;...,U such that for each ¢ = 1,2,...,V, the

N N
mapping (s,x) -~ uOS(x) is defined on (-ei,ei) X Ui' Putting € = mln{el,...,eAQ we
obtain that this mapping is defined on (-e,e) x W, where W = LWi is a neighbor-

hood of Q. Hence the formula

(3.4.2) Yg T agYegg s

where § € (-e,e), defines a one-parameter family {YS} of sections of Y; the domain
of definition of Y, contains aOS(Q). (ys} is called the deformation of the section
y Znduced by Z.

Let us consider the real-valued function

1y - -1 *
(3.4.3) (-e,e) D s~ 2 N S(Q)f’(asyuos) A €R.

(a _yo
aOt(Q) s' 0s o
This function is obviously smooth. Differentiating with respect to s at s = 0 and

using Theorem 1.4 and Theorem 1.5 we obtain

d -1 _ ;
(3.4.4) {ds AGOS(Q)(QSYGOS)}O = ﬂf Jr'Y"aJr_A >

where BJ,:A denotes the Lie derivative of A with respect to the r-jet prolongation

JYE of E, The arising function

(3.4.5)  Tg(x) Dy = (3, A)g(y)'= of Tyko, A €R
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is the variational function of the lagrangian 3y gh over Q. We call it the first

.. . N .
vartation of the variational function ).Q, induced by E.

Theorem 3.8, Let A € E;(fy) be a lagrangian, p € ) a Lepagean equivalent
of A.
(a) For every m—projectable vector field E on Y,

(3.4.6) d A= k(i _dp) + h(dz .
g Rt J° 5

11

(b) For every mn-projectable vector field E on Y and every section y of ¥,

(3.4.7)  Jy*d _ A = sz*i do + dsz*i o .
ek 7oz 7%z

(e) For every n-projectable vector field on Y, every piece Q with boundary 9%, -
and every section y € I‘n(u),

S .. 8 .
(3.4.8) Qf er*a A= Qf J YWLJS,_dO + aQJ’ J y*i s P

Proof. (a) Since A(p) = A (see Convention 2.1) (3.4,6) follows from (3,3.17)
and (1.3.29).

(b) This follows from (3.4.6) and from the definition of % (see Sec, 2,2),

(c) This follows from (3.4.7) and from the Stokes® formula (Theorem 1.6).

We call either of the relations (3.4.6), (3.4,7) the infinitesimal first
vartation formula; (3.4.8) is called the integral first variation formula.

Remark 3,8, Infinitesimal first variation formula (3.4.6), or (3,4.7), explains
the axioms defining a Lepagean eqﬁivalent p of a lagrangian A: The first axiom,
stating that pl(dp) should be ns O-horizontal guaranties that the first term in
(3.4.7) depends only on Z, not on the prolongations of Z (i.e,, on the
derivatives of the components of Z), while the complementary term (the second
term) is precisely the "boundary term'"; the second axiom, stating that A(p) = A,
implies Qf J Y*A = ﬂf N y*p, which,means that p should define the same variational
problem as A,

Our definition of the variational function (3,4,1) is analogous as that one of
Hermann [ 34] , His first variation formula is, however, not correct, since it does
not lead to the required decompositioh of the variation into "Euler-Lagrange" and

the "boundary" terms.

The following corollary says that the (global) first variation formula (3.4.6)
can also be obtained by means of the local Lepagean equivalents (3,2,47).

Corollary 1. For every n-projectable vector field E on Y,

(3.4.9) aJr~A = h(‘LJ 1 )‘ V) + h(dthr_l::p)\’V) .
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where (V,¢) is any fiber chart on Y and oy y 18 the local Lepagean .equivalent
k]
(3.2.47) of A.

~n, 2r-1 .
Proof., let p € Q (J r Y) be any Lepagean equivalent of A (Theorem 3,4). For

each fiber chart (V,¢) on Y p is expressible in the form p ='px v + vV,
. b ] .
vy is a local Lepagean equivalent of the zero lagrangian (compare with (3,2.,51)

where

and (3,1.3)). If £ is a n-projectable vector field on Y, we have
(3.4.10) h(d ) =0

Y
J2r—lE 14

since % and an,_lz commute (in the sense of (3,3.17)). Hence

(3.4.11)  * (3

J2r—15°x,v)

(aJQP"lEp) = h
on Vér' Applying (3,3,17) again and using (1:3.29) and Theorem 2.1, (a) we obtain
(3.4.9).

Let A € TYJFY) be a Lagrangian, p a Lepagean equivalent of A; we may suppose

that p e'ﬁ”J,-1Y(J2”'ly).We know that the Euler-Lagrange form E of p (Sec, 3.1)

depends on}y on A (Corollary 3 to Theorem 3,1). We denote.F = E_ and call E_ the

Euler-Lagrange form of the lagrangian A, The mapping A = EA of ﬁ}(JrY) into
En’l(JQPY) is called the Euler-Lagrange mapping. The chart expression of Ex is

given by (3.1.,11) and (3.1.12) with fo = L, where X = L.g ® Wy (3.2,2), and s =

= 2r - 1, Writing E, = EU(L).E ® (o A wy) we obtain the Euler-Lagrange
expressions EU(L) (3.1.12) of the lagrangian A with respect to (V,¢).-

Corollary 2, For every n-vertical vector field E on Y,

(3.4,12) 0 =1 EA + h(di

Jr:x 2P J2r—1:°)°

Proof, This follows from (3,4.6), the identity %(<
Theorem 3,1, (1),

JQ,EEA) = iJ"EEX’ and from
Remark 3.9. The Euler-Lagrange form as considered above, is due to Krupka (see
e.g. [9, (4.19), [ 71, and £3]) and Anderson and Duchamp [ 14, (3.4)]. Goldschmidt
and Sternberg [ 33] interpreted the Euler-Lagrange expressions as the vector-
valued differential n-form (n = dim X)., Garcia [ 29] (see also [ 30]) introduced the
Euler-Lagrange form as a vector-valued n-form, depending on an‘auxiliary

connection,

3.5. Extremals, Let W C X be a set. From now on, FW(n) denotes the set of
sections y of ¥ such that the domain of definition of y is a neighborhood of W.
~n - o
Let A € QX(JrY) be a lagrangian of order r for ¥, @ C X a piece, i,e., a

compact; n-dimensional submanifold of X with boundary, The function

(35,10 To(n) By = ac(y) = f Jfr-y*}\.e R
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is called the variational function, or the action function of the lagrangian A
over 9, Our main purpose in this series of papers is to investigate the family of
functions AQ, labeled by Q.

By a one-parameter family of sections of Y we shall mean a mapping (-e,e) X
X W 3 (s,x) = y(s,x) €Y, where ¢ > 0 and W C X is an open set, such that for each
s € (-e,e) the mapping yg : W = Y, defined by the relation y (x) = y(s,x), is a
section of Y over W, When there is no need of further specification, we denote a
one-parameter family of sections by {Ys}. A deformation of a section y we mean a
one-parameter family of sections {YS] such that Yo 7 Y-

If {YS} is a deformation of a section y € Fw(n), then the relation

d
(3.5.2) «o(x) = {E; ys(x)}o

defines a vector field along y. Since Trn.c(x) = 0. for every «x, this vector field
is formed by m-vertical vectors, By the support of the deformation {yg} we mean
the set cl{x € Wlg(x)} # 0}, where cl means the closure, We say that {Ys} is of
compact support, if its support is a compact set in W,

If £ is a n-vertical vector field on Y and (ag) is its local one-parameter
group, then for any y € Pn(n), {asy} is a deformation of y; this deformation is
said to be Znduced by E. _

A section y € Tn(u) is called an extremal, or a critical section, of the

lagrangian A on-Q, if

d -
(3.5.3) {d—s )\Q(YS)}O =0

for every deformation {ys} of y whose support is contained in Q. A section
y € r(n) is called an extremal, or a critical point, of A, if the restriction of
Y to any piece 2 C W is an extremal of A on Q. If W = X we suppose of global
extremals,

Thus the extremals of A are those sections y, for which the value An(y) of
the variational function (3,5.1) is "stable" with respect to "small compact

deformations" of y, for every 2 C X,

Lemma 3.4. A section y € Io(n) s an extremal of A on Q if and only if

(3.5.4) of Iy*d , 1 =0

J E
for every m—vertical vector field E, defined on a neighborhood of y(Q) C Y, such
that supp E C o).

Proof. 1. Let y be an extremal of A on Q, let E be a n-vertical vector field
on a neighborhood of y(Q) C Y, a, its local one-parameter group. To each point

Y, € y(Q) there exist € > 0 and a neighborhaod Vb of Y such that the mapping

0
(8,4) - as(y) is defined on (-EO,EO) X Vb. Since y is an embedding, Y(Q) is
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compact, and we can find a finite sequences Ypseeoslps Eqsevsty and Vl,...,Vh
such that for each ¢, 1 < 7 < N, the mapping (s,y) = us(y) is defined on (—ei,eih
X Vi' Putting e = min(el,...,em) we obtain that this mapping is defined on

(-e,e) x V, where V= W,
tion of y. Let U be the domain of definition of y; we may suppose that U C =n(V),

If x € U is a point such that E(y(xz)) # 0, then y(x) € supp E C n_l(Q), and x € Q

is a neighborhood of y(Q). Thus y; = a_y is a deforma-

which implies that the support of Yg cl{x € UlE(y(x)) # 0} C Q. Now by definition
(3.5.3)

5.5 0= {La o)) o (& 7o) c (& e O

= of {G et = ol Ty

where we have used Theorem 1.5, (2.1.5), and (1.3.17),

2. Suppose that (3,4.4) holds for every E. Let {YS} be a deformation of y whose
support is contained in Q. Take for = the n-projectable extension of the vector
field ¢ (3.5.2) (Theorem 3.7 (a)); obviously, Z must be m-vertical, Using Theorem

1.5 we obtain

d d »r }
.5.6 = A = —_— %
G - ) {ds Q(YS)} Qj {db J Ys’x
0 0
Express the integrand by means of a fiber chart (V,¢), ¢ = (xl,yc). If A =
= L9 ® u,, then Ty = (L o 1g)e0 ® v, and

(y . .cTY')
1Y
(3.5.7) { erﬂ} (xo ay ' { - }0 0 ®u

...Jk

: L] Yoon.
(k OZ ay‘7 . {ds !

19k ax ...ax

\

where these expressions are considered along er, and the definition of the
associated coordinates on J°Y is used. But z(x) = E(y(x)), and if we write E =

= Eg(a/ay“) we obtain 2° = {d(y Yo )/ds } which implies,'using Theorem 3.5,
(3.3.3), and (1.3.28) that. this expre351on equals JrY"BJr:A. Now (3.5.3) follows

from the assumption,

Lemma 3.4 says that for the study of extremals y of A one can use n-vertical
vector fields in place of variations of Y. This immediately leads to the following

result,

Theorem 3.9. Let A € Ez(JrY) be a lagrangian, E, the Euler-Lagrange form of A,
Y a section of Y, and p a Lepagean equivalent of A of order 2r - 1, The following
conditions are equivalent:

(1) v 28 an extremal of A.
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(2) The Euler-Lagrange form E, vanishes along J2ry,

(3.5.8) EA0J2PY =0.

(3) For every n-projectable vector field E on Y

(3.5.9) ST g

dp =0 .
J21r'~-1E
(4) For any fiber chart (V,¢) the restriction of y to the set n(V) satisfies

the system of partial differential equations
2r
(3.5.10) EO(L)oJ Yy = 0, l1<os<m,

Proof, 1. If y is an extremal then by Lemma 3.4 and Corollary 2,
Qf JQIQ*iJQ,EEA = 0 for each £ n-vertical, such that.supp & C n_l(n). Thus (1)

implies (2). 2. Suppose that condition (2) holds, Since for any n-projectable
vector field € on Y ’

(3.5.11) <

% R R _ - ,
JQr:KQr,Zr—ldp T[21»,21'—17' 2r—l=d° ¥ or-1 dp = 4 Ey*tt F

J g1 J2r= A J2P

(see (1,3,22) and (3,1,2)) and the order of contact of F is > 2, we have
JZP—lY*iJQ,_IEdp = JQPY*iJa’EEA = 0. 3. Writing (3.5.9) locally we see at once
that (3) implies (4), 4, Finally, condition (4) together with (3,4,12) and Lemma
3.4 imply (1). ‘

Any of the equivalent equations (3,5.8) - (3.5.10) are a global system of m
. . . . 2
Ppartial differential equations of order 2r on J I'Y; they are called the Euler-

Lagrange equations of the lagrangian A, Thus the extremals of A are precisely

solutions of the Euler-Lagrange equations,

Remark 3,10, A variational function containing, in addition to the integral
over 9, an integral over the boundary 99, has been studied by Chrastina [ 18].

Remark 3,11, Some authors use formula (3.5.4) for the définition of an extremal,
with the vector fields J E replaced by a wider class of the so called
infinitesimal contact transformations ([ 191, [29]). It should be pointed out,
however, that deformations of section; induced by the infinitesimal contact

trans formations are no more sections, in general, and are not adequate to the

considered type of variational problems in fibered spaces,
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