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LOCALLY UNIFORMLY NON-I(JI) ORLICZ SPACES

H. Hudzik

Summa.1 . There are given some criteria for non-l(:l) and local uni-
form non—ln properties of Orlicz spaces in the case of an atomless

infinite (but oc-finite) as well as in the case of a purely atomic me-
asure. In the case of an atomless finite measure there is given only

a criterion for non-lan) property of Orlicz spaces.

. INTRODUCT ION :
In the following (T,E,}L) denotes a space of positive and 6-fi-
nite measure. F denotes the space of all = -measurable functiomsfrom T
into the real line R. Ofcourse, two functions which differ only.on a
set of measure zero will be regarded as edual. Define ek-(O,...,O,Ti,,O,...),
where 1 is on kth place for k=1,2,... .

+ By an Orlicz function we mean a map &: R— [0,00] which is con-
vex, even, vanishing and continuous at zero and not identically equal
zero. Let § be an Orlicz function. Define the modular I: F—e [O,oo] by

I@= §pdx@)dp.
The Orlicz space generated by & and . is the B-space (LQ(F),II "@)-
where

‘ 18y ={x€F: I(A x)< 0 for some A>0}
and the norm || [lg is defined by
Ixllg = inf{r>0: I(x/r)< 1}.
In the case of a purely atomic measure we write tradicionally lﬁ(/k) in
place of LQ(}I) . ' '

We say an Orlicz function § satisfies the condition s, for all
u (at infinity) [at zero] if there exist constants K,a > O such
that the inequality $(2u)=s K $w) holds for all u (for u satisfying
gw)>a) [for u satisfying §(u)=al.

A normed space (X,llll) is called w-l(:l) (neW, n22) if for any
norm-one elements XqpeeesXy in X, we have le1t P xnll< n for some
choice of signs.

We say that a normed space (X,lll) is locally uniformly r_u)_n_—lg) if
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for every x,€ X with lixlt=1 there exists & (x,) € (0,1) such that for
every norm-one elements XpyeeesXy in X there holds le1i: ...ixnll <
n(1- 8(x1)) for some choice of signs.
' Locally uniformly non-l(;) spaces are called locally uniformly

non-square ( see [9] , p. 131).

A normed space {X,ll|l) is called locally uniformly rotund if for
any x€ X with |Ix)|=1 and for every £> O there exists &§(x,¢)€ (0,1)
such that |x+yll £ 2 (1- §x,6)) whenever yeX, llyll=1 and |x-yl>¢€.

We say a normed space (X,ll ]]) is strictly convex (rotund) if for
any norm-one elements x, y in X, x+y, we have ([x+y/< 2.

RESULTS
Every strictly convex normed space (X, Il) is non-l(:l). It is suf-
ficient to show that X is non—1(12). Let llx1ll = lezll -1, If Xy=Xoy then
le1 - 12" =0, If x, ¢ Xy then by rotundity of X, we get || X4 +x2|| <2.
Every locally uniformly rotund normed space (X,|l ||) is locally
uniformly non-square and so it is locally uniformly non-ll,1 for any
nelN, n2 2.
Let X,, X, € X, lixll= lixyli= 1. Then |jx, = x,ll 27" or llx, +x,ll £
2(1- .5(x1,2'1)) , i.e. X is locally uniformly non-square.
LEMMA 1. The space 1%° is not non-1.
Proof. Let € '(211."“.’8];) be all choices of signs %1 with 61-1
for i=1,...,2%" ", Putting
n-1
Xy 'ZE -1 sg €3
for j=1,...,n, we have l|x11 P 5 Xllp=n for any choice of signs.
LEMMA 2. The space L1(}L) is not non—l(:l).
) Proof. Let A1""'An be pairwise disjoint sets of positive and
finite measure. Let Bypeeerdy be positive numbers such that a; =
(}.L(Ai))'1 for i=1,...,n. Define x; = aiXAi for i=1,...,n. We have

lIx4lls =1 and llx1i’ ...ixnll1 -2?_1 ai}L(Ai) =n for any choice of signs.

LEMMA 3.(i). If . is an atomless infinite (finite) measure and
® is an Orlicz function satisfying condition A, for all u (at infini-
ty), then for every € ¢ (0,1) there exists §(€)(©,1) such that lixlg<
1- 8C¢) whenever I(x)< 1-€.

(i1) If p -(bk) is a purely atomic measure with infb, =1liminf b, =
b> 0, ¢ is an Orlicz function satisfying condition Az.at zero and
i} (u1)- b""1 for some > 0, then for any g€ (0,1) there exists & (€)€
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(0,1) such that l|x||Q51 - 8(€) whenever I(x).<. 1-€.
For the proof see [2],[7], [8].

THEOREM 1, If p is a purely atomic measure as in LEMMA 3 (ii) and
® is an Orlicz function such that @(u1) -b'1 for some u1> 0, then
the following assertions are equivalent:

.1 (;L) is locally uniformly non—l(:l)
2°. 1 (}L) is non-lm
. & satisfies condition A, at zero and
(i) d@/n) < $@w)/n for any ud>0,
2. 18 is non-lg.

Proof. 3°=—>1°, Let x4l =...=llx lly=1. By virtue of condition

A, at zero, we have I(x) =vee = I(xy) =1 (see [1]). Let X¢IN be such

that |x,(k)|=llx4ll, and denote |x,(k)| b,=d. There exists G € (0,1)
such that

m $ (u/n) £ ¢ & )/n
for any ue [Ix1 @], u1:| . Let3°denote the operator of summation over
all 2" possible choice of signs. We have

(2) o1 2°I((x11 .. .ixn)/n) =n 12!1-12 ?_1 I(xy) -2°I((x1_... +x_)/n)
2 n-1 2n-12 ?_1 @(xi &) by -2°§((x1 wt..tx (k))/n) bye

We have |x (K)t...tx (k)< max|x (k)| for some choice of signs. App-
lying (1), we get for this éhoice of signs -

B((x(0%...tx_(K))/n)< 6'n” Q(maxlxi(k)l)<6n"12 186y )
Hence we obtain
S°8(xq 0t tx (0)/n) £ 07 (227 21402, 0, (0) .
Applying this inequality and (2), we get
2™ - LGyt et xp/n) 2 0T S ] B0y ()b
a7l -6y, fe. I((xyt...tx)/n)€ 2" (1 -m),
where m = (1- @) d/n2""', Hence, we obtain I((x,t...:x)/n)<1-n

for some choice of signs. The proof of the implication 3°==>1°may be
finished by application of LEMMA 3 (ii).
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2°==>73°., If § does not satisfy condition b, at zero, then lé(p-)
contains an isometric copy of 1% (see [5]) and so, by LEMMA 1 , 13w
is not non-l( ). Assume that condition 3°(i) is not satisfied. We may
assume that n@ satisfies condition A2 at zero. Hence it follows that
® vanishes only at zero. There exists u> 0 such that §(u/n)= §(u)/n.
Hence it follows that $(v/n)= §(v)/n for any v€ [0,u] , i.e. § is a
linear function on the interval [O,u]. Let l=k/n€ N and k §(w)2 n.
There exists a number v¢(0,u] such that k (v)=n. Define

X ‘Z%n”uq-nl
for j=1,...,n. We have 1 $(v)=1 and so I(xJ)-lIxJIIQ =1 for j=1,...,n.
Moreover, we get for any choice of signs
I((x4% «ootx )/n) =kd(¥/n)=k Q(v)/Tn =16G@)=1,
l.e. lIXqt .. tx llg =n. So, 1 (}1) is not non-1 .

The implication 1°==2° is obvious, so the equivalence of condi-
tions 1°, 2° and 3° is proved. The equivalence 2°%=>4° follows by the
equivalence of condition 3°(i) for any two neIN, n> 2 (see [2], Lemma
1.7). The proof is finished.

THEOREM 2, Let § be an Orlicz function and p be an atomless in-
finite measure, The following conditions are equivalent:
1, LQ(#) is locally uniformly non-'l(1
2°. LQ(P) is non- 1()
3°, @ satisfies condition 4, for all u and
(i) é(u/n)< Q((u)/n for any u> O,
£, 18 is non—l2
Proof. 3°=>1°, Let lixqllg =-«.=lxllg =1. By condition A, for all
u, we have I(x,)=...=I(x)=1 (see [1]) . Let c> 0 be such that the
set

A ={ter: ¢7'< Ix, W < ¢}

satisfies the condition I(xXA)é 7/8. Let d>0 be such that &(c)/ &(d)
£1/8(n-1) and let

-{tGT Ix; ®) £ d}, 1i=2,...,n,

We have Q(d)}t(T\A) < I("iXT\A)‘ 1, i.e. p(TNAP<1/3@) for 1=

2400090 Hence, we get N

11 Xapa) € FpBN ADS 3@/ 2@ S 178(n-1).

n
Denoting D=(1j.14;, we have

/8 £ 1xy Xy D (e a)) I Xp)
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< Z?_,I(x1x@1\ ) * I(xyYp € 1/8 + I(x)p) -

Hence, we obtain
(C) N I(x4Yp)2 3/4.
Moreover,

@ 2 SI((xyt e tx )/ 2P S 1) -5 Wt . tx )/n)
SR LED I (C PN ES i (e IS 1) BWEIN

Since |x,(t)%...tx (t)l mi.xlx1 (t)| for some choice of signs depen-
ding on t, so

(5) I((x1+ veetX )XD/n)< n_1(2n-1-1+6)22_1I(XiXD)!

where G = sup{n §(u/n) /d): )¢ [0'1 d] K Obviously, 6 € (0,1). Com-
bining (3),(4) a@nd (5), we get

2250 (@t tx /)2 070 -0) 2] A IG P2 30 /an =,

The number 7 belongs to (0,1) and depends only on x1. The last ine-
quality is equivalent to the following one

S°I((xqtesotx)/n) £ 22 1(1-q),

where q =7/2 . Hence, we have I((x1t....+_xn) /n) € 1-q for some cho-
ce of signs. Applying LEMMA 3 (i), we get ||x % ceetx iy < nQ -8@),
where 8(q)€0©,1), for the same choice of signs as in the previous ine-
quality. This finishs the proof of the implication 3°=—>1°,

The implication 1%—=—> 2° is obvious. Now, we shall prove the im-
plication 2°=—>3°., If & does not satisfy condition 4, for all u,
then L¥(y) contains an isometric copy of 1% (see [2], [3]), so by
LEMMA 1, L? (1) is not non-lm. Assume that ¢ satisfy condition A2 for
all u and does not satisfy condition 3°(1). Then there exists u> 0
such that ¢ (u/n) = §w)/n and P(u) > 0. ILet Bi' i-1,...,n. be pairwi-
se disjoint and S-measurable subsets of T such that }L(B )=1/%) for
i=1,...,n. Defining x -uX:B , we have I(xi)- IIinIQ =1 for i=1,...,n.
Moreover

I((x1i...ixn)/n)-1, i.e. ||x,|i...1:xnll(E =n

for any choice of signs. So, LQ(}L) is not non-l( ). The implication

2°=—>3° is proved.
The equivalence of conditions 2° and 4° .may be deduced in the
same way as in THEOREM 1. The proof is completion.

n-1

THEOREM 3. Let}:. be an atomless finite measure and let § be an
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Orlicz function. L@(}L) is non-l(:l)if and only if:

(1) & satisfies condition A, at infinity and it is finite, and
(1i) @ (u/n)<@/n for all u satisfying §(w) > n/p(I).

Proof. Sufficiency. Let I|x1NQ = .= xn”@ =1, Taking into account
condition (i), we get I(x;)=...=I(x))=1 (see [1],[8] and [1Z)) and
$ 1s continuous. So, there exists a number © € (0,1) such that the
inequality ®(u/n) < @ (u)/n holds for all u satisfying & (u)2 n6 /M(T).
Denote € =V6 and define ‘

A={teT:Y ?—1§(x1 () 2 ne/pum}j.
Now, we shall show that for every t € A, we have
(6)  B((x;W*...tx ®)/n) <n T 36, (1)

for some choice of signs. For this purpose we shall consider two ca-

ses
1° . max @(xi ®) 2> ne//U.(T). We have for some choice of signs

[x1 (t)i'...txn ®)] < m?xlxi (t)] . Hence, we get by (ii)
é-_(x1 (t)t... "‘xn (t))/n) £ Q(m?xlxi @)l /n)<m§.x Q(xi(t))/n

<nT'T P B (x, b)),

2°. maxi)(xi(t)) < n6/u(T). Then at least two from the numbers
@(xi(t)) must be positive. So, we have for such choice of signs that
Ix; @ t...tx @) < m'ixxlxi W] g

d(xy W2... tx, ) /n) < n~! Q(m%x I x4 @)= ol m?,x {)(xi )
<02l a0 0.

Thus, inequality (6) for t € A is proved. Denoting by =° the operatovr
of summation over all 2n—1 choices of signs, we have for all t €A

S8 (xq (M) t.n tx (9)/n) <n” 2" 20 Gx, ().
Applying this inequality and taking into account that I(xi) =1, we get

2" 3Pyt txp /) = 0T 2R ] TGNyt e tx /)

3t s ;‘_1 I(x;)p) - ZaI((x1i oo etx )Y ,/n) > O.

This means that ,I((x1t...i'xn)/n)<1 for some choice of signs. Applying
condition (i), we get x4t ceetx lig< m for some choice of signs ( see
[1],[8] and [12]) . The proof of sufficiency is finished.

Necessity. If condition (i) is not satisfied, then LQ(P-) conta-
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ins an isometric copy of 1®(see 12] ). Thus, by LEMMA 1, 13w is
not non-l(ll). Now, assume that ® satisfy condition (i) and does not sa-
tisfy condition (ii). Then, there exists u such that $(u)2 n/u(T) and
®(u/n)=d(u)/n. Let Ajye.+yA be pairwise disjoint and 5 -measurable
subsets of T such that W(A;)=1/8(u) for i=1,...,n. We haveS? , p(a,)
=n/d)< }L(T) , S0 such sets 'Ai exist, Defining xi-uXA for i=1,...,n,
we get i ’
I(xp= I((xqtesetx)/n) =n I(xq/n)= I(x)~1
for any choice of signs and for i=1,...,n. So, llx1i ...txnu@-n for
any c?oice of signs and "xiHQ =1 for i=1,...,n, i.e.LQ(p.) is not
non-ln.

Define that the modular I is non-l(;? if for every x, ,...,xneLQ(;L)
with I(x1)- ceelm I(xn) =1, we have I((x1i.'..txn) /n)< 1 for some choi-
ce of signs.

The modular I is locally uniformly non-l(;) if for any XyseeesXy
in L¥(u) with I(x,)=«eo =I(x)=1, there exists 8(x,)€ (0,1) (depen-
ding only on x;) such that I((xqt...%x )/n)<(l -8(x1)5 for some choi-
ce of signs : ’

COROLLARY 1. Our theorems for I instead of || lly are true without
suitable condition AZ'

Indeed, suitable condition A, was used only to the implications
I|x|l§ =1=>1I(x)=1 and I is non-1")(1locally uniformly non-l(:l)) implies

n
that Il llg is non—l(:!) (1ocally uniformly non-1).

COROLLARY 2. LQ(}&) is locally uniformly non-lun) whenever it is
rotund. . . )
Proof. If LQ()J) is rotund, then § is strictly convex on the who-
le R in the case of an atomless measure and on the an interval [_O,a]
in the case of a purely atomic measure as in THEOREM 1 (see [1],[6],
[10] and [12) ) . Hence it follows that §(u/n) < §(u)/n for any u> 0.

REMARK 1. The converse statement t6 COROLLARY 2 does not hold.

Proof. Note that L¥()) may be locally uniformly non-l(;'l) even if
$ is linear on an interval [a,oo) » when i is as in THEOREMS 1 and 2
and on the interval [0,n6/u(T)], where 6 € (0,1), when  is as in
THEOREM 3.

REMARK 2. Condition a, at infinity and the condition & (u/n) <
$ (u)/n are sufficient in order that LQ(}L) be locally uniformly non—l;l1
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in the case of an atomless finite measure.

non-l property remain the same if we replace lix

REMARK 3. The definitions of non-lm property and local uniform

iII =1 by lx lI £1 for

i-1,...,n (in the case n=2 see [11]).

COROLLARY 3, If & is an Orlicz function vanishing only at zero

and satisfying the condition 11 é{)(u)/u) 0, then L&(u) is locally

uniformly non-l (1) iff 1t is non-l

and iff § satisfies suitable (to

the measurep) condition a,.

i

C2]
£3]
[4]
5]
cel
7]

Lel
Co]

0d
01
04

REFERERCES

HUDZIK H. "Strict convexity of Musielak-Orlicz spaces with
Luxemburg’s norm", Bull. Acad. Polon. Sci. 29, No.5-6 (1981),
235-2417.

HUDZIK H. "Uniform convexity of Musielak-Orlicz spaces with
Luxemburg’s norm", Commentationes Math. 23 (1983), 21-32.

HUDZIK H. "On some equivalent conditions in Musielak-Orlicz spa-
ces", Commentationes Math. 24 (1984), 57-64.

JAMES R.C. "Uniformly non-square Banach spaces", Annals of Math.
80, Fo.3 (1964), 542-550.

KAMINSKA A. "Flat Orlicz-Musielak sequence spaces", Bull. Acad.
Polon. Sci. 30, No.7-8 (1982), 347-352.

KAMINSKA A. "Rotundity of Orlicz-Musielak sequence spaces", Bull.
Acad, Polon. Sei. 29 ,No. 3-4 (1981), 137-144.

KAMINSKA A, "On uniform convexity of Orlicz spaces" Indag. Math.
85 (1982), 27-36.

LUXEMBURG W.A.J. "Banach function spaces", Thesis, Delft (1955).
SCHKFFER J.J. "Geometry of spheres in normed spaces, Lecture
Notes in Pure and Appl. Math., vol. 20 (1976).

SUNDARESAN K. "On the strict and uniform convexity of certain
Banach spaces", Pacific J. Math. 15 (1965), 1083-1086.
SUNDARESAN K. "Uniformly non-square Orlicz spaces", Nieuw. Arch.
Wisk. 14 {1966), 31-39.

TURETT B. "Rotundity of Orlicz spaces", Proc. Koninkl. Nederl.
Akad. Wet. Amsterdam A 79 5 (1976), 462-468.

INSTITUTE OF MATHEMATICS

A.

MICKIEWICZ UNIVERSITY

POZNAN, POLAND



		webmaster@dml.cz
	2012-10-08T17:27:11+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




