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EXTREME POINTS IN SPACES OF OPERATORS AND VECTOR-VALUED MEASURES

Dirk Werner

A+ Introductior,

If one wants to prove thet en operator T acting between Banach
spaces X and Y 1is an extreme operator, that is an extreme

point of the unit ball of the space of bounded linear operators
L(X,Y), it suffices to check that T' (the adjoint of T) maps
extreme functionals on Y onto extreme functionals on X. An
operator with this property is called a nice operator [83. It is
even enough that T' maps a weak¥-dense subset of ex BY'. into

ex Bx, y but this is not a substantial generalization., (BZ denotes
the unit ball of a Banach space Z, ex C the set of extreme

points of a convex set C.)

Consider some examplies:

1. The identity operator id: XX 1is always a nice, hence

extreme operator. Using this and the canonical isometry

between L(X,x") and L(X',X') one can easily see that tne
natural injectiun ix: X= X" 1is always extreme,

To see that there are non-nice extreme operators consider the
injection ope:ucor from 1" inte 1P (1< p<=). Moreover, no_
operator from some space L1Qu) into some space Lpfv) (pas
above) is nice, but BL(L1,LD) is compact with respect to the
weak¥*-gperator topology so that there are many extreme operators.

n

A fairly easy description of nice operators is possible in the
setting of spaces of continuous functions, The main tool here
is to represent operators into CL ‘(L a cumpact Hausdorff
space) as vector-valued functions. If "X 1is a Banach space, we
associate with an operator from X into CL a function from '
L into X' in the following way: T T¥#, T*(1)=-éloT. This
mapping induces an isometric isomorphism between L(x,cL) and
the space of weak*-continuous-functions c(L,x'(weak*)) and-
between the space of cﬁmpabt operators K(X,CL) and the space

c(L,X') of norm-continaous functions [7, p.aoq],

w
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136 DIRK VERNER

Now, Tel(X,CL) 4is nice if and only if the representing
function assumes only extremal values: T#(L)g ex By
be said if X = CK, TelL(CK,CL) is nice if and only if T has
the form Tf =2- foy with ¥ : LK continuous, A eCL with
modulus one, Equivalently, T 1is nice if and only if T is
essentially multiplicative (Tf-Tg = T1-T(fg)).

More can

As we pointed out before, in general it is not necessary for an
extreme operator to te'nice. In the case of operators betweer CK-
spaces, however, the situation is much more involved. Several
authors have treated the question if an extreme operator T from

Ck into CL is necessarily nice, cf.[Bj,[é],[Q],iQ}, 51]. Although
a variety of properties of K, L or T is known that ersure that

T is nice (e.g. K metrizable, real scalars; or L extremally dis-
connected, no matter if the scalars are real or complex), the general
answer is no since Sharir has constructed countcrexemplers toth for
the real and complex case DZ],E13].

All these results may be translated into results corcorning measurc
valued functions, thanks to the isometry Twe T+, I this paper ve
siiell- cansider operators from C(K,E) to C(L), vhere i is &
“enech space., Oy Singer's theorem, the dual of C(K,t) may b
thought of es the spece FN(K,E') of £'-valued regular Corel
mcFsures of Tinitc variation, eguipned with the totel veriation
norm, cF.:157,fﬁ§E or @C]. Thus, v.e shall investigate functions on

L the values of vhichk are vector measures, The most far-reaching
results can be ottained for compact operators, represented by
elements of C(L,M(K,E')). As it turns out, the proofs work for the
space C(L,M(K,z)) , too, when Z 1is not a dual Banach space.
Throughout, X, Y, Z, [ denote Banach spaces, K, L denote compact
Hausdorff spaces. The results apply to real as well as complex Banach

spaces.-

2. Characterization of extreme points,

Proposition 1: Let T be an extreme point of the unit ball of
k(c(K,E),CL). Then, for 1lel, T#(1) 4is a point measure with

norm one: T#*(1) -p@fw peE' with norm one,

The case E = scalars has been settled in [8]. Proposition 1 is a

consequence of the following result.
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Proposition 1*: Let f be an extreme point of the unit ball of
c(L,m(k,2)). Then, for lel, f(1) is a point measure with

norm one,

Proof: First of all [f(1)[= 1 since £(1)+(1-[[f(2)]|)m 11e in the
unit ball of M(K, Z) whenever |m“41. Next, consider the function
F: L= M(K), F(l).-lf‘(l)l Since |Hm1|-—|m2| | < | my=my | For

vector measures m, of bounded variation, F 1is a norm-continuous

function which hasipqpbability measures as values, we claims

Feex {glgeC(L,rMK), all g(1) are probability measures},
Once this claim is established, we finish the proof as follows,
F defines an operator S: CK—CL by (S¢)(1):= Jyd(F(1)), of
course S*¥ = F, If F 1is extreme, §, too, is extreme and positive,
By & result dur to Phelps [9:18 is nice, that means F(1) is a
noint measure, It follows that f(1) is a point measure.
To prove the claim let u: L—»M(K) be a continuous function such
that F(1)+u(1)30 and (F(1)+u(1))(K) = 1 for all 1lel.
In this case u(l) is absolutely-continuous with respect to F(1)
so that there is a Borel function h, with u(l)-hl-F(l). We may
(and shall) assume that h, is real-valued and -1 ghl(k)f 1 for
all keK, Let m(l):-hl- f(1) em(k,z). Then (a) 1-m(1) is
continuous, and (b) "F(l):m(l)"‘1 for all lel. We conclude that
m=0 and consequently u=0,
It remains to prove (a) and (b).
(a) Im(2) = m(1*) || = [Ihy- (1) = by £(2)]]
s IIh (r(1)-¢(1))+ lIthy=hy e

The first term = | |h| d|f(1)-F(1") [6, p.173
¢ |r(2) - (1)) .
The second term = [ |h,~ l'l dF(1') 6, p.173
- cee + s
with Ar={k|k €K, hy (k)2 hya ()}, BB--K\A.
wo [y e = Jphy oF(1') = [, by, dF(1Y)

- jA hy dF(1) - j hye oF(2') + [ by d(F(l')—F(l
¢ Ju(1) - u(2")| (A) + |F(2) - F(l')l(A)

B may be treated analogously so that '

(1) = m(2)]| & fle(2) = £C2)] + Ju(2) = w(a)] + lIF(2) - FQa"))}
Therefore m(.) is continucus,
() r(2) £ m(2)]. = (2 £ 0y)-#(2) |

=1L ny oFl1) [, p.173
- [ dF(1) + jh dF(1)
= (F(1) £ u(1))(K) = 1.
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In order to tackle the problem if an extreme operator from C(K,E)
into CL 4s nice we need to know the extreme functionals on C(K,E).
They were first descrited by Singer [14] , but the proofs in the
literature are quite complicated, cf. also [17]. Here we shall pre-

sent a very simple argument,

Theorem 2: A vector measure meM(K,Z) 1is an extreme point of the

unit ball if and only if m-z@&k for some 2zeex B k e K,

Zl
Proof: Assume m is extreme, If it were not a point measure, the
total variation measure |m| wouldn't be either. Thersfore

0« |m|(A)-:a<1 for some Borel set A, Then we can represent m

as a non-trivial convex combination of norm-one measures:

mea (5-1-1Am) + (1-a) ((1-a)~" dpem). We infer that m is of the
form wak, since m 1is extreme we have zeex B,

On the other hand, if m is as stated, we shall slﬁow that it is
extreme. Indeed, m is extreme in the subspace ZD:-{X@ Sk| X € Z}.
But Zo is a very well complemented subspace, namely, it is the
range of a projection P satisfying ||n||- “Pn|| + ||n-Pn) for all
neM(K,2), a so-called L-projection. Here, Pn:-n({k})ogk defines
the required projection. It follows easily from the defining norm-

c
condition that ex Bzo_.ex BM(K,Z)' and m is extreme,

Gpecializing to Z=E' we get Singer's theorem on extreme functionals.
We may state. it in the form: @Q: C(K,E)—E, Qf:i= f(k) (keK fixed,
but arbitrary) is a nice operator. Looking at the above aégument

we see that the proof used the facts that Q' 1is an isometric em-
bedding and that the polar of Ker @ (that is Zo) is the range of

an L-projection. A space with this property is called an M-ideal
[1],[2]. So we have actually shown:

Proposition 3: Suppose Q: X-Y 1s a quotient map such that Ker @
is an M-ideal, Then Q@ 1is a nice operator. Moreover, p e ex By,
iff Q'peex Bx,.

Note that Proposition 3 includes [5, Theorem 1(b)].

It is known that an M-ideal J of a Banach space X satisfies the
following intersection property IP(n) for each neWN:

Whenever U1,...,Un are open balls in X with non-void intersection
'@ euch that JaU, % § for =sll i, then JaU s @.

Conversely, if a clésed subspace J of X eatisfies IP(3), then J
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is an M-ideal {7, Th. 5.9],[2, Th, 2.17). Alfsen and Effros [1, p.125)
exhibit an example of a subspace of some 3-dimensional real Banach
space which fails to be an M-ideal but satisfies IP(2)., It is. how-
ever, an open problem, whether such an example exists in a complex .
Banach space [20]. Here it is interesting to note that Propositinn 3
holds if Ker Q satisfies the slightly weaker condition of having
IP(2). This is shown in [18] by means of a direct application of the
intersection property.

Proposition 3 can be used to prove the following extension thenrem

for extreme operators.

Proposition 4: Suppose Q: X—Y 1is a guotient map and that Ker Q
is an M-ideal of X. If ~S: Y—CL 1is an extreme operator, then
T:= SoQ: X—CL is an extreme operator, and T#(1) is extreme

iff s%(1) 1is extreme. (Analogously for compact operators.)

Proof: We have only to show that T is extreme, the other statements
are proved in Proposition 3. Let ||T + U}|¢1. Then we have
[lar(s*(1)) + U*(l)" 41 for all lel. By assumption on Q@ Q@' is
an isometric isomorphism from Y' onto W:=(Ker Q)o & X', and there
is a decomposition X' =W Ggw* with some closed subspace W‘s X',
Using this we may write U*(1) = w(1) + w*(1) ¢ W ® w", and theres
fore 13 flar(s*(1)) & w(1)|| + l¥*(1)|l. Since S is extreme, a
theorem due to Sharir [11] yields 1 = |s*(1)| = lar(s*(1))]|

on a dense subset H of L, Hence w'(1)=0 on H, equivalently
u*(H) eW. But U¥ is weak*-continuous, and W 1is weak*-closed so
that U*¥(L) €W, Thus, for 1lel there exists v{1)eY' such that
u*(1) =Q'(v(1)). Now v 1is seen to be weak*-continuous, hence v =0
and U=0 because [a'(s*(1)) £ Q'(v(1))] = [ls*(1) & v(1)] ¢ 1.
The (easier) proof for compact operators is established in the

same way.

Corollary 5: Let S: E—CL be an extreme operator (resp. extreme
compact operator). Then for every compact Hausdorff space K
there exists an extreme operator (resp.-extreme cnmpact.operator)
T: C(K,E}=CL ith (1) extreme iff ©S%(1) extreme,

Proof: Choose any keK and consider Q: C(K,E)—E, Qfi= f(k).
Proposition 4 gives the result, the M-ideal property has beqn
observed in the proof of Theorem 2. Cf..also [2, prop. 10.1].
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In [3] it is shown that for every compact Hausdorff space L there
exists a Banach space E and an extreme operator S: E—CL such.
that S*(1) is extreme if and only if 1 is an isolated point of
L. If L 4is the unit interval, E may be chosen to be 4-dimensional.
The following theorem shows that the space C(K,E) perfectly reflects
the properties of CK and E as far as the characterization of
compact extreme operators_ into CL is concerned; for merely bounded
operators we shall need additional assumptions.
Theorem 6: The following statements are equivalent:

(a) Every extreme point of the unit ball of K(E,CL) is nice.

(b) Every extreme point of the unit ball of K(C(K,E),CL) is

nice, where K 1is an arbitrary compact Hausdorff space.

Proof: That (b) implies (a) is the contents of Corollary 5. Assume
(a) and let T: C(K,E)—CL bte an extreme point of the unit ball of
compact operators. By Proposition 1 we have T#(1) = p(l)® g?(l)'
Since T% is norm-continuous, ¥ is locally constant:

If lel, then ||T#(1) - T™*(1')||<1 for 1' in some neighbour-
hood U of 1, We conclude y(1')=y(1) for all 1'eU., L is
compact, so there are finitely many pairwise disjoint clopen sets

lgreeesb covering L and k,,...,k_ €K with y(1) =k, for

1 el,. Ngw p(.) is seen to be norm-continuous, hence it represents

e compact operator from E to CL. By assumption (a) we have only

to show that it is extreme, Let u: L3E' be a norm-continuous
furction such that |[p(1) + u(1)][£&1 for all 1eL. Define

w(1):=Y _‘Iti(l)iu(l)@éki. Then w is norm-caontinuous, [[T#(1)+w(1)] < 1
for all 1, and hence w = 0, We infer u = O,

A consequence of the above proof is:

Corollary 72 If T 1is an extreme point of the unit ball of
k(ck,CL), then T is a finite rank operator,

Proof: We have T#(1) = p(l)'SW(l)' p=T4irCL. As pointed out above,
there are pairwise disjoint clopen sets L1""'Ln covering L and
Kyreoosk €K with \p(l)-ki for lel,. It follows

(TF)(1) = T™*(2)(F) = p(2) F(ki) for lel
Hence TP = 5 f(ky) 4T
and range(T) € span {JLiTl 1=1,0004n} .

g0 f € CK,
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Theorem 8: Suppose that every extreme operator from E to CL
is nice. Let T: C(K,E)—CL be an extreme operator such that

T*#(1) 4is & non-zero point measure for all 1lebL. Then T is nice.

Proof: T*# is of the form T#(1) = p(1)e® SW(I)' p(1) eE'\ {0},
The function 1h>p(1) is seen to be weak¥-continuous, hence
represents a bounded linear operator S: E— CL. In order to show
that T is nice it is sufficient to show that § 1is nice by
Theorem 2, For this it is enough to prove that S is extreme
according to our present assumptions, In fact, let u be a weak¥-
continuous function from L into E' such that for all 1lel
le(2) + u(1)ll & 1. Then [|T*(2) + u(1)@§w(1)|l ¢ 1 for all 1.

But 1 kau(1)05w(1) is weak¥-continuous since Y: L— K and the
map (BE,,weak*) x K— (BC(K'E).,weak*), (a,k)—> as Sk are
continuous, Therefore u=0, and S 1is extreme,

(To prove that ¥ is continuous fix 1,elL. We shall show that SV(-)
is continuous at 1, Choose x¢E so that p(L)(x) = 1. Then

for geCL ™(1)(go x) = p(1)(x) glv(1)) ,

and the weak*-continuity of T and p together with p(1)(x) # O
imply the weak¥-continuity of éV[-)' Since . 1, 1is arbitrary

we are done.)

It can be shown that the conditions in Theorem 8 concerning T

are fulfilled whenever K 1is dispersed and E 1is finite dimensional,
cf. [18].

To finish with, let us rephrase Theorem 6 in terms of vector-valued

functions,

Theorem 6*%: The following statements are equivalent:
(a) Every extreme function in C(L,Z) assumes only extreme values,
(b} Every extreme function in C(L,M(K,Z)) assumes only extreme
values, where K is an arbitrary compact Hausdorff space,

In [19] it 5 ;roved that an abstract L-space Z satisfies the
above conrditions,

141
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