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A Nearly Uniformly Convex Space which is not a (p) -Space 

DENKA KUTZAROVA 

Sofia*) 

Received 15 March 1989 

An example is given of a nearly uniformly convex Banach space which is not a (/?)-space. 
This answers a question of Rolewicz. 

The Kuratowski measure of noncompactness of a set A in a Banach space X is the 
infimum OL(A) of those e > 0 for which there is a covering of A by a finite number of 
sets At with diam (At) < e. 

A norm || • || in a Banach space X is said to be A-uniformly convex (see [3] and [8]) 
if for each e > 0 there is a 8 > 0 such that for each convex set E contained in the 
closed unit ball with OL(E) > e, we have inf {||x||: x e E} < 1 — 5. This is equivalent 
to the notion of nearly uniform convexity of the norm (NUC), introduced by 
Huff [4]. 

Let (X, || • ||) be a Banach space with closed unit ball B. By the drop D(x, B) defined 
by an element x e X, x $ B, we mean the convex hull of the set {x} u B. Denote 
R(x, B) = D(x, B) \ B. The norm is called to satisfy condition ($) (cf. [8]) if for 
every e > 0 there is a S > 0 such that 1 < ||x| < 1 + S implies OL(R(X, B)) < e. 
The space X is a (/?)-space if it admits an equivalent norm which satisfies the condition 

Rolewicz [8] has proved that uniform convexity => condition (/?) => (NUC) and 
he has posed the question about the converse implications up to renorming. In [6] 
we have proved that the class of (/?)-spaces does not coincide with that of super-
reflexive spaces (independently shown by Montesinos and Torregrosa [7]). In this 
paper we shall show that it does not coincide with the class of nearly uniformly 
convexifiable spaces, either. 

Consider the example from [5] of a reflexive Banach space which does not admit an 
00 

equivalent norm, uniformly differentiable in every direction. Let F = f| {1, 2,. . . , i}. 

That is, F is the family of all sequences y = {y(}T=i °f positive integers such that 
1 ^ yl ^ i + 1. Denote by # r the family of all finite subsets of F which have the 
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property that, if A e $ r , then there is a positive integer m such that, if yk = {yij^i 
and yj = {yj}T=i a r e different members of-A, then yk =j= yj and y[ = y) for 1 ^ i ^ 
_̂  m — 1. We denote by X the space of all real — valued functions x on F such that 

H = s«p{[S(i:K)')i)2]i/2}<~. 
neN yeAn 

where the supremum is taken over all finite systems {An}neN with each An e <Pr and 
Ai n Aj = 0 if i 4= j . 

It is shown in [6] that the space X is J-uniformly convex. The proof of the fol­
lowing statement is inspired by ideas of Day [2]. 

Theorem. The space X is not a (/?) — space. 

Proof. Suppose the contrary, i.e. there exists an equivalent norm |*| in X which 
satisfies the condition (/?). We may assume without loss of generality that 

(1) ||x|| = |x| = M||x[| for every xeX9 

where 1 ^ M < co. 
Put 8 = 1/M. 
Denote by Bt the closed unit ball with respect to the norm |-|. By the assumption, 

| • | satisfies (/?), thus we may choose and fix a 5 > 0 so that 

(2) x e X , 1 < |JC| < 1 + 25 imply a(K(x, Bx)) < e\2 . 

Fix n large enough so that 

(3) e(l + 5\2)n > 1 . 

For y = {y'}r=1 eFlet 7tj(y) = f9j = 1, 2, . . . . 
First step. Define the following sets in X 

*1 0 ) = k W : y e r , 7r,.(y) = 1 for 1 = ; < 2n - 1 and TT/,) = i, for; = 2n - 1} , 
where 1 ^ i =" 2n. 

Consider a couple ( T ^ L i , ! ^ ) , 1 = fc = 2""1. Choose and fix an arbitrary 
t' G T 2 ^ t . Put x = (1 + 5) tf. We have that \x\ = e(l + 5)9 whence \x\ = 1 + 5. 

First case. \x\ > 1. 
Let j ; 6 T ^ be arbitrary. Obviously, \y\ = s and thus |j>| ^ 1. Then, (x + y)\2 e 

e Z>(x, Bt). For different elements we have 

|(x + yi)\2 - (x + y2)\2\ = I;;, - y2|/2 = fly, - y2[|/2 > e/2 . 

On the other hand, it follows from (2) that a(x, 5X) < e/2. Therefore, the relation 
(x + y)\2 e R(x9 Bx) is fulfilled for at most finite subset of T2°k\ Since the set T2°fc

} is 
infinite, we obtain that for infinitely many y e T^ the following holds 

|(* + y)l2\ <. i . 

Moreover, ||(x + ,>)/2|| => e(l + <5/2). 
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Second case. \x\ = 1. Then the element x itself will do but for the sake of uniformity 
we shall consider again (x + y)\2 for arbitrary y e T ^ . Clearly, |(x + j;)/2| = 1 and 

||(x + y)\2\\ = <1 + ill) . 

Now in both cases, let us vary the element t' e T(
2°k

)_1. It is easy to observe that we 
may find an infinite set 7^1) of elements t = (x + y)\2 of the form above with |f| g 1 
so that the conditions tl9t2e T£1}, t1 4= t2 imply supp tx n supp t2 = 0 and hence 
IW - t2\\ > e(l + S\2) > s. 

Second step. Similarly, consider (T^k-u T2k)> 1 ;= fc ̂  2n~2. Fix an arbitrary 
*' ~ I2V-1 a n d Pu t x = (1 + 5) *'. We have that 

||x|| = £(1 + 5/2) (1 + <5) and |x| = 1 + 5 . 

Consider the case |x| > 1. Let ye T$ be arbitrary. We have flyfl = e(l + <5/2) 
and |y | = 1. Since suppxu suppye<Pn then ||x + j>|] = e(l + (5/2) (2 + 5), i.e. 

|(x + J 0 | 2 | = a(l + 8\2Y . 

According to the choice of T\X)
9 1 = 1 ^ 2n_1 , we have that for different elements 

yl9 y2 e T^ the inequality fl^ — y2\ > e holds, which gives 

\(x + yi)\2 - (x + y2)\2\ > e/2 . 

As in the first step, it follows from (2) that for infinitely many y e T ^ it is true that 

|(* + y)/2| = 1 . 

If |*| = 1, we have again for each y e T^1}, 

| (* + J0/2| = 1 and ||(x + y)\2\\ = e(l + <5/2)2 . 

Then, we vary t' e ity-i- Find an infinite set T[2) of elements t = (x + y)\2 with 
|f| = 1 so that different members tl9t2e Tk

2) have disjoint supports and hence 
I*i " M > e(l + d\2)2 > 8. 

We can repeat n — 2 more times and thus we shall obtain a non-void set T(
1
n) 

such that for t e T(n)
9 

\t\ = 1 and ||*|] =e ( l + <5/2)n . 

By (1) and (3), this is a contradiction, which completes the proof. 

Remark. We may also give a separable example of a (NUC)-space which is not 
a (jS)-space. Consider the example of A. Baernstein [1] of a reflexive Banach space 
which does not possess the Banach-Saks property. In order to show that it is not 
a (/?)-space, we can use the same argument. More precisely, represent the set of all 
integers, greater than 2n

9 as a union of 2n disjoint infinite subsets and procede as 
above. In [6] we have proved that this space is (NUC). 
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