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RENDICONTl DEL CIRCOLO MATEMATICO Dí PALERMO 
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SASAKIAN GEOMETRY, HYPERSURFACE SINGULARITIES, 
AND EINSTEIN METRICS 

CHARLES P. BOYER AND KRZYSZTOF GALICKI 

1. INTRODUCTION 

This review article has grown out of notes for the three lectures the second author 
presented during the XXIV-th Winter School of Geometry and Physics in Srni, Czech 
Republic, in January of 2004. Our purpose is twofold. We want give a brief intro­
duction to some of the techniques we have developed over the last 5 years while, at 
the same time, we summarize all the known results. We do not give any technical 
details other than what is necessary for the clarity of the exposition. In conclusion 
we would like to argue that Sasakian geometry has emerged as one of the most pow­
erful tools of constructing and proving existence of special Riemannian metrics, such 
as Einstein metrics or metrics of positive Ricci curvature, on a wide range of odd-
dimensional manifolds. The key geometric object in the theory is that of a contact 
structure (hence, only odd dimensions) together with a Riemannian metric naturally 
adapted to the contact form. Sasakian metrics in contact geometry are analogous to 
the Kahler metrics in the symplectic case. 

We begin with basic facts about contact and Sasakian manifolds after which we focus 
on exploring the fundamental relation between the Sasakian and the transverse Kahler 
geometry. In this context positive Sasakian, Sasakian-Einstein, and 3-Sasakian man­
ifolds are introduced. In Section 3 we present all known constructions of 3-Sasakian 
manifolds. These come as V-bundles over compact quaternion Kahler orbifolds and 
large families can be explicitly obtained using symmetry reduction. We also discuss 
Sasakian-Einstein manifolds which are not 3-Sasakian. Here there has been only one 
effective method of producing examples, namely by representing a Sasakian-Einstein 
manifold as the total space of an Sl Seifert bundle over a Kahler-Einstein orbifold. 
In the smooth case with a trivial orbifold structure, this construction goes back to 
Kobayashi [Kob56]. Any smooth Fano variety Z which admits a Kahler-Einstein 
metric can be used for the base of a unique simply connected circle bundle P which 
is Sasakian-Einstein. Any Sasakian-Einstein manifold obtained this way is automati­
cally regular. It is clear that, in order to get non-regular examples of Sasakian-Einstein 
structures, one should replace the smooth Fano structure with a Fano orbifold. This 
was done in [BG00] where we generalized the Kobayashi construction to V-bundles over 
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Fano orbifolds. However, at that time, with the exception of twistor spaces of known 
3-Sasakian metrics, compact Fano orbifolds known to admit orbifold Kahler-Einstein 
metrics were rare. The first examples of non-regular Sasakian-Einstein manifolds which 
are not 3-Sasakian were obtained in [BGOO]. There we observed that Sasakian-Einstein 
manifolds have the structure of a monoid under a certain "join" operation. A join 
Mi • M2 of non-regular 3-Sasakian manifold and a regular Sasakian-Einstein mani­
fold (say an odd-dimensional sphere) is automatically a non-regular Sasakian-Einstein 
space. The problem is that our join construction produced new examples starting in 
dimension 9 and higher. It gave nothing new in dimensions 5 and 7. The construc­
tion of 5-dimensional examples followed, however, a year later, and with that, new 
non-regular Sasakian-Einstein examples in every dimension could be obtained. 

In [BG01] the authors constructed three 5-dimensional examples using the results 
of Demailly and Kollar [DK01]. At the same time it became clear that the so-called 
continuity method as being applied by Demailly and Kollar to Fano orbifolds gave 
a cornucopia of new examples of Kahler-Einstein orbifolds [Ara02, BG03b, BG03a, 
BGN02b, BGN02a, BGN03b, BGK03, BGKT03, JKOlb, JKOla, Kol04]. A particular 
illustration of how the method works comes from one example in classical differential 
topology. It is well-known [Tak78, BG01] that any link of isolated hypersurface singu­
larities has a natural Sasakian structure. The transverse Kahler geometry in such a 
situation is induced by a Kahlerian embedding of a complex hypersurface in an appro­
priate weighted projective space. Section 6 describes Sasakian geometry of links while 
reviewing basic facts about their differential geometry and topology. At the end of this 
section we are left with a powerful method of producing positive Sasakian structure 
on links. 

In Section 7 we begin to discuss the famous Calabi Conjecture proved in 1978 by Yau 
[Yau78]. Yau's proof uses the continuity method and works equally well for compact 
orbifolds. This fact has important consequences for Sasakian manifolds: every positive 
Sasakian manifold admits a metric of positive Ricci curvature. This observation offers 
a very effective tool of proving the existence of such metrics on many odd-dimensional 
manifolds. One interesting example is a theorem of Wraith [Wra97], proved originally 
by surgery methods, which asserts that all homotopy spheres which bound paralleliz-
able manifolds admit metrics of positive Ricci curvature. The authors together with 
M. Nakamaye [BGN03c] recently gave an independent proof of this result using the 
methods described here. 

In the next section we turn our attention to positive Kahler-Einstein metrics. Even 
in the smooth Fano category tractable necessary and sufficient conditions for such a 
metric to exist are not known. After disproving one of the Calabi conjectures asserting 
that in the absence of holomorphic vector fields Kahler-Einstein metrics should exist, 
Tian proposed his own conjecture [Tia97] proving it in one direction. Even assuming 
the conjecture to be true, in general it is not easy to check if a particular Fano manifold 
(orbifold) satisfies the required stability conditions. On the other hand, in some cases, 
the continuity method has been used effectively to check sufficient conditions. In this 
respect the method of Demailly and Koll&r mentioned before draws on earlier results 
of Nadel [Nad90], [Siu88], Tian [Tia87a, Tia87b, Tia90], and Tian and Yau [TY87]. 

The last two sections give a summary of what has been accomplished to date by 
applying the continuity method to Fano orbifolds. We begin with a brief discussion 
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of the method itself. We follow with two important examples of how the method 
applies to orbifolds constructed as hypersurfaces in weighted projective spaces. We 
review our recent work [BGK03, BGKT03] in collaboration with J. Koll&r which shows 
that standard odd-dimensional spheres have Einstein metrics with one-dimensional 
isometry group and very large moduli spaces. There we also proved that all homotopy 
spheres in dimensions 4n + 1,7,11, and 15 that bound parallelizable manifolds admit 
Sasakian-Einstein metrics. We discuss a conjecture that the last statement is true in 
any odd dimension. Furthermore, it is shown that in each odd dimension starting 
with n = 5 there are infinitely many rational homology spheres which admit Einstein 
metrics [BG03a]. We close with the discussion of Sasakian-Einstein geometry of Barden 
manifolds. 

Acknowledgments We would like to thank Jdnos Koll&r for comments. The authors 
were partially supported by the NSF under grant number DMS-0203219. KG would 
also like to thank Max-Planck-Institut fur Mathematik in Bonn for hospitality and 
support. This paper was written during his one year visit there. In addition, KG 
would like to thank the organizers of the XXIVth Workshop on Geometry and Physics 
for support and Erwin Schrodinger Institute in Vienna for hospitality and support 
during his short visit there. 

2. CONTACT STRUCTURES AND SASAKIAN METRICS 

Contact transformations arose in the theory of Analytical Mechanics developed in 
the 19th century by Hamilton, Jacobi, Lagrange, and Legendre. But its first system­
atic treatment was given by Sophus Lie. Consider R2n+1 with Cartesian coordinates 
(x1, • • • , xn\ y1, • • • , yn\ z)y and a 1-form r) given by 

(1) r) = dz-J2vidxi 

i 

It is easy to see that r) satisfies rj A {dr))n ^ 0. A 1-form on R2n+1 that satisfies this 
equation is called a contact form. Locally we have the following 

Theorem 1. Let r) be a 1-form on R2n+1 that satisfies r) A {drj)n ^ 0. Then there is 
an open set U C R2n+1 and local coordinates (x1, • • • , xn\ y1, • • • , yn\ z) such that r) has 
the form (1) in U. 

Definition 2. A (2n+l)-dimensional manifold M is a contact manifold if there exists 
a 1-form 77, called a contact 1-form, on M such that 

n A {dr))n 7- 0 

everywhere on M. A contact structure on M is an equivalence class of such 1-forms, 
where rf ~ rj if there is a nowhere vanishing function f on M such that rf = fr). 

Lemma 3. On a contact manifold {M^rf) there is a unique vector field f, called the 
Reeb vector field, satisfying the two conditions 

^ J 77 = 1, t\dr) = 0. 
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Definition 4. An almost contact structure on a differentiate manifolds M is a triple 
(£, 77, $), where $ is a tensor field of type (1,1) (i.e. an endomorphism of TM), £ is a 
vector field, and 77 is a 1-form which satisfy 

77(0 = 1 and $ o $ = - I + £®77, 

where I is the identity endomorphism on TM. A smooth manifold with such a structure 
is called an almost contact manifold. 

Let (M, 77) be a contact manifold with a contact 1-form 77 and consider V = ker 77 C 
TM. The subbundle V is maximally non-integrable and it is called the contact distri­
bution. The pair (Vju), where u is the restriction of 7̂7 to V gives V the structure 
of a symplectic vector bundle. We denote by J(V) the space of all almost complex 
structures J on V that are compatible with u, that is the subspace of smooth sections 
J of the endomorphism bundle End(£>) that satisfy 

(2) J2 = - I , drj(JX, JY) = drj(X, Y), drj(X, JX) > 0 

for any smooth sections X, Y of V. Notice that each J G J(V) defines a Riemannian 
metric gx> on V by setting 

(3) gv(X,Y) = dr)(X,JY). 

One easily checks that gv satisfies the compatibility condition gv(JX, JY) = gv(X, Y). 
Furthermore, the map J H-» gv is one-to-one, and the space J(T>) is contractible. A 
choice of J gives M an almost CR structure. 

Moreover, by extending J to all of TM one obtains an almost contact structure. 
There are some choices of conventions to make here. We define the section $ of 
End (TM) by $ = J on V and $f = 0, where f is the Reeb vector field associated to 
77. We can also extend the transverse metric gv to a metric g on all of M by 

(4) g(X, Y) = gv + rj(X)rj(Y) = drj(X, QY) + 77(X)77(r) 

for all vector fields X,Y on M. One easily sees that g satisfies the compatibility 
condition g(9X, QY) = g(X, Y) - rj(X)rj(Y). 

Definition 5. A contact manifold M with a contact form 77, a vector field £, a section 
$ of End (TM), and a Riemannian metric g which satisfy the conditions 

77(0 = 1, $2 = -I-rc;®77, 

g(<S>X,$Y)=g(X,Y)-rj(X)rj(Y) 

is known as a metric contact structure on M. 

Definition-Theorem 6. A Riemannian manifold (M, g) is called a Sasakian mani­
fold if any one, hence all, of the following equivalent conditions hold: 

(1) There exists a Killing vector field £ of unit length on M so that the tensor field 
$ of type (1,1), defined by $(X) = -Vx£, satisfies the condition 

(Vx*)(r) = g(X,Y)t-g(t,Y)X 

for any pair of vector fields X and Y on M. 
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(2) There exists a Killing vector field f of unit length on M so that the Riemann 
curvature satisfies the condition 

R(X,QY = g(t,Y)X-g(X,Y)t, 
for any pair of vector fields X and Y on M. 

(3) The metric cone (C(M),g) = (R+ x M, dr2 + r2g) is Kahler. 

We refer to the quadruple S = (£, 77, $, g) as a Sasakian structure on M, where 77 
is the 1-form dual vector field £. It is easy to see that 77 is a contact form whose 
Reeb vector field is £. In particular S = (£, 77, $, g) is a special type of metric contact 
structure. 

The vector field f is nowhere vanishing, so there is a 1-dimensional foliation T% 
associated with every Sasakian structure, called the characteristic foliation. We will 
denote the space of leaves of this foliation by Z. Each leaf of T% has a holonomy group 
associated to it. The dimension of .the closure of the leaves is called the rank of S. We 
shall be interested in the case rk(<S) = 1. We have 

Definition 7. The characteristic foliation T$ is said to be quasi-regular if there is a 
positive integer k such that each point has a foliated coordinate chart (U, x) such that 
each leaf of T$ passes through U at most k times. Otherwise T$ is called irregular. If 
k = 1 then the foliation is called regular, and we use the terminology non-regular to 
mean quasi-regular, but not regular. 

3. TRANSVERSE KAHLER GEOMETRY 

Let (M, f, 77, $, g) be a Sasakian manifold, and consider the contact subbundle V = 
ker 77. There is an orthogonal splitting of the tangent bundle as 

(5) TM = V@ Lf, 

where L% is the trivial line bundle generated by the Reeb vector field f. The contact 
subbundle V is just the normal bundle to the characteristic foliation T^ generated by 
£. It is naturally endowed with both a complex structure J = <&\V and a symplectic 
structure 7̂7. Hence, (T>, J, drj) gives M a transverse Kahler structure with Kahler 
form drj and metric gv defined as in (3) which is related to the Sasakian metric g 
by g = gv © V 0 77 as in (4). We have the following fundamental structure theorems 
[BGOO]: 

Theorem 8. Let (M,£,77, $,g) be a compact quasi-regular Sasakian manifold of di­
mension 2n + 1, and let Z denote the space of leaves of the characteristic foliation. 
Then the leaf space Z is a Hodge orbifold with Kahler metric h and Kahler form u 
which defines an integral class [u] in H2

Th(Z,ll) so that n : (M,g)—>(Z,h) is an orb­
ifold Riemannian submersion. The fibers of it are totally geodesic submanifolds of M 
diffeomorphic to Sl. 

Theorem 9. Let (Zy h) be a Hodge orbifold. Let n : M—>Z be the S1 V-bundle whose 
first Chern class is [u], and let rj be a connection 1-form in M whose curvature is 2ir*u>, 
then M with the metric 7T*/i + 77 0 77 is a Sasakian orbifold. Furthermore, if all the 
local uniformizing groups inject into the group of the bundle Sl, the total space M is 
a smooth Sasakian manifold. 
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Remark 10. The structure theorems discussed above show that there are two Kahler 
geometries naturally associated with every Sasakian manifold and we get the following 
diagram 

C(M) <-» M . 

(6) 

The orbifold cohomology groups H^.b(Z,Z) were defined by Haefliger [Hae84]. In 
analogy with the smooth case a Hodge orbifold is then defined to be a compact Kahler 
orbifold whose Kahler class lies in H^.b(Z,Z). Alternatively, we can develop the con­
cept of basic cohomology. This is useful in trying to extend the notion of Z being 
Fano to the orbifold situation. This can be done in several ways. Here we will use the 
notion of basic Chern classes. Recall [Ton97] that a smooth p-form a on M is called 
basic if 

(7) £Ja = 0, £ e a = 0, 

and we let A^ denote the sheaf of germs of basic p-forms on M, and by Q,PB the set of 
global sections of A^ on M. The sheaf A^ is a module over the ring, A^, of germs of 
smooth basic functions on M. We let C^(M) = Q,°B denote global sections of A^, i.e. 
the ring of smooth basic functions on M. Since exterior differentiation preserves basic 
forms we get a de Rham complex 

(8) >n'_i_> .aj*1 >..-

whose cohomology HB(T$) is called the basic cohomology of (M,T£). The basic co­
homology ring HB(Ft) is an invariant of the foliation T^ and hence, of the Sasakian 
structure on M. It is related to the ordinary de Rham cohomology H*(M,R) by the 
long exact sequence [Ton97] 

(9) >H>B(F() >HP{M, R) J!-Hjr-l(r()-Lni»l(r() • • • • 

where 5 is the connecting homomorphism given by 5[a] = [dq A a] = [drj\ U [a], and 
jp is the composition of the map induced by f J with the well known isomorphism 
Hr(M,R) « Hr(M,R)sl where Hr(M,R)sl is the SMnvariant cohomology defined 
from the Sl-invariant r-forms ftr(M)51. We also note that drj is basic even though 77 is 
not. Next we exploit the fact that the transverse geometry is Kahler. Let VQ denote 
the complexification of V, and decompose it into its eigenspaces with respect to J, 
that is, Vc = V1'0 © V0'1. Similarly, we get a splitting of the complexification of the 
sheaf A^ of basic one forms on M, namely 

Ak®C = A^°©A°;1. 

We let £B
q denote the sheaf of germs of basic forms of type (p,q), and we obtain a 

splitting 

(10) A r
B ® C = 0 £ £ « . 

p+q=r 
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The basic cohomology groups H^^) are fundamental invariants of a Sasakian 
structure which enjoy many of the same properties as the ordinary Dolbeault coho­
mology of a Kahler structure. 

Consider the complex vector bundle V on a Sasakian manifold (M,£,rj,$,g). As 
such V has Chern classes Ci(£>),--- ,cn(V) which can be computed by choosing a 
connection V p in V [Kob87]. Let us choose a local foliate unitary transverse frame 
(X!, • • • ,Xn), and denote by ttT the transverse curvature 2-form with respect to this 
frame. A simple calculation shows that fiT is a basic (1, l)-form. Since the curvature 
2-form Q,T has type (1,1) it follows as in ordinary Chern-Weil theory that 

Definition-Theorem 11. The kth Chern class Ck(V) of the complex vector bundle 
V is represented by the basic (k,k)-form 7* determined by the formula 

det (In - — nT) = 1 + 7 l + • • • + 7A • 

Since 7* is a closed basic (k,k)-form it represents an element in HB' (J7^) C HB*^) 
that is called the basic kth Chern class and denoted by Ck(T^). 

We now concentrate on the first Chern classes Ci(V) and c i ( ^ ) . We have 

Definition 12. A Sasakian structure (£,r},$,g) is said to be positive (negative) if 
c\(!Fz) is represented by a positive (negative) definite (l,l)-form. If either of these 
two conditions is satisfied (£, 77, $, g) is said to be definite, and otherwise (£, 77, $, g) is 
called indefinite. (£,, rj, $, g) is said to be null if Ci(.^) = 0. 

In analogy with common terminology of smooth algebraic varieties we see that a 
positive Sasakian structure is a transverse Fano structure, while a null Sasakian struc­
ture is a transverse Calabi-Yau structure. The negative Sasakian case corresponds to 
the canonical bundle being ample; we refer to this as a transverse canonical structure. 

Remark 13. Alternatively, a complex orbifold Z is Fano if its orbifold canonical 
bundle Kzorb is anti-ample. In the case Z is well-formed, that is when the orbifold 
singularities have codimension at least 2, the orbifold canonical bundle KZorb can be 
identified with the ordinary canonical bundle. However, in the presence of codimen­
sion 1 singularities the orbifold canonical divisor is not the usual algebraic geometric 
canonical divisor, but is shifted off by the ramification divisors coming from the codi­
mension one singularities [BGK03]. We shall give specific examples of this difference 
later. 

4. T H E EINSTEIN CONDITION 

Definition 14. A Sasakian space (M,g) is Sasakian-Einstein if the metric g is also 
Einstein. For any 2n+l-dimensional Sasakian manifold Ric(X,£) = 2ri77(X) imply­
ing that any Sasakian-Einstein metric must have positive scalar curvature. Thus any 
complete Sasakian-Einstein manifold must have a finite fundamental group. Further­
more the metric cone on M (C(M),g) = (R+ x M, dr2 + r2g) is Kahler Ricci-flat 
(Calabi-Yau). 
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The following theorem [BGOO] is an orbifold version of the famous Kobayashi bundle 
construction of Einstein metrics on bundles over positive Kahler-Einstein manifolds 
[Bes87, Kob56]. 

Theorem 15. Let (Z,h) be a compact Fano orbifold with 7r°Tb(Z) = 0 and Kahler-
Einstein metric h. Let n : M—>Z be the S1 V-bundle whose first Chern class is 
/ V . Suppose further that the local uniformizing groups of Z inject into Sl. Then 
Ina\z)' 
with the metric g = ir*h + 7]®rj, M is a compact simply connected Sasakian-Einstein 
manifold. 

Here lnd(Z) is the orbifold Fano index [BGOO] defined to be the largest positive 
integer such that foifL defines a class in the orbifold cohomology group H2

rb(Z,Z). 
A very special class of Sasakian-Einstein spaces is naturally related to several quater-
nionic geometries. 

Definition 16. Let (M,g) be a Riemannian manifold of dimension m. We say that 
(M,g) is 3-Sasakian if the metric cone (C(M),g) = (R+ x <S, dr2 + r2g) on M is 
hyperkahler. 

Remark 17. In the 3-Sasakian case there is an extra structure, i.e., the transverse 
geometry O of the 3-dimensional foliation which is quaternionic-Kahler. In this case, 
the transverse space Z is the twistor space of O and the natural map Z —> O is the 
orbifold twistor fibration [Sal82]. We get the following diagram which we denote by 
o(M) and which extends the diagram in (6) [BGM93, BGM94]: 

Hyperkähler 
Geometry 

»/ 
C(M) 

(11) 
Twistor 

Geometry 
\ 

\ 

м 

0 
/ 

3-Sasakian 
Geometry 

Quaternion Kähler 
Geometry 

Remark 18. The table below summarizes properties of cone and transverse geome­
tries associated to various metric contact structures. 

1 Cone Geometry of C(M) M Transverse Geometry of Tţ 
Symplectic Contact Symplectic 

Kähler Sasakian Kähler 
Kähler positive Sasakian Fano, ci(Z) > 0 
Kähler null Sasakian Calabi-Yau, cx(Z) = 0 
Kähler negative Sasakian canonical, c\(Z) < 0 

Calabi-Yau Sasakian-Einstein Fano, Kähler-Einstein 
Hyperkähler З-Sasakian C-contact, Fano, Kähler-Einstein 
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5. SOME EXAMPLES 

Below we list some well-know constructions of Sasakian-Einstein and 3-Sasakian 
manifolds. We start with the latter. 

Example 19. Examples of 3-Sasakian manifolds are numerous and they are easily 
constructed by way of the so called 3-Sasakian reduction [BGM94]. To begin with one 
starts with the canonical example of o(M) where M is the round (An — l)-dimensional 
sphere 5 4 n _ 1 of constant sectional curvature 1. 

C" 
/ \ 

(12) pn-1 

\ 

5 4 n - l 

P! ,n-l 
/ 

Moreover, there is such a diamond diagram for any semisimple Lie group G and we 
get all homogeneous examples this way [BGM94], i.e., 

(13) Щl)-h 

/ 

\ 

C(G/L) 

\ 

S 

G/L. 

SpЩ-L 

The spaces s J[\.L are the well-known Wolf spaces [Wol65] and they are the only know 
examples of smooth compact positive quaternion Kahler manifolds. A conjecture of 
LeBrun and Salamon [LS94] asserts that there are no other examples. This conjec­
ture have been proved in the first three quaternionic dimensions by Hitchin [Hit74], 
Friedrich and Kurke [FK82], Poon and Salamon [PS91], and Herrera and Herrera 
[HH02a, HH02b]. 

Example 20. Now, one can start with any of the homogeneous diamonds o(G/L) in 
13. In principle, any subgroup H C G of appropriate dimension leads to a reduction 
of o(G/L) by symmetries of H. At various levels of the diamond such reductions 
are known as hyperkahler [HKLR87], 3-Sasakian [BGM94], and quaternionic Kahler 
quotients [GL88], respectively. In practice, it is not easy to assure that, say, the 3-
Sasakian quotient of G/L by H be a smooth manifold. On the other hand, there are 
many cases when this happens. For instance, one can reduce the standard diagram 12 
by an action of Tk C Tn C Sp(n) k-dimensional torus. We get the reduction diagram 

C" 
v/ \ 

PS sin-

\ s 
PS,-1 

Reduction 

by k-torus 

C(S(ӣ)) 

s \ 
z(n) +-

\ 

S(П). 

0(U) 
/ 
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The geometry of the 3-Sasakian reduced space <S(Q) is completely determined by an 
integral kxn matrix Q, which for any k > 1 defines a homomorphism fa : Tk—^Tn C 
U(n) C Sp(n). The real dimension dim(«S(fl)) = 4(n-A;)-l . In the case dim(S(fi)) = 
7, there are choices of fl for any k > 1 which make S(fl) smooth. Since b2(S(Q)) = k 
we conclude that in dimension 7 there exist Einstein manifolds with arbitrarily large 
second Betti number. These were the first such examples and they were constructed 
in [BGMR98]. Interestingly, this toric reduction does not give smooth manifolds with 
large second Betti numbers in dimensions greater than 7 [BGM98]. Nevertheless, one 
can obtain Sasakian-Einstein manifolds with arbitrary second Betti number in any odd 
dimension greater than seven by the join construction discussed in 31 below. Later 
Bielawski showed that in all allowed dimensions all toric examples must occur through 
the above procedure [Bie99]. 

Example 21. The first non-toric examples in dimension 11 and 15 were obtained 
by Boyer, Galicki, and Piccinni [BGP02]. These are toric quotients of the diamond 
digram o(G/L) for G = SO(n),L = 50(4) x SO(n - 4). Alternatively, these can be 
thought of as non-Abelian reductions of o(Sin~1). 

Example 22. Recently, the first non-toric examples in dimension 7 were obtained by 
Grove, Wilking, and Ziller [Zil]. They use an orbifold bundle construction with the 
examples of orbifold twistor space and self-dual Einstein metrics Zk—>Ok discovered 
by Hitchin in 1992 [Hit95]. The self-dual Einstein metric on Ok is defined on S4 \RP 2 

and it has Zk orbifold singularity along RP2. However, it turns out that the bundle 
Mk—>Zk is actually smooth. In particular, one can compute the integral cohomology 
ring of Mk. For odd k the 3-Sasakian manifold Mk is a rational homology 7-sphere 
with non-zero torsion depending on k. Hence, there exist infinitely many rational 
homology 7-spheres which have 3-Sasakian metrics 

Let us turn our attention to complete examples of Sasakian-Einstein manifolds which 
are not 3-Sasakian. 

Example 23. The standard example is that of complex Hopf fibration 

(14) C ^ S 2 " " 1 - * ? ^ 1 . 

Just as in 3-Sasakian case this example generalizes when one replaces the complex 
projective space with a generalized flag manifold. That is, consider any complex semi-
simple Lie group G. A maximal solvable subgroup B of G is called a Borel subgroup 
and is unique up to conjugacy. Any P C G containing B is called parabolic. It is 
known that any such generalized flag G/P admits a homogeneous Kahler-Einstein 
metric, and that any compact homogeneous simply connected Kahler manifold is a 
generalized flag manifold. Applying the construction of Theorem 15 gives all compact 
homogeneous Sasakian-Einstein metrics, in fact, all compact homogeneous Sasakian 
manifolds [BGOO]. 

Example 24. The Kobayashi bundle construction also gives many inhomogeneous 
examples. These are all circle bundles over compact smooth Fano manifolds. For 
instance, in the case of surfaces all del Pezzo surfaces are classified and it is known 
which of them admit Kahler-Einstein metrics [Tia90, Tia99, TiaOO]. 
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Theorem 25. The following del Pezzo surfaces admit Kahler-Einstein metrics: QP2, 
QP1 x OP1, G P 2 # n C F , 3 < n < 8. Furthermore, the moduli space of K-E structures 
in each case is completely understood. 

As and immediate consequence, for 5-manifolds, we have the following result of 
Friedrich and Kath [FK90] 

Theorem 26. Let Mx = S5#l(S2 x S3). 

1. For each I = 0,1,3,4. there is precisely one regular Sasakian-Einstein structure 
on Mi. 

2. For each 5 < I < 8 there is a 2(1 - 4) complex parameter family of inequivalent 
regular Sasakian-Einstein structures on M\. 

3. For 1 = 2 or l> 9 there are no regular Sasakian-Einstein structures on M\. 

There are two del Pezzo surfaces which do not admit any K-E metrics due to theo­
rem of Matsushima [Mat57]: the existence is obstructed by holomorphic vector fields. 
These are blow-ups of QP2 at one or two points. 

Remark 27. A well known result of Martinet says that every orientable 3-manifold 
admits a contact structure. Furthermore, all Sasakian 3-manifolds have been classified 
[BelOO, BelOl, Gei97] and they are Seifert bundles over Riemann surfaces. In this case 
every compact Sasakian 3-manifold is either negative, null, or positive. In addition, 
if M is Sasakian-Einstein than it follows that the universal cover M is isomorphic to 
the standard Sasakian-Einstein metric on S3. 

Example 28. [Barden Manifolds] Similarly one might try to classify all Sasakian 
manifolds in dimension 5. In the simply connected case there exists a classification 
result of all smooth 5-manifolds due to Smale [Sma62] and Barden [Bar65]. Extending 
Smale's theorem for spin manifolds Barden proves the following: 

Theorem 29. The class of simply connected, closed, oriented, smooth, 5-manifolds is 
classifiable under diffeomorphism. Furthermore, any such M is diffeomorphic to one 
of the spaces Mj]ku...ika = Xj#Mkl#- • • #Mka, where -1 < j < oo. s > 0, 1 < k\ and 
ki divides kj+i or k.+i =oo. A complete set of invariants is provided by H2(M,Z) and 
an additional diffeomorphism invariant i(M) = j which depends only on the second 
Stiefel-Whitney class w2(M). 

In this article we will refer to a simply connected, closed, oriented, smooth, 5-
manifold as a Barden manifold. The building blocks of Theorem 29 are given in the 
table below. They are listed with H2(M,Z) and Barden's i(M) invariant. 

M Я2(M,Z) i(M) 
Лľ_! = 5U(3)/5o(3) Z2 - 1 

-^n, П > 1 z2» z2» n 
.Xоо = nоn-trivial s3 bundle оver S'2 

z c» 
X0 = 5 S 0 0 

Mæ = S3 x S2 z 0 
Mn, n > 1 zn z„ 0 
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When M is spin i(M) = j = 0 as is w2(M) = 0 and Barden's result is the extension 
of the well-known theorem of Smale for spin 5-manifolds. By an old theorem of Gray 
[Gra59] M admits an almost contact structure when j = 0, oo and by another result 
of Geiges M is in such a case necessarily contact [Gei91]. 

Question 30. It is natural to ask whether Barden manifolds admit Sasakian struc­
tures. Specifically, we would like to ask 

1. Does every Barden manifold which is contact (j = 0, oo) admit a Sasakian struc­
ture? 

2. Does every Barden manifold which is spin (j =• 0) admit positive (respectively 
negative) Sasakian structure? (Null Sasakian structures are obstructed. For 
example, Corollary 1.10 of [BGN03a] implies that 5 5 and S2 x S3 cannot admit 
null Sasakian structures). 

3. Which of the Barden manifolds which are spin admit Sasakian-Einstein struc­
tures? 

Remark 31. There is one more construction of non-regular Sasakian-Einstein man­
ifolds which draws on examples of 3-Sasakian structures. In [BG00] the authors ob­
served that the set of all Sasakian-Einstein manifolds has a monoid structure, i.e., for 
any two compact quasi-regular Sasakian-Einstein orbifolds Mi and M2 one can define 
Mi • M2 which is automatically a compact Sasakian-Einstein orbifold of dimension 
dim(Mi) + dim(M2) - 1. This construction is an orbifold generalization of the well-
known construction of Wang and Ziller in [WZ90] adapted to the Sasakian-Einstein 
setting. It turns out that a join of any non-regular Sasakian-Einstein manifold Mi with 
a regular Sasakian-Einstein space M2 (say, for example, M2 = S3) is automatically a 
compact smooth, non-regular Sasakian-Einstein manifold. The join construction pro­
duces new examples beginning in dimension 7. If, however, Mi is 3-Sasakian, new 
examples begin in dimension 9. In addition, a completely new construction of in-
homogeneous Sasakian-Einstein metrics have been considered by Gauntlett, Martelli, 
Sparks, and Waldram [GMSW04a, GMSW04b]. Their metrics are in fact very ex­
plicit and they were first obtained indirectly by considering general supersymmetric 
solutions in certain D = 11 supergravity theory 

6. SASAKIAN GEOMETRY OF LINKS 

Consider the affine space C1"1"1 together with a weighted C*-action given by 
(z0, • • • , zn) i-> (\w°z0,... , \Wnzn), where the weights Wj are positive integers. It is 
convenient to view the weights as the components of a vector w e (Z+)n+1 , and we 
shall assume that gcd(ivo, • • • , wn) = 1. 

Definition 32. We say that / is a weighted homogeneous polynomial with weights 
w and of degree d if / E C[z0, • • • ,zn] and satisfies 

(15) f(\woz0,...,\
w»zn)=\df(z0i...,zn). 

We shall assume that the origin in C1"1"1 is an isolated singularity 

Definition 33. The link of / is defined by 

(16) L/ = {f = o } n 5 2 n + 1 , 
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where 5 2 n + 1 is the unit sphere in C1*1. 

Remark 34. Lf is endowed with a natural quasi-regular Sasakian structure [Tak78, 
YK84, BG01] inherited as a Sasakian submanifold of the sphere 5 2 n + 1 with its "weighted" 
Sasakian structure (£W,77W,$W,<7W) which in the standard coordinates {ZJ = Xj + 
iyj}]=0 on C*+1 = R2n+2 is determined by 

<") ^ = ̂ k^l^if, *-, = £ M*AH - y&<). 
Z-fi=Oa'«vxi 1~ yi) i=Q 

and the standard Sasakian structure (£,7l,$,<7) on 52 n + 1 . 
The quotient of 5 2 n + 1 by the "weighted S^action" generated by the vector field £w 

is the weighted projective space P(w) = P(ivo, • • • , wn), and we have a commutative 
diagram: 

Lf • Sl^ 

(18) 

Zf > P(w) 

where the horizontal arrows are Sasakian and Kahlerian embeddings, respectively, and 
the vertical arrows are orbifold Riemannian submersions. Lf is the total space of the 
principal 5 1 V-bundle over the orbifold Zf. Alternatively we will sometimes denote 
Zf as Xd C P(w) to indicate the weights and the degree of f. In such case we will 
also write Lf = L(Xd C P(w)). 

Proposition 35. [BGK03] The orbifold Zf is Fano if and only if d — Ylwi < 0-

Example 36. At this point we return to the comments made in Remark 13. Consider 
links defined by 

(19) fk(zo,zuz2)=zQ
Q

k-l+zl + zl 

The orbifold Zfk is a hypersurface Xd in P(6,2(6A; - 1),3(6A; - 1)) of degree d = 
6 (6k — 1). The corresponding link Lfk is of Brieskorn-Pham type and will be denoted 
by L(6k - 1,3,2) (see (23)). All 3-dimensional Brieskorn-Pham links were classified 
by Milnor in [Mil75]. According to the Proposition 35, L(6k — 1,3,2) is positive 
only when k = 1 and in all other cases it is negative. Indeed, L(5,3,2) ~ 53/7* is 
the famous Poincare sphere, where I* C SU(2) is the binary isocahedral group. For 
k > 1, the link L(6k - 1,3,2) is a homology sphere with infinite fundamental group. 
The complex orbifold Zfk1 for k > 1 is not Fano. In particular, it cannot have an 
orbifold metric of constant positive curvature (though it has a natural metric of 
constant negative curvature). On the other hand, as an algebraic variety, for any k we 
must have Zfk ~ P1. This can be seen from the generalized genus formula. For any 
curve Xd c F(wQlwi,W2) we have: 

(20) ,(*,)! (_í ^gcdK^ + Vi^í^i)-!). 
V } V J 2\WQWlWo +^. WÍWÍ 4-' Wi ) <W0WiW2 Uj 

Hence, Zfk is certainly Fano as a smooth variety in the algebraic geometric sense, but 
it has codimensionl orbifold singularities and it is not Fano in the orbifold sense. Here 
the orbifold canonical class is not the usual algebraic geometric canonical class, but the 
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codimension one orbifold ramification divisors are added in. By Milnor's classification 
L(6k - 1,3,2), for (k > 1), is the quotient^ the universal cover SL(2, R) of SL(2, R) 
by a co-compact discrete subgroup T c SX(2,R). Furthermore, L(6k - 1,3,2) has a 
finite covering by a manifold that is diffeomorphic to a non-trivial circle bundle over 
a Riemann surface of some genus g > 1. 

Now, recall the well-known construction of Milnor for isolated hypersurface singu­
larities [Mil68, MO70]: there is a fibration of (S2n+1 - L/)—hS1 whose fiber F is an 
open manifold that is homotopy equivalent to a bouquet of n-spheres Sn V Sn • • • V Sn. 
The Milnor number [x of Lf is the number of Sn,s in the bouquet. It is an invariant 
of the link which can be calculated explicitly in terms of the degree d and weights 
(ivo, • • • , wn) by the formula 

(21) /J = /i(L/) = JJ(^1) 

The closure F of F has the same homotopy type as F and is a compact manifold with 
boundary precisely the link Lf. So the reduced homology of F and F is only non-zero 
in dimension n and Hn(F,Z) w Z^. Using the Wang sequence of the Milnor fibration 
together with Alexander-Poincare duality gives the exact sequence 

(22) 0->Hn(L/,Z) -> Hn(F,Z)-^Hn(F,Z) -> Hn_i(L/,Z)->0 

where h* is the monodromy map (or characteristic map) induced by the Si, ac­
tion. From this we see that ifn(Z//,Z) = ker(I - /i„) is a free Abelian group, and 
Hn_i(L/,Z) = Coker(I - ft*) which in general has torsion, but whose free part equals 
ker(I — ht). So the topology of Lf is encoded in the monodromy map ft*. There is a 
well-known algorithm due to Milnor and Orlik [MO70] for computing the free part of 
Hn_i(L/, --) m terms of the characteristic polynomial A(t) = det(tl — /i*), namely the 
Betti number bn(Lf) = 6n_i(L/) equals the number of factors of (t - 1) in A(t). First 
we mention an important immediate consequence of the exact sequence (22) which is 
due to Milnor: 

Proposition 37. The following hold: 

(1) Lf is a rational homology sphere if and only i/A(l) 7- 0. 
(2) Lf is a homology sphere if and only if |A(1)| = 1. 
(3) If Lf is a rational homology sphere, then the order of Hn-i(Lf,Z) equals |A(1)|. 

Example 38. The following table lists some illustrating examples. All of the cho­
sen links are Fano, but negative and null Sasakian structures can also be considered. 
We either explicitly identify the link with some smooth contact manifold or list non-
vanishing homology groups. E7

k and E£ indicate homotopy spheres where the differen-
tiable structure depends on k and p. 
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z/ L, 
*2CP(1,1,1,1) SгxSл 

XзCP(l, 1.1,1) 6#(S2 x S3) 
X,CP(1,1,1,2) 7#(S2 x S3) 
X6CP(1,1,2,3) 8#(S2 x S3) 

Xk+1cF(l,l,l,k) k#(Sг x S3) 
X1QCF(1,2,3,5) 9#(S2 x S3) 

X127CP(11,29,39,49) 2#(S2 x SJ) 

лľгsвcPíiз.зõ.si.iгs) S2xSл 

XзkcF(3,3,3,k), кфЗn мк X4tcP(4,4)4)4,A;), кф2n H3(Lf,Z)\ = к2í 

*б(б*-i) C P(6,2(6* - 1), 3(6A; - 1), 3(6* - 1), 3(6fc - 1)) S*^S' 
X2{2p+1) C P(2,2p +1,2p + 1,2p + 1,2p + 1,2p +1) E p ~ S a 

In some of the above examples the homogeneous polynomial / can be chosen to 
contain no "mixed" monomial terms of the form z^zj. Such an / is called of Brieskorn-
Pham type. In his famous work, in 1966 Brieskorn considered links L(a) defined by 

(23) X>?| = 1, /-(*) = -$'+• + z?=0. 
»=o 

To the vector a = (a0, • 
vertices are labeled by ao, • 
if gcd[a^aj) > 1. Let Cev 

, an) E Z++ 1 one associates a graph G(a) whose n + 1 
• , an. Two vertices a* and aj are connected if and only 

denote the connected component of G(a) determined by 
the even integers. Note that all even vertices belong to CeVi but Cev may contain odd 
vertices as well. Then we have the so-called Brieskorn Graph Theorem [Bri66]: 

Theorem 39. The following hold: 

(1) The link L(a) is a rational homology sphere if and only if either G(a) contains at 
least one isolated point, or Cev has an odd number of vertices and for any distinct 
aj, aj e CeVi gcd(a;, aj) = 2. 

(2) The link L(a) is an integral homology sphere if and only if either G(a) contains 
at least two isolated points, or G(a) contains one isolated point and Cev has an 
odd number of vertices and a,-, aj G CeVi implies gcd(a,-, aj) = 2 for any distinct 
i,j-

Recall that by the seminal work of Milnor [Mil56], Kervaire and Milnor [KM63], 
and Smale [Sma61], for each n > 5, differentiable homotopy spheres of dimension n 
form an Abelian group 0 n , where the group operation is connected sum. 0 n has a 
subgroup 6Pn+i consisting of those homotopy n-spheres which bound parallelizable 
manifolds Vn+i. Kervaire and Milnor proved that &P2m+i = 0 for m > 1, 6P4m+2 = 0, 
or Z 2 and is Z 2 if 4m + 2 =fi 2' - 2 for any i > 3. The most interesting groups are 6P4m 

for m > 2. These are cyclic of order 

(24) |6P 4 m | = 2 2 r o - 2 (2 2 m - 1 - 1) numerator ( ^ ) , 

where Bm is the ra-th Bernoulli number. Thus, for example |6P8| = 28, |6Pi2| = 
992, |6P16| = 8128 and |6P20| = 130,816. In the first two cases these include all exotic 
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spheres. The correspondence is given by 

(25) KM-.Y.^ ir(V4m(E))mod|6P4m|, 

where V±m{51) is any parallelizable manifold bounding E and r is its signature. Let Ej 
denote the exotic sphere with KM(Ej) = i. Now, the Brieskorn Graph Theorem tells 
us for which a the Brieskorn-Pham link L(a) is a homotopy sphere. By (25) we need 
to be able to compute the signature to determine the diffeomorphism types of various 
links. We restrict our interest just to the case when m = 2k + 1. 

In this case, the diffeomorphism type of a homotopy sphere L(a) G bP2m-2 is deter­
mined by the signature T(M) of a parallelizable manifold M whose boundary is E^m"3. 
By the Milnor Fibration Theorem we can take M to be the Milnor fiber M^m"2 which, 
for links of isolated singularities coming from weighted homogeneous polynomials is 
diffeomorphic to the hypersurface {z € C™ | /a(^o, • • • > ^m-i) = !}• 

Brieskorn shows that the signature of Mik(a) can be written combinatorially as 

2k 
Xi 

r(M4*(a)) = #{x e Z2*+1 | 0 < xt < a,- and 0 < ^ - < l mod 2} 
j=o Qi 

2k 

(26) - # { x G Z 2 H 1 | 0 < a ; i < o i and l < ^ ] - < 2 mod 2 } . 

Using a formula of Eisenstein, Zagier (cf. [Hir71]) has rewritten this as: 

(27) T(M«(a)) = ^V^ot%^cot^±^. . •cot^^ 1 
N ~ 2N 2ai 2a2k+i 

where N is any common multiple of the cij's. 
Both formulas are quite well suited to computer use. A simple C code called s ig . c, 

which for any ra-tuple with m = 2k + 1 = 5,7,9, computes the signature r(a) := 
T(M^) and the diffeomorphism type of the link using either of the above formulas can 
be found in [BGKT03]. 

Example 40. Let us consider the Brieskorn-Pham link L(5,3,2,2,2). By Brieskorn 
Graph Theorem this is a homotopy 7-sphere. One can easily compute the signature 
using (2.14) to find out that r(L(5,3,2,2,2)) = 8. Hence £(5,3,2,2,2) = E[ is an 
exotic 7-sphere and it is called Milnor generator (all others can be obtained from 
it by taking connected sums). It is interesting to note that one does not need a 
computer to find the signature of L(6k — 1,3,2,2,2). This was done in Brieskorn 
original paper [Bri66] where he used the combinatorial formula 26 to show that all the 
28 diffeomorphism types of homotopy 7-spheres are realized by taking k = 1, • • • , 28. 

Question 41. Suppose that Zf is Fano. How can one prove the existence of a Kahler-
Einstein metric on Zfl When this can be done successfully we automatically get a 
Sasakian-Einstein metric on the link Lf. 
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7. CALABI CONJECTURE I 

Recall that on a Kahler manifold the Ricci curvature 2-form pu of any Kahler metric 
represents the cohomology class 27rci(M). The well-known Calabi Conjecture is the 
question whether or not the converse is also true. To be more specific we begin with 
a couple of definitions 

Definition 42. Let (M, J,g,ug) be a compact Kahler manifold. The Kahler cone 
ofM 

K(M) = {[u] e if1'1 (M, C) fl H2(M, R) | [u] = [uh] for some Kahler metric h \ 

is the set of all possible Kahler classes on M. 

The global i99-lemma provides for a very simple description of the space of Kahler 
metrics /C[w]. Suppose we have a Kahler metric g in a with Kahler class [ug] = [u] e 
K(M). If h e K[u] is another Kahler metric then, up to a constant, there exists a 
global function <j> e C°°(M,R) such that uh—ug = idB<j>. We could fix the constant 
by requiring, for example, that fM <f>Ug = 0. Hence, we have 

Corollary 43. Let (M,J,g,ug) be a compact Kahler manifold with [ug] = [a;] G 
K(M). Then, relative to the metric g the space K^] of all Kahler metric in the 
same Kahler class can be described as 

rCM = {0ECo o(M,R) \uh = ug + idB(/>>0y f tfw" = 0}, 
JM 

where the 2-form uh>0 means that uh(X> JY) is a Hermitian metric on M. 

We have the following theorem 

Theorem 44. Let (M, J,g,ug) be a compact Kahler manifold, [ug] = u e K(M) the 
corresponding Kahler class and pg the Ricci form. Consider any real (1, l)-form ft on 
M such that [ft] = 2nci(M). Then there exists a unique Kahler metric h e /C ĵ such 
that ft = ph. 

The above statement is the celebrated Calabi Conjecture which was posed by Eugene 
Calabi in 1954. The conjecture in its full generality was eventually proved by Yau in 
1978 [Yau78]. 

Let us reformulate the problem using the global i99-lemma. We start with a given 
Kahler metric g on M in the Kahler class [ug] = [u]. Since pg also represents 2nci(M) 
there exists a globally defined function / e C°°(MiR) such that 

pg - ft = idBf. 

Appropriately, / may be called a discrepancy potential function for the Calabi problem 
and we could fix the constant by asking that fM(e* — l)ug = 0. 

Now, suppose that the desired solution of the problem is a metric h e K[u]. We 
know that the Kahler form of h can be written as 

vh = ug + idB(j>, 

for some smooth function (j) e C7°°(M, R). We normalize <j> as in the previous corollary. 
Combining these two equations we see that 

ph-pg = idBf. 
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If we define a smooth function F e C°°(M,R) relating the volume forms of the two 
metrics u% = eFUg then the left-hand side of the above equation takes the following 
form 

iddF = ph- pg = iddf, 

or simply idd(F-f) = 0. Hence, F = / + c . But since we normalized JM(ef-l)ug = 0 
we must have c = 0. Thus, F = /, or u% = e^Ug. We can now give two more equivalent 
formulations of the Calabi Problem. 

Theorem 45. Let (M, J,g>ug) be a compact Kahler manifold, [ug] = [a;] e K(M) the 
corresponding Kahler class and pg the Ricciform. Consider any real (1, l)-form on M 
such that [Q] = 27rci(M). Let pg-Q = iddf, with JM(ef -l)ug = Q. 

(1) There exists a unique Kahler metric h e K[u] whose volume form u% equals e^Ug. 
(2) Let (U,Zi,... , zn) be a local complex chart on M with respect to which the metric 

g = (gij). Then, up to a constant, there exists a unique smooth function <j) in 
/C[w], which satisfies the following equation 

det (ад+Җ) 
det(ад) 

= e ' . 

The equation in (2) is called the Monge-Ampere equation. Part (1) gives a very 
simple geometric characterization of the Calabi-Yau theorem. On a compact Kahler 
manifold one can always find a metric with arbitrarily prescribed volume form. The 
uniqueness part of this theorem was already proved by Calabi. This part involves only 
Maximum Principle. The existence proof uses the continuity method discussed briefly 
in Section 9 and it involves several difficult a priori estimates. These were found by 
Yau in 1978. We have the following: 

Corollary 46. Let (M, J,g,ug) be a compact Kahler manifold. 

(1) Ifc\(M) > 0 then M admits a Kahler metric of positive Ricci curvature. 
(2) If c^M) = 0 then M admits a unique Kahler Ricci-flat metric. 

It is "folklore" that the Calabi-Yau Conjecture is also true for compact orbifolds. In 
the context of Sasakian geometry with its characteristic foliation, the transverse space 
Z is typically a compact Kahler orbifold. In the context of foliations a transverse 
Yau theorem was proved by El Kacimi-Alaoui in 1990 [EKA90]. 

Theorem 47. Ifci(T^) is represented by a real basic (1, l)-form pT, then it is the Ricci 
curvature form of a unique transverse Kahler form uT in the same basic cohomology 
class as dn. 

In the language of positive Sasakian manifolds this theorem provides the basis for 
proving [BGN03a] 

Theorem 48. Any positive Sasakian manifold (M, g) admits a Sasakian metric g' of 
positive Ricci curvature. 

There is a similar statement for negative and null Sasakian structures. This is 
studied in a forthcoming article [BGM04]. 
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Corollary 49. Let L(f) be the link of an isolated hypersurface singularity where f is 
weighted homogeneous polynomial of weight w and degree d. / / X^ lUi — d > 0 then 
L(f) admits a Sasakian metric of positive Ricci curvature. In particular, 

(1) #kMoo = #*(52 x S3) ~ L{Xk+i C P(1,1,1,A;)) admits Sasakian metric of 
positive Ricci curvature for all k>l. 

(2) The links L(6k - 1,3,2,... , 2) - E^n+3 and L(2p + 1,2,. . . . 2) - E£n+1 admit 
Sasakian metric of positive Ricci curvature for each n, k and p. Hence, all homo-
topy spheres that bound parallelizable manifolds admit metrics of positive Ricci 
curvature. 

Part (1) is the 5-dimensional case of a well known theorem of Sha and Yang [SY91]. 
Their theorem asserts the existence of positive Ricci curvature metrics on connected 
sums of product of spheres. Part (2) is in its final form a theorem of Wraith [Wra97]. 
Both papers rely on techniques of surgery theory. The proofs given in [BGN03a, 
BGN03c] are completely different being a consequence of the orbifold version of Yau's 
theorem. 

8. CALABI CONJECTURE II - KAHLER-EINSTEIN METRICS 

As pointed out in the previous section one of the consequences of the Yau's theorem 
is that a compact Kahler manifold with Ci(M) = 0 must admit a Ricci-flat, hence, 
Einstein metric. More generally, we can consider existence of Kahler-Einstein metrics 
with arbitrary Einstein constant A. By scaling we can assume that A = 0, ±1. Specif­
ically, let (M, J, <7, ug) be a compact Kaher manifold. We would like to know if one 
can always find a Kahler-Einstein metric h e K\Ug]. Recall that on a Kahler-Einstein 
manifold pg = \ug. This implies that 27rci(M) = \[ug]. Now, if Ci(M) > 0 we must 
have A = +1 because [ug] is the Kahler class. Similarly, when cx(M) < 0 the only 
allowable sign of a Kahler-Einstein metric on M is A = - 1 . Clearly, when Ci(M) = 0 
we must have A = 0 as [ug] ^ 0. As we have already pointed out the A = 0 case follows 
from Yau's solution to the Calabi conjecture. For the reminder of this lecture we shall 
assume that A = ±1. 

Let (M, J,p,cj5) be a Kahler manifold and [ug] = [u] e K(M) the Kahler class. 
Let us reformulate the existence problem using the global z99-lemma. Suppose there 
exists an Einstein metric h G K^y Starting with the original Kahler metric g on M 
we have a globally defined function / e C°°(M}R) such that 

(28) pg - \ug = iddf. 

As before we will call / a discrepancy potential function. We also fix the constant 
by asking that fM(e* — l)ug = 0. Let h E K[u] be an Einstein metric for which 
ph = \uh. Using the global z'99-lemma once again we have a globally defined function 
</> € C°°(M,R) such that u)h — ug = idd<j). We shall fix the constant in <f> later. Using 
these two equations we easily get 

pg-ph = idd(f - \(j>). 

Defining F so that uh = eFug we can write this equation as 

iddF = idd(f - \(j>). 
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This implies that F = f - A^ 4- c. We have already fixed the constant in / so 
c depends only on the choice of (/>. We can make c = 0 by choosing (j> such that 
fM(ef~x* — l)ug = 0. Hence, we have the following 

Proposition 50. Let (M, J) be a compact Kahler manifold with Xci(M) > 0, where 
X = ±1 . Let [u] € K(M) be a Kahler class and g,h two Kahler metrics in /C[w] with 
Ricci forms pg,Ph- Let / , (j) E C7°°(M, R) be defined by pg—Xug = iddf, un—ug = idd(j>. 
Fix the relative constant off—X(j> by setting fM(ef"x<^ — l)ug = 0. Then the metric h is 
Einstein with Einstein constant X if and only if<j> satisfies the following Monge-Ampere 
equation 

ul = ef-x*un
g, 

which in a local complex chart (W, z i , . . . ,zn) written as 

detfoj) W"A*. 

Note that by setting A = 0 we get the Monge-Ampere equation for the original Calabi 
problem. The character of the Monge-Ampere equation above very much depends on 
the choice of A. The case of A = - 1 is actually the simplest as the necessary a priori 
C°-estimates can be derived using the Maximum Principle. This was done by Aubin 
[Aub76] and independently by Yau [Yau78]. We have 

Theorem 51. Let (M, J,g>ug) be a compact Kahler manifold with Ci(M) < 0. Then 
there exists a unique Kahler metric h e JC[Ug] such that ph = -un. 

When k = +1 the problem is much harder. It has been known for quite some time 
that there are non-trivial obstructions to the existence of Kahler-Einstein metrics. Let 
\)(M) be the complex Lie algebra of all holomorphic vector fields on M. Matsushima 
[Mat57] proved that on a compact Kahler-Einstein manifold with ci(M) > 0, f)(M) 
must be reductive, i.e. f)(M) = Z(\)(M)) 0 [f)(M),fj(M)] where Z(\)(M)) denotes 
the center of f)(M). Now, suppose (M,g, J,u) is a Kahler manifold and let / be the 
discrepancy potential defined by (28). Further, let X G f)(M) and define 

(29) F(X) = f X(f)dvo\g . 
JM 

At first glance F(X) appears to depend on the Kahler metric. However, Futaki shows 
that this is not the case: F(X) does not depend on the choice of the metric in h e !C[ug]-
Hence, F : l)(M)—>C is well-defined and it is called the Futaki functional or character 
[Fut83, Fut87, Fut88]. In particular, if an Einstein metric exists than we can choose 
/ constant. Hence, 

Corollary 52. Suppose (M,g,J,u) admits a Kahler-Einstein metric h € /C[wj. Then 
F must be identically zero. 

Remark 53. Futaki also showed that there are Fano manifolds for which \)(M) is 
reductive, but F is non-trivial [Fut88], A folklore conjecture attributed to Calabi 
asserted that in the case f)(M) = 0 there are no obstructions to finding a Kahler-
Einstein metric. This conjecture was disproved by Tian. First, Ding and Tian [DT92] 
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constructed an example of an orbifold del Pezzo surface with \)(M) = 0 and no Kahler-
Einstein metric. Later Tian found an example of a smooth Fano 3-fold with f)(M) = 
0 and no Kahler-Einstein metric [Tia99]. In [Tia97] Tian shows that two different 
conditions are necessary for the existence of a Kahler-Einstein metric. One condition 
involves the generalized Futaki functional of every special degeneration of the manifold. 
The other condition is Mumford stability with respect to a certain polarization. Tian 
conjectures that the two conditions are equivalent and that they are also sufficient. 
This conjecture is still open. However, even if it is true neither of the conditions are 
easily checked for an arbitrary compact Fano manifold (orbifold). In principle, one 
should be able to compute generalized Futaki invariants for any Fano hypersurface 
Xd C F(w). (see, for example, Lu [Lu99], and Yotov [Yot99] for the computation of 
generalized Futaki invariants in the case of smooth complete intersections). 

9. T H E CONTINUITY METHOD AND KAHLER-EINSTEIN ORBIFOLDS 

Let us briefly describe the main aspects of the continuity method. Let's say we are 
trying to show existence of Kahler-Einstein metric of positive sign. Here one tries to 
solve the Monge-Ampere equation 

det(gi3)
 6 ' ^ + °1°5^ > U 

for t e [0,1]. Yau's Theorem tells us that this has a solution for t = 0, and we 
try to solve this for t = 1, where the metric will be Kahler-Einstein. The so called 
continuity method sets out to show that the interval where solutions exist is both 
open and closed. Openness follows from the Implicit Function Theorem, but there are 
well known obstructions to closedness. This problem has been studied most recently 
by Demailly and Koll&r who work in the orbifold category [DK01]. Closedness is 
equivalent to the uniform boundedness of the integrals 

/ . 
e-^uS 

for any 7 e (^7,1), where uo is the Kahler form of ho. This means that the multiplier 
ideal sheaf of Nadel [Nad90] J(j(j>) = Oz for all 7 G ( ^ , 1). 

We will illustrate how the method works for links. The approach developed by 
Demailly and Kollar in [DK01] yields the following general theorem: 

Theorem 54. Let Xorb be a compact, n-dimensional orbifold such that K~\rb is ample. 
The continuity method produces a Kahler-Einstein metric on Xor6 if the following 
holds: There is a 7 > ~ _ sucn that for every s > 1 and for every holomorphic section 
r3 e H°(Xorb, K~s

orb) the following integral is finite: 

I 1-1 

Ts\~ ' ^o < +°°-

In general, this condition is not hard to check. For hypersurfaces the situation is 
somewhat simpler and one gets 
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Corollary 55. Let Zf =: Xd C F(w) be a hypersurface in P(w) given by the vanishing 
of the weighted homogeneous polynomial f of weight w and degree d. Let Yf := {{/ = 
0} C Cn+1} so that Zf = (Yf \ {0})/CJ,. Assume Zf is Fano, that is d < £>,• . 
The continuity method produces a Kahler-Einstein metric on Zf if the following holds: 
There is ay > —-- such that for every weighted homogeneous polynomial g of weighted 
degree s(Y^Wi — d), not identically zero on Yf, the function 

\g["yl$ is locally L2 onYf\{0}. 

Example 56 (Log Del Pezzo Surfaces). One can take Xd C P(wo, Wi,W2> w3) with 
I = Ind(Kd) = J2iWi — d > 0. Assuming Xd has only isolated orbifold singularities 
one can classify all such log del Pezzo surfaces and check if the conditions of Corollary 
55 are satisfied. This was done by Johnson and Kollar in [JKOlb] when 1 = 1. In 
some cases the existence question was left open and more recently Araujo completely 
finished the analysis in [Ara02]. On the other hand, the similar question can be con­
sidered for an arbitrary index / > 1. This was done to a limited extend in [BGN03b]. 
That is, we enumerated all log del Pezzo surfaces for 2 < I < 10 which can possibly 
admit Kahler-Einstein metrics as a consequence of the Corollary 55. Sometimes we 
were able to prove the existence, but unlike in the I = 1 situation, it has not been 
done for all the candidates. Furthermore, it remains to show that for I > 10 there 
are no examples of log del Pezzo surfaces satisfying condition of Corollary 55. As a 
result of this analysis we got Sasakian-Einstein structures on certain connected sums 
of S2 x S3. The table below summarizes the results of [BGN03b, BGN02a, BG03b]. 

MS2 x 53) N = ( n 0 , n ь . . . ,n7>n8) Example 
k = í (14 + 1,0,0,0,0,0,0,0,0) XГ6CP(11,13,21,38) 
k = 2 (21,2,0,0,0,0,0,0,0) *57CP(7,8,19,25) 
к = 3 (Ko + 1,4,2,0,0,0,0,0,0) X64CP(7,8,19,32) 
к = A (2K0 + 1,0,1,2,0,0,0,0,0) X20CP(3,4,5,10) 
к = Ъ (2N0,0 + 1,0,1,1,0,0,0,0) X28CP(3,5,7,14) 
k = 6 (2N0,0,0 + 1,3,0,5,0,0,0) X 1 8CP(2,ЗД9) 
к = 7 (0,0,0,0 + lДNo, 0,0,0) Xsш C P(2,2k + 1,2k + 1, Aк + 1) 
k = 8 (0,0,0,0,0 + 1,0,0,0,2) X10CP(1,2,3,5) 
к = 9 (0,0,0,0,0,0,0,0,1) X1 6cP(l,3,5,8) 

For each #fc(S2 x S3), with 1 < k < 9 we list N = (n0, ni}n2,... , n 8), where n» is the 
number of distinct families of links with complex dimension of deformation parameters 
equal to i. The largest family constructed this way had complex dimension 8 so that 
m = 0 when i > 8 for all k = 1,... , 9. Also, the method produced no examples for 
k > 9. Furthermore, for instance, no = 2N0 means that there are two distinct infinite 
sequence of examples which have no deformation parameters. We include regular 
examples in the count by writing " + 1 " where appropriate. In the third column we 
give an example with the largest moduli. 

Remark 57. Example 56 forces an obvious question. Are there Sasakian-Einstein 
structures on #fc(52 x S3) for arbitrary k? Recently Kollar [Kol04] has been able to 
answer this question in the affirmative. His method differs substantially from the one 
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described here. The idea is to consider Seifert bundles over smooth surfaces, but with a 
non-trivial orbifold structure. Such a construction is more flexible in obtaining log del 
Pezzo surfaces with orbifold Kahler-Einstein metrics and more complicated topology. 
In particular, Kollar proves 

Theorem 58. For every integer k > 6 there are infinitely many complex (k — 1)-
dimensional families of Einstein metrics on #jfc(S2 x S3). 

Combining this remarkable result with the links of hypersurfaces in Example 56, we 
get the following 

Corollary 59. Let M be any compact, smooth, simply-connected 5-manifold which is 
spin and has no torsion in Hi (M, Z). Then M admits a Sasakian-Einstein metric. 

Example 60 (Brieskorn-Pham Links). Now, we consider Brieskorn-Pham links 
as defined in Equation (23). Let Y(a) := (]£?=,,*?' = 0) C C1*1. One can easily see 
that d = 1cm(a» : i = 0 , . . . , n) is the degree of /a(z) and wi = d/ai are the weights. 
The transverse space Z(a) := (Y(a) \ {0})/C is a Fano orbifold if and only if 

n i 

ì=o * 

More generally, we consider weighted homogeneous perturbations 

Y(a,p) := ( £ zf + p(z0,..., z„) = 0) C C*+1, 
«=0 

where weighted degree(p) = d. The genericity condition we need, which is always 
satisfied by p = 0 is: The intersections of Y(a,p) with any number of hyperplanes 
(zi = 0) are all smooth outside the origin. 

The continuity methods produces the following sufficient conditions for the quotient 
Y(a,p)/C to admit a Kahler-Einstein metric [BGK03]: 

Theorem 61. Let Z(a,p) be the transverse space of a perturbed Brieskorn-Pham link 
L(a,p). Let C{ = lcm(a0,... , a*,... , an), b{ = gcd(t7;, a,). Then Z(a,p) = Y(a,p)/C* 
is Fano and it has a Kahler-Einstein metric if 

(i)i<5Xoi. 
(2) £r=0£<l + ;^min.{i}, and 
W E ^ l + ^ i n ^ } . 

In this case the link L(a,p) admits a Sasakian-Einstein metric with one-dimensional 
isometry group. 

10. SASAKIAN-EINSTEIN STRUCTURES ON BRIESKORN-PHAM LINKS 

In this section we will discuss some consequences of Theorem 61 of the previous 
section. We will investigate two separate cases: when L(a) is a homotopy sphere and 
(2) when L(a) is a rational homology sphere with non-vanishing torsion. If L(a) is a 
homotopy sphere, for a fixed n, there are only finitely many examples of aJs satisfying 
all three conditions of Theorem 61. However, the number of examples as well as 
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the moduli grows doubly exponentially with each odd dimension. One can list all 
solution in dimensions 5 and 7 without difficulties. However, already in dimension 9 
that task is too overwhelming. It is quite clear that many of our links will actually 
be diffeomorphic to standard spheres. Hence, let us begin with a remark concerning 
what is known about Einstein metrics on spheres in general. 

Remark 62. Any standard sphere 5 n , n > 1, admits a metric of constant positive 
sectional curvature. These canonical metrics are SO(n-f-l)-homogeneous and Einstein, 
i.e., the Ricci curvature tensor is a constant positive multiple of the metric. The spheres 
54 m + 3 , m > 1 axe known to have another Sp(m + l)-homogeneous Einstein metric 
discovered by Jensen [Jen73]. The metric is obtained from the "quaternionic Hopf 
fibration" 5 3 -> 5 4 m + 3 -» HP"1. Since both base and fiber are Einstein spaces with 
positive Einstein constant we obtain two Einstein metrics in the canonical variation. 
The second metric is also called "squashed sphere" metric in some physics literature. 
In addition, 51 5 has a third Spin(9)-invariant homogeneous Einstein metric discovered 
by Bourguignon and Karcher in 1978 [BK78]. The existence of such a metric has 
to do with the fact that 515, in addition to fibering over HP2, also fibers over 5 8 

with fiber 57 . Thus thel5-sphere admits 3 different homogeneous Einstein metrics. 
Ziller proved that these are the only homogeneous Einstein metrics on spheres [Zil82]. 
Bohm obtained infinite sequences of non-isometric Einstein metrics, of positive scalar 
curvature, on 55 , 56 , 57 , 58, and 5 9 [B6h98]. Bohm's metrics are of cohomogeneity 
one and they are not only the first inhomogeneous Einstein metrics on spheres but 
also the first non-canonical Einstein metrics on even-dimensional spheres. 

Example 63 (Sasakian-Einstein Metrics on 55). Consider L(2,3,7,m). These 
are homotopy spheres as long as m is relatively prime to at least two of 2,3,7. It 
is easy to see that L(2,3,7, m) satisfies the condition of Theorem 6 1 i f 5 < m < 4 1 
which gives 27 cases. The link L(2,3,7,35) admits deformations, i.e., C(u} v) is any 
sufficiently general homogeneous septic polynomial, then the link of 

zl + x\ + C(z2)zl) 

also gives a Sasakian-Einstein metric on 55 . The relevant automorphism group of C4 

is 
(20, ZUZ2) ZZ) »-> (Z0, ZU OL2Z2 + /34> a3Z3) • 

Hence we get a 2(8 — 3) = 10 real dimensional family of Sasakian-Einstein metrics on 
55 . There are other examples, 68 in total, and we get [BGK03] 

Theorem 64. On 5 5 there are at least 68 inequivalent families of Sasakian-Einstein 
metrics. Some of these families admit non-trivial continuous Sasakian-Einstein defor­
mations. The biggest constructed family has has real dimension 10. 

Example 65 (Sasakian-Einstein Metrics on Homotopy 7-Spheres). Similarly 
L(2,3,7,43,43 • 31) is the standard 7-sphere with a 2(43 - 2) = 82-dimensional family 
of Sasakian-Einstein metrics. One can do a computer search of all homotopy 7-spheres 
that satisfy the numerical conditions of Theorem 61. One finds 8610 such links. An ad­
ditional computation of the Hirzebruch signature of the parallelizable manifold whose 
boundary is L shows that they are more or less evenly distributed among the 28 
oriented diffeomorphism classes. This way we get [BGK03, BGKT03] 



SASAKIAN GEOMETRY, HYPERSURFACE SINGULARITIES, AND EINSTEIN METRICS 8 1 

Theorem 66. Let Ej, be a homotopy 7-sphere corresponding to the element i € bP$ ~ 
Z28 — 67 in the Kervaire-Milnor group. £ j admits at least ni inequivalent families 
of Sasakian-Einstein metrics, where (nu... ,n28) =(376, 336, 260, 294, 231, 284, 322, 
402, 317, 309, 252, 304, 258, 390,409, 352, 226, 260, 243, 309, 292, 452, 307, 298, 230, 
307, 264, 353), giving a total of 8610 cases. In each oriented diffeomorphism class 
some of the families depend on a moduli. In particular, the standard 7-sphere E7

8 

admits an 82-dimensional family of inequivalent Sasakian-Einstein metrics. 

Example 67 (Sasakian-Einstein Metrics on Kervaire Spheres). Let {c,} bean 
infinite sequence defined by the recursion relation 

cjb+i = ci • • • ck + 1 = c\ - ck + 1, ci = 2. 

Consider sequences of the form L(a) = L(2ci, 2c2,..., 2cm^2i 2, am_i) where am_i is 
relatively prime to all the other a,s. Such L(a) are rational homotopy spheres. The 
condition of Theorem 61 is satisfied if 2^-2 < am_i < 2c™. 1 - 2. In particular, 
we can ask for am_i to be prime and estimate the number of primes in the range 
(2c~i_2,2c™-! - 2) which gives double exponential growth in m by the Prime Number 
Theorem. For odd m, L(a) the standard sphere if one of the exponents of a equals 
to ±1 mod 8 and it is the Kervaire sphere if one of the exponents equals ±3 mod 8 
[Bri66]. It is easy to check for all values of m that we get at least one solution of both 
types. Hence, we get [BGK03] 

Proposition 68. Theorem 61 yields a doubly exponential number of inequivalent Sa­
sakian-Einstein metrics on both the standard and Kervaire spheres in every odd di­
mension 4m + 1. 

Example 69. L(a) = L(2,3,7,43,1807,3263443,10650056950807, m) is just the stan­
dard 13-sphere for any suitably chosen m as bPi4 is trivial. If we choose m = 
(10650056950807 - 2) • 10650056950807 we get 2(10650056950807 - 2)-dimensional 
family of deformations. By contrast the only Einstein metric on S13 known previously 
was the the canonical one. 

All these examples point towards the following: 

Conjecture 70. All odd-dimensional spheres that bound parallelizable manifolds ad­
mit Sasakian-Einstein metrics. 

The conjecture is true in dimension 4m + 1 by Proposition 68. It is also true in 
dimension 7. In addition, using computer programs we were able to verify that the 
conjecture holds in dimensions 11 and 15. Computational verification in arbitrary 
dimension 4m + 3 is not possible. On the other hand it does appear that Brieskom-
Pham links satisfying the conditions of Theorem 61 realize all oriented diffeomorphism 
types of homotopy spheres in every dimension. 

Example 71 (S-E Structures on Rational Homology Spheres). Our final ex­
amples of Brieskorn-Pham links is that of L(m,m,. . . ,m,k) with gcd(fc,m) = 1. 
By Brieskorn Graph Theorem this is a rational homology sphere in every dimension. 
The conditions of Theorem 61 are satisfied as long as k > m(m - 1). The homol­
ogy of L(m,m,... ,m,k) contains torsion in Hm_i(L,Z). It's order can be easily 
computed and it is kbm~l, where bm_i is the (m - l)th Betti number of the null link 
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L(ra,... , ra) which is a regular circle bundle over Fermat hypersurface of degree ra in 
P™"1. For example, with the appropriate restriction on k we have |222(3,3,3,A;)| = k2 

and |H3(4,4,4,4, A;)| = A;21, and so on. In particular, we get [BG03a] 

Proposition 72. In each odd dimension greater than 3 there are infinitely many 
smooth, compact, simply-connected rational homology spheres admitting Sasakian-Ein-
stein structures. 

Torsion groups of each of the links L(ra,ra,... ,ra,k) can also be computed using 
an algorithm conjectured by Orlik [Or72] and proved by Randell in some special cases 
[Ran75]. In particular, Orlik's conjecture is true for all •Brieskorn-Pham links and can 
be used to compute torsion of various examples discussed here [BG04]. Let us consider 
the 5-dimensional case in more detail. Using Theorem 61 and Orlik's algorithm we 
get the following list [OW75, Or72] 

I(a) Torsion 
L(3,3,3,k), gcă(k,3) = l,k > 5 Ћk®Ћk 

L(2,4,4,k), gcd(k,2) = l,k>10 ZjfcфZ* 
L(2,3,6,k), gcd(fc,6) = 1, k > 12 zfc zfc 

The three series above satisfy £ 2
= 0 ^ = 0- In the case when £ 2

= 0 -̂  < 0 one can 
easily see that there are 16 more rational homology 5-spheres which satisfy inequalities 
of Theorem 61. An example of such a link is L(3,4,4,4) whose 2-torsion equals 
Z 3 ©Z 3 ©Z 3 ©Z 3 0Z 3 ©Z 3 . Hence, L(3,4,4,4) is diffeomorphic to MZ#MZ#MZ. For 
the torsion computation as well as the full list we refer interested readers to [BG04], 
In particular, we get the following 

Theorem 73. The Barden manifold M* admits Sasakian-Einstein structure for each 
k > 5 prime to 3 and for each k > 10 prime to 2. 

Example 74. Finally, note that the links in the last table have companions with 
non-trivial second Betti number and by Theorem 61 they too admit Sasakian-Einstein 
metrics. We list the relevant information in the table below: 

L(a) 62(L(a)) 

L(3,3,3,3n), n > 2 6 
L(2,4,4,2n), gcd(n,2) = 1, n > 5 3 

L(2,4,4,4n), n > 2 7 
L(2,3,6,2n), gcd(n,3) = l , n > 12 2 
L(2,3,6, Зn), gcd(n, 2) = 1, n > 12 4 

L(2,3,6,6n),n>4 8 

All the above links have 2-torsion equal to Z n © Z n which can be verified by Orlik's 
algorithm. In addition, just as in the case of rational homology 5-spheres, one can see 
that there are 16 exceptional cases of links which satisfy the inequalities of Theorem 61 
and have non-vanishing second Betti number. An example of such a link is L(2,4,6,10) 
which has 62 = 1. Each line of the previous table gives infinite series of decomposable 
Barden manifolds of mixed type (i.e., having both a free part and a torsion in its 
second homology). For instance, we can rephrase first line as 
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Proposition 75. The manifolds 6Moo#Mn admit families of Sasakian-Einstein struc­
tures for any n > 2. 

Question 76. We conclude by asking some questions about Sasakian-Einstein struc­
tures on certain Barden manifolds: 

(1) Does every Barden manifold M* admit a Sasakian-Einstein structure? Is it possi­
ble that certain torsion in H2(M,Z) obstructs the existence of Sasakian-Einstein, 
or even positive Sasakian structures on M? 

(2) Which Barden manifolds with 62 (M) 7- 0 and non-vanishing 2-torsion admit 
Sasakian-Einstein structures? 

Remark 77 (Einstein Metrics on Barden Manifolds). The following table sum­
marizes what we know about existence of Sasakian (5), negative Sasakian (<S_), null 
Sasakian (50), positive Sasakian (<S+), regular Sasakian-Einstein (Sr) and non-regular 
Sasakian-Einstein (5nr) structures on some Barden manifolds. The last column (OE) 
indicates if an Einstein metric other than Sasakian-Einstein is known. Finally, "some 
k" means that we know existence of a given structure for some (possibly infinitely 
many) fc's but we do not know if it exists for all k. 

M S <s_ S* s+ ssr S£nr OE 

X-i 7 no no no no no УЄS 

Xn,n>l 7 no no no no no 7 
-XQO yes no no no no no yes 

K0---S5 yes УЄS no УЄS yes yes yes 
Moo ~ S'z x S* yes yes no yes УЄS yes yes 

Mn, nфЪk yes 7 7 yes no n > 5 7 
MПìnф2k yes 7 7 УЄS no n> 10 7 
бMoo#Mn yes 7 7 yes no n > 2 7 

Шoo-1 <k УЄS some k some k yes 2 т-fc < 9 yes 7 

The non Sasakian-Einstein metric on Barden manifolds are the following: K_i is a 
symmetric space and the metric is Einstein. S2 x S3 is well known to have infin­
itely many inequivalent homogeneous Einstein metrics discovered by Wang and Ziller 
[WZ90]. S 5 and S2 x S 3 have infinitely many inequivalent Einstein metrics of coho-
mogeneity one discovered by Bohm [B6h98]. Finally Xoo has infinitely many Einstein 
metrics recently constructed by several physicists [HSY04, LPP04]. 
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