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GEOMETRICAL DIRECTIONS AND ENDS OF 

A MANIFOLD, POINTS OF ACCUMULATION 

OF A DIRECTION OF A GROUP 

IN THE HYPERBOLIC SPACE H2 

ANDRZEJ BIS 

ABSTRACT. The basic notion in this paper is the definition of an end of a group. We 
express this notion in the language of sequences to obtain a definition equivalent to the 
standard one. In the set of these scsqucnccs, wc introduce an equivalence relation in 
such a way that all sequences representing the same end of the group divide into more 
subtle disjoint sets - directions of the group. The notion of a direction of a group 
gives us handful tools for studying the behaviour of groups acting on topological 
spaces. 

For example, we are able to examine the intcrdcpcndancc between points of ac­
cumulation of the directions of a group of isometrics acting on a manifold and the 
ends of the manifold, provided that the Dirichlet polygon of this group is bounded. 
It is the essence of the first theorem in this paper. The second main theorem shows 
that there exist infinitely many points of accumulation of the direction of a group 
of isometries acting on the hyperbolic space II2, provided there are at least two. 
A suitable example describes the case where a direction of the group of isometries 
accumulates at at least two points. 
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0. INTRODUCTION 

The basic notion in this paper is that of an end of a group, introduced in the 

40's by H. Freudenthal. The combinatorical-topological approach to the theory of 

ends, presented by H. Freudenthal, shows that if a group acts in a proper way, then 

the structure of ends of a space depends only on the group. 

In paper [Stall] J. Stallings studies 3-dimensional manifolds, properties of ends 

of topological spaces and relations between the ends and the homology of a space. 

The ends of the universal covering M of a manifold M depend only on the first 

fundamental group 7Ti(M) of M. All these studies lead to the definition of an end 

in an abstract finitely generated group. Also, J. Stallings introduces the notion 

of an end of a group by cohomologies with coeficients from the group Z2. D. E. 

Cohen in his papers [Cohl] and [Coh2] shows a new approach to the theory of 

end of a group which is purely algebraic in contradistinction to the combinatorical-

topological approach of H. Freudenthal and J. Stallings. 

The notion of a direction of a group, introduced in our paper, is a suitable tool 

allowing us to examine the action of a group on topological space in a more subtle 

way than that using only the theory of ends of a group. 

Using a properly defined equivalence relation, we obtain that the space of ends 

of a group splits into abstract classes-directions of the group. The directions of 

the group allow us to study the behaviour of the group along a proper sequence 

of compositions of its generators. We are able to investigate the relations between 

the algebraic properties of a group and the geometry of the space where the group 

acts. 

In paper [EbO'Ne] P. Eberlein and B. O'Neill show in a very elegant way that 

a group of isometries that is an algebraic structure, determines the geometry of 

the space where it acts. They consider a simply connected complete Riemannian 

manifold H with a sectional curvature K < 0 and a group D of isometries acting 

discontinuously on H. They define points at infinity for the manifold H. In set 

H = H U H(oo), where H(co) is a set of points at infinity, the cone topology is 

introduced in such a way that each isometry <j> of H can be extended naturally 
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to a homeomorphism of H. Since D acts discontinuously on the manifold H, the 

invariant limit sets L(D) appear in a natural way. The structure and the properties 

of the limit sets are considered also by W. Ballman [Ball] and A. Beardon [Bea]. 

Su Shing and P. Eberlein [ShiEb] study the interdependence between the algebraic 

structure of orbits of G in H(oo) and the geometry of the manifold H. 

Moreover, we can recommend P. Nicholls' book [Nich] as a source of general 

information about the theory of limit points and a presentation of the results of 

this fruitful measure theory, describing limit sets of a discrete group. 

The notion of a geometrical direction supplies us with a tool for more precise 

investigations of the acting of a group than those using only the orbit of the group. 

We can notice the way the orbit approaches points at infinity. We are able to study 

the structure of limit points of a direction in H(oo) as well as the relation between 

the structure of a geometric direction and ends of a space. 

1. P O I N T S OF ACCUMULATION OF A 

DIRECTION ON THE HYPERBOLIC SPACE H2. 

Let G be a finitely generated group of transformations of a topological space X. 

Denote by G\ a set of generators of the group G such that Gjf1 C G\ and id* G G\. 

Put Gn := {g eG :g = g\ • ...-gn,gi G G\}. 

Then we have 
oo 

G= \jGn 
n=l 

and 

G i C G 2 C G 3 C . . . 

Definition 1.1. We say that elements f,g G G\Gn can be connected in G\Gn if 

keN gi,92,...,gk€G\Gn l<t<k 

We then write 

fcon(n)g. 

In the set S of all sequences (fn) satisfying the conditions 

(1) V /„ € Gn+i\Gn, 
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(2) vjn+i-KleGi 
n£N 

we introduce a relation "#" in the following way: 

(fn)Q(9n) if and only if V fncon(n)gn. 
n&N 

The relation introduced above is an equivalence relation. The abstract classes 

of th relation "D" are called ends of the group. 

The equivalence between such a definition and the classical one of an end of a 

group can be found in [Bi] 

We shall obtain subtler classes if we introduce in the set S a relation " ~ " i the 

following way: 

(fn) ~ (gn) if and only if, for any n G N fncon(n)<7n and 

find elements # n , i , . . . ,gnjS(n) G G\ such that fn = gn,\ • . . . • gU}S(n) • gn in such a 

way that sequence s(n) is bounded. 

Def in i t ion 1.2. The abstract classes of the relation " ~ " are called algebraic direc­

tions in the group G. 

Consider a complete, noncompact Riemannian manifold M with a metric d and 

negative curvature. Let G be a finitely generated group of isometries of the manifold 

M and let G\ be a set of generators. 

As above, let 5 be a set of sequences (fn) satisfying conditions (1) and (2). In 

the set S we introduce a relation " « " in the following way: 

(fn) ~ (gn) if and only if foil wing conditions are satisfied 

V LA* Vd(fn(P)>9n(p))<A, 
p£M A>0 n£N 

2) V fncon(n)gn, 
nGIV 

3 ) V 3 / n = 0 n , l • • • - • 0 n . a ( n ) "0ni 
n€IV 5«,i . . .5«,-(«)GGi 

4) the sequence s(n) is bounded. 

Remark 1.3. We can notice that if condition (1) is satisfied by a point p G M , then 

it is also satisfied by any other point of the manifold M. 
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In fact, 

V d(fn(q),gn(q)) < d(fn(q),fn(p)) 
q£M 

+ d(fn(p)y9n(p) + d(gn(p),gn(q)) 

= 2d(p,q) + d(fn(p),gn(q)) 

< 2d(p,q) + A < oo. 

Remark 1.4. The relation " « " is an equivalence relation. 

Definition 1.5. The abstract class of a sequence (fn) G S in the relation " « " is 

called a geometric direction. 

Definition 1.6. Consider the maximal geodesies j v , j w of a manifold M, deter­

mined by vectors v,w G TM. We say that the geodesies j v , *)w are asymptotic 

if there exists a positive number C such that for a certain to G -&? the following 

implication 

t>to=>d(lv(t),lw(t))<C 

is true. 

The above relation is an equivalence relation in the set of geodesies of the manifold 

M . 

Definition 1.7. The abstract class of this relation determined by a geodesic 7 is 

called a points at infinity and denoted by 7(00). The set of all points at infinity is 

denoted by M(co). 

Let M :== M U M(oo). There are few ways of introducing a topology in the set 

M but, further, we consider only the cone topology (introduced in M by the family 

of topological cones) (see [Eb.O'Ne]). 

Consider a group G of isometries of the manifold M which is finitely generated 

and which acts in a discontinuous way. For q G M consider an orbit G(q) := {g(q) : 

g G G} of the point q. The group acts in a discontinuous way, so the orbit G(q) of 

the point q has no accumulation point in M, but such points can exist in a space 

M with the cone topology. 
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Let / by a geometric direction determined by a sequence of isometries (fn) of an 

isometry group G acting on a manifold M. Consider the sets { / i ( a ) , . . . / n ( a ) , . . . } 

and { / i ( 6 ) , . . . / n ( 6 ) , . . . } with a, 6 G M; then we have d( ft (a),/*. (6)) = d(a,6) < oo, 

so according to the cone topology, we obtain that the above-mentioned sets have 

the same accumulation points in the space M. 

If the sequences ( / n ) and (gn) determine the same geometric direction, then, 

according to condition (3), for each point a G M , there exists A > 0 such that 

d(fn(a), gn(a)) < A. So, the accumulation points of the sets { / i ( a ) , . . . , / n ( a ) , . . . } 

and {g i (a ) , . . . , g n ( a ) , . . . } are the same. 

That is why we can formulate 

Definition 1.8. An accumulation point in the topological space M of the orbit 

(fn(a)) of a point a G M is called an accumulation point of the geometric direction 

/ determined by the sequence ( / n ) . 

Remark 1.9. In the sequel, we shall consider only Fuchsian groups which act in a 

discontinuous way on the hyperbolic space H2. 

The main aim of this section is the following 

Theorem 1.10. Let H2 be the two-dimensional hyperbolic space, G- a group of 

isometries acting on H2 in a discontinuous way with a finite set of generators G\. 

We assume that there exists a point WQ G H2 such that a Dirichlet polygon D(wo) 

for the group G centered at the point WQ G H2 is bounded. We assume that the 

geometric direction f has two distinct points of accumulation q\, q<i G M . Then the 

geometric direction f has infinitely many points of accumulation. Moreover, any 

point q from the segment q\q2 is an accumulation point of the geometric direction 

In the proof of theorem 1.10 we shall use the following definitions and lemmas. 

Definition 1.11, Let G b e a Fuschian group acting on the hyperbolic space H2. A 

fundamental set F for the group G is a set F C H2 which includes only one point 

of each orbit of the group G. 
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Definition 1.12. A subset D of the space H2 is called a fundamental domain of 

the group G acting on H2 if: 

1) the set D is a domain, 

2) there exists a fundamental set F such that D C F C D, 

3) the measure of the boundary of D is equal to zero. 

Definition 1.13. We say that a fundamental domain of the group G is locally finite 

if each compact subset of H2 intersects only a finite number of images of the set D 

in a mapping g where g £ G. 

Definition 1.14. A set 

D(w) := p | {zeH2 : d(w,z) < d(z,g(w))} 
geo\{id} 

is called a Dirichlet polygon for the group G centered at w. 

L e m m a 1.15. The Dirichlet polygon is a locally finite fundamental domain for the 

group G. 

Proof- see [Bea], p.227. 

Lemma 1.16. Let D be a locally finite fundamental domain for a Fuchsian group 

G. Then the set 

G0:={geG: g(D) f l H ^ } 

generates the group G. 

Proof- can be found in [Bea], p.214. 

Proof of theorem 1.10. Let a sequence (fn) of isometries acting on the space H2 

determine a geometric direction with at least two different points of accumulation 

p,q G H2. Let r G (p,q) and fix a point w G H2. Let 71,72,73 be normalized 

geodesies comming, respectively, trough the points w and p, w and q, w and r. 

(fig. 1). 

Let D(w) be a Dirichlet polygon for the group G centered at w. Notice that 

the images of D(w) in a mapping g, where g G G, tesselate the whole space H2. 

According to the assumption, the Dirichlet polygon D(w) is bounded, so there 
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exists a constant c > 0 such that D(w) is contained in a ball H(w, c) with center w 

and radius c. We also know that the images of the polygon D(w) in a mapping g, 

where g (E D, are isometric to D(iv); that is why their diameters are bounded by 

2c. 

Consider three cones Ci,O2?C3 -s the space H2 with the common vertex, deter­

mined by geodesies 71,72,73 and angles 61,62,63. 

At first, we shall study the case where 

G1=G0 = {g£G:g(D)nD^9}. 

Let s be a number such that the distance between the points lying on the opposite 

sides of the truncated cone O3\H(iv,.s) is greater than 2c. 

We shall study the centers of the Dirichlet polygon D(w) in a mapping g where 

g £ G. By the assumption that p and q are distinct points of accumulation of 

the geometric direction f, we obtain that the f-orbit of the point w, that is the 

set {fn(w) : n E N}, has accumutation points at p and q. Let Wk = fk(w) 

and wi = fi(w) be points such that Wk £ C\\B(w,s), wi G C2\B(w,s) and the 

elements Wk+i = ffc+i(w),.. . ,w / - i = fi-i(w) do not belong to the ball B(w,s). 
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There exists a sequence of Dirichlet polygons D(wk),..., D(w{) such that the inter­

section of closures of any two neighbouring polygons is not empty. So, there exists 

n G {k + 1 , . . . , / - 1} such that 

Wn £ C3\B(w,s). 

According to the definition of cone topology, we obtain that the point r is an 

accumulation point of the f-orbit of the point w, so, in this case, the proof is 

completed. 

We shall prove the case Ci ?- Co reducing it to the previous one. 

Let Ci = {<7i,...,<7m} and Co = {/ii,... , / i n } . An element gi G Ci can be 

written as a composition of finitely many generators from the set Co. 

For any / G { 1 , . . . , m}y we can write 

gi = hh . . . / i / . 

where / i ^ , . . . , / i / , G Co-

Put E = max{<i : / G { l , . . . , r a } } . Then we immediately obtain that for any 

k\,k2
 e {l,-..,rc}> 

d(gkx(w),gk2 'gk,(w))< d(gkl,w) + d(gk2 • gkl(w),w) < 

< E2c + 2E-2c< oo. 

That is why the distance between the successive points of the sequence (fn(w)) is 

less than or equal to 6Ec. 

The next part of this proof is very similar to the previous case with only one 

difference that instead of the number s we define a number sf in the following way: 

let s( be a number such that the distance beetween two points lying on the opposite 

sides of the truncated cone C3\B(tv,s/) is greater then 6Ec. 

Studying the sequence (fn(w)) and using the assumption that the geometric 

direction f = [(/n)]« accumulates at at least two points p and q, we obtain that 

there exist successive elements of the sequence (fn(w)) such that wk G C\\B(w,s'), 

wi G C2\B(w,sf) and the elements tvfc+i,.. . tv /- i do not belong to the ball B(w,s'). 
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The distance between two successive elements Wk,Wk+i,... ,wi is less than or 

equal to 6Ec and the distance between points on the opposite sides of the cone 

Cs\B(w,s') is greater than 6Ec, so there exists a point 

wn eC3\B(w,s'). 

In this case we also obtain that the point r is an accumulation point of the geometric 

direction f. 

Propos i t ion 1.17. Let H2 be a two-dimensional hyperbolic space and G an iso-

metry group acting on H2, finitely generated by a set G\. We assume that the 

Dirichlet polygon D(WQ) of this group, centered at a point WQ £ H2, is bounded. 

Then each algebraic direction f of the group G with a set of generators Gi is a 

geometric direction. 

Proof . Let the sequences (fn) and (gn) determine the same algebraic direction in 

the group G. It is enough to show that there exists a constant A > 0 such that 

V d(fn(wo),gn(wo)) < A. 
n€N 

Since [ ( / n ) ]~ = [(<7n)]~> therefore for each n G N, there exist generators 

9n,l, • • • ,9n,s{n) £ ^ l s u c n t n a t 

fn = 9n,l --9n,s(n)9n 

where the sequence s(n) is bounded. 

Each of the generators gn,t can be writ en in the form of the composition of 

finitely many generators from the set Go, defined in Lemma 1.16. So, we can find 

generators 

h>n,i,...,hnj(n) such that fn = / i n , i , . . . ,hn^n)gn, 

and the sequence t(n) is bounded. 

If C > 0 is the diameter of the Dirichlet polygon D(wo), then each of the 

generators hUyi,... ,/in,<(n) E Co transforms a point p G H2 into the point p' in 

such a way that 

d(p,P') < c. 
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So, 

d(fn(wo),9n(wo)) = d(hnX.. .-hnj(n)gn(w0),gn(w0)) < C-max{*(ra) : n G N} < oo, 

which completes the proof. 

To finish with this section, we present an example of a geometric direction which 

accumulates at at least two points in H2. 

Example 1.18. Consider a disc model D of the hyperbolic space H2 with a metric 

d. Let Rn be a rotation of the disc D around its centre 0 and let -£ be the angle 

of this rotation, n £ N. Let T be a hyperbolic isometry of H2 such that its axis 7 

is a diameter of the disk D. Then T | 7 : 7 -» 7 is a translation of the geodesic 7 

(see Lemma 6.5 in[BGSch]). 

fig. 2 fig. 3 

Let G be an isometry group of the disc D, generated by T and Rn. Choose a 

point A e 7 such that A ^ 0 and T(A) is between O and T _ 1 ( A ) . Consider a 

Dirichlet polygon D(A) with centre A for the group G. 
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Then we obtain 

D(A)= f] {zeD:d(z,A)<d(z,g(A))}cBf\C 
geG\{iá} 

where 

B = {z e D : d(z,A) < d(z,T(A)) A d(z,A) < d(z,T~\A))}, 

C = {zeD: d(z,A) < d(z,R(A)) A d(z,A) < d(z, IT1 (A))}. 

The set B is a "strip" on the disc D, bounded by two geodesies 71, 72 perpendicular 

to 7 and intersecting 7 at two points which are middle points of the geodesic 

intervals T(A)A and AT~l(A) (fig. 2).The set C is a disc sector determined by the 

angle •£- (fig. 3, for case n = l ) . Denote by a an angle with a vertex O determined 

by geodesic half- lines containing point 72(00), 72 (—00) E D. For a sufficiently 

large m e N, 

x a 
2™ < _"" 

Construct a geometric direction / in the following way: Let / = [(/n)]« where 

R = R and 

Һ=T, f2=RT, f3 = RRT, ,hm+i = R.. • RT 

2 m x 

fn={ 

hm+2 — -I" R...RT, hm+3 = RT R...RT, ... , 

/2m+i +2= R...RT-1 R...RT 

2 m X 2 m X 

T / n _ i i f ( n - l ) mod ( 2 m + 1 + 2) = 0 

-« /n - i if 1 < (n - 1) mod ( 2 m + 1 + 2) < 2 m 

T'1 / n _ ! if (n - 1) mod ( 2 m + 1 + 2) = 2 m + 1 

k R / n _ i if 2 m + 2 < (n - 1) mod ( 2 m + 1 + 2) < 2 m + 1 + 1. 

Then fn(0) e 7 for infinitely many n e N. 

So, the sequence accumulates at points 7(00), 7(—00) G D. The direction / 

accumulates at at least two points. The group G acts on the hyperbolic space in a 

discontinuous way, its Dirichlet polygon D(A) centered at the point A is included 

in the bounded set B f)C. 
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2 . GEOMETR IC DIRECTIONS AND ENDS OF MANIFOLDS. 

Definition 2.L Let X be a topological space and G a homeomorphism group 

acting on X. We say that G acts in a discontinuous way on the space X if and only 

if for any compact set K C X, 

g(K) n K± 0 

only for finitely many elements g G G. 

Remark 2.2. If x G X and <7i,g2> • • • are distinct elements of G, then the sequence 

9i(x))92(%)) • • • n a s n o accumulation points in X. 

In fact, if the subsequence (gnk(x)) oi (gn(x)) accumulates at a point XQ and 

K = {x0,x,gni(x),gn2(x)...}, then: 

gnk(
x) E K n gnk(K) for infinitely many distinct elements gUk G G, which contra­

dicts the assumption about the discontinuity of the group G. 

In this paper we consider only a finitely generated isometry group G acting in a 

discontinuous way on a complete simply connected Riemannian manifold M with a 

metric d. We call the set G(x) := {g(x) : g G G} an orbit of a point x G M. Also, 

we say that points x,y G M are G-equivalent if both of them belong to the same 

orbit. 

Definition 2.3. A set F C M which consists only one point from each orbit is 

called a fundamental set for the group G. 

Definition 2.4. A subset HCMis called a fundamental domain for the group G 

if and only if: 

1) D is a domain, 

2) there exists a fundamental set F such that D C F C D, 

3) vol(6D) = 0. 

Directly from definitions 2.3 and 2.4 we obtain that for any g G G\{Id} , 

g(D) n D = 0 and |J g(D) = M. Let G be a group acting on M (with the 
g£G 

assumptions as above). Choose a point w G M which is not a fixed point of any 

isometry of C7\{Id}. 
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We show that there exists a point p G M which is not a fixed point of any 

isometry from the group G acting in a discontinuous way. Then we assume to the 

contrary that 

V 3 gx(%) = x. 
x€M ld?gxeG 

Let K be a closed ball of radius r > 0 centred at xo- By the assumption that 

the group acts in a discontinous way, we obtain that there exist only finitely many 

elements g 6 G such that 

g(K) fl K T- 0. 

Denote them by gi, gi,..., gn. Let 

M9i = {x £ M :gi(x) = x}, i = 1,2,... ,n. 

Then we can write 

Kc\jM9i. 
t = i 

Using Baire's Theorem, we obtain that there exists io £ {1,2,. . . ,n} such that 

lntM9iQ ± 0. 

So, the isometry gi0 is the identity mapping which contradicts our assumption. 

Put 

Lg(w) = {z e M : d(z,w) = d(z,gw)}, 

Hg(w) = {z G M : d(z,w) < d(z,gw)}. 

Definition 2.5. A set 

D(w) := f | Hg(w) 
geG\{id} 

is called Dirichlet set with centre w for the group G. 

Definition 2.6. We say that a fundamental domain D for a group G is locally 

finite if and only if a compact set K C M intersects only finitely many sets g(D) 

where g G G. 
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Proposi t ion 2.7. The set D(w) is a locally finite fundamental domain for the 

group G. 

Proof. At first, we should notice that only a finite number of sets Lg(w) can in­

tersect a fixed compact set K C M. In fact, if G = {<7i-<72..---}> then using a 

discontinuous action of the group G we obtain 

d(w,L9n(w))= -d(w,gn(w)) —• cc. 
Z n—+oo 

Let z E D(w). For any element g E G, there exists a ball centered at z such that 

K C Hg(w) or z E Lg(w). Moreover, the last condition can be satisfied only by 

finitely many elements g E G. The boundary of the set D(WQ) is contained in a 

union of the sets Lg(w), g E G\{Id}. Therefore 

vo\(D(w)) = 0 

because, for any g E G\{Id}, we have \o\(Lg(w)) = 0. 

Choose exactly one point z1 E G(z) which satisfies the condition 

d(w, z) < d(w,gz) for all g E G. 

Such a choice can be done since the set G(z) does not accumulate at the point w. 

Denote by F the set of points described above. Using the description of the 

set. D(w) we immediately obtain that the condition z E D(w) yields z = z'. So, 

D(w) C F. 

Choose z E F and consider the geodesic segment [w,z). 

If Lg(w) VI (w,z) ^ 0, then we have the inequality 

d(z,w) > d(z,gw) = d(g~lz,w), 

which contradicts the assumption that z E F. 

So, for any g E C7\{Id}, we have Lg(w) D (w,z) = 0; that is why (w,z) C D(w) 

and, in consequence, F C D(w). 
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We should show that D(w) is a locally finite set. Let K be a ball centred at w 

and with radius r. Assume that g(D(w)C\K ^ 0. There exists z E D(w), such that 

d(gz,w) < r. If z E D(w), then 

d(w,gw) < d(w,gz) + d(gz,gw) 

< r + d(2,iv) 

< r + d(#2,w) 

< 2r. 

The above condition can be true only for finitaly many elements g E G because the 

group G acts in a discontinuous way. 

Under the assumption as above we obtain: 

Proposi t ion 2.8. If D(w) is a Dirichlet set for the group G, the set 

G0 = {geG: g(D(w)) n D(w) = 0} 

generates the group G. 

Proof. Let G* be a group generated by Go- For any z E M, there exists g E G 

such that (7(2) E D(w). We may assume that /&(>?) E D(w). Then /i(z) E D(?v) n 

lip xD(w), so hg l E Go and G*/i = G*(/. That is why the following mapping is 

properly defined: 

$ : M - » G \ G * , 

$(z) = G* g where #(*) E D(w). 

Consider z E M . If D(w) is a locally finite domain, there exist finitely many el­

ements gi,...,gm E G such that the point z belongs to each set gi(D(w)),..., 

gm(D(w)) and there exists an open neighbourhood N of z which satisfies the fol­

lowing condition: 
m 

N C |J 9j(D(w)). 
3 = 1 

If w E N, there exists .; E {!,..., m} such that w E gj(D(w)). 
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We have proved that each point of M has a neighbourhood N such that $|w is 

a constant mapping. 

Considering $(M) with the discrete topology, we obtain that $ is a continuous 

mapping, so the connected set $(M) consists of one point. Therefore $(z) = $(w) 

for any z G M. 

For any element g G G, choose a point z G D(w) and a point v G g_1(D(tv)). 

Then 

according to the difinition of the mapping $ , 

$(z) = G* and $(v) = G*g, 

which yields that g G G* and G = G*. 

Definition 2.9. Let (K n ) be an ascending sequence of compact subsets of the 

Riemannian manifold M, such that 

oo 

(JlntKn = M. 
n = l 

A descending sequence of connected components of the sets M\Kn is called an end 

of the manifold M. 

Definition 2.10. We say that an orbit of a point q G M along the sequence (fn) 

determining the geometric direction in a finitely generated group G acting in a 

discontinuous way on the Riemannian manifold M accumulates at an end E = (Ei) 

of M if and only if 

V V 3 fm(q)eEi. 
t€N nGN m>n JTn^' 

Definition 2.11. We say that a geometric direction F = [(fn)]« accumulates at 

an end E = (Ei) of a manifold M if, for any represectation (fn) of F and any point 

q G M, an orbit of q along the sequence (fn) accumulates at the end E = (Ei) of 

M. 
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T h e o r e m 2.12. Let G be a finitely generated isometry group acting in a discon­

tinuous way on a complete connected Riemannian manifold M with a metric d. 

Denote by G\ a set of generators ofG. If there exists a point w G M such that the 

Dirichlet set D(w) centred at w is bounded for the group G, then: 

1) an orbit of a point p G M along the sequence (fn) determining the geometric 

direction F accumulates at one end of M, 

2) if an orbit of a point p G M along the sequence (fn) determining a geometric 

direction accumulates at an end E of M, then the orbit of another point q G M 

along the sequence (fn) accumulates at the same end E, 

3) for two sequences of isometries determinig the same geometric direction and 

for a point p G M, we obtain that the sequences (fn(p)) and (gn(p)) accumulate at 

the same end of M. 

Proof of 1). At first consider case 1) when a finite set G\ of gererators of the group 

G is equal to the set G* := {f G G : f(D(w)) 0 D(w) ^ 0}. Denote by D the 

diameter of the Dirichlet set D(w). According to our assumption, we have that D 

is less than infinity. 

Contrary to the assertion, assume that the orbit (fn(q)) of the point q accumu­

lates at at least two distinct ends E and E' of M. Let E = (Ei) and E' = (E\) 

where Ei and E\ are the connected components of the set M\Kj. Since E 7- E' 

there exists io G N such that Ei0 H E'io = 0. From definition 2.10 we obtain that 

each of the sets Ei and E\ includes infinitely many elements of the sequence (fn(q)). 

Consider the set K? := {x G M : d(x,Ki0) < D}. There exists j £ N such that 

the compact set K? is included in Kj. 

The distance between the succesive points of the orbit (fn(q)) is less than or equal 

to D. Therefore, infinitely many elements of (fn(q)) are included in a compact set 

Kj, which contradicts the assumption that the group G acts in a discontinuous 

way. 

In the case when G\ 7- G* we have that for any gt- G G^ there exist g^i,..., 

9i,ki G G* such that 

9i = 9i,l * •• • * 9i,ki-
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Let s = max{k t}. Then the distance between the succesive points of (fn(q)) is less 

than or equal to s '• D. Take io G N such that the intersection of the connected 

components Eio and E[Q of the set M\Kio is empty. The compact set KfD is 

included in Kj for some j G N. The distance between E{Q and E[Q is greater than 

or equal to 2sD , so the orbit (fn(q)) intersects the compact set KfD infinitely many 

times, which contradicts the assumption that G acts in a discontinuous way. 

Proof of 2). According to the above proof, we can say that the orbit (fn(p)) of 

a point p accumulates at an end E. Assume that the orbit (fn(q)) of a point q 

accumulates at an end E'. Since G is a group of isometries, therefore 

Vd(fn(p), fn(q)) = d(p, q). 
n£N 

On the other hand, if E / K', then there exists i0 G N such that Eio H E[Q = 0 

where Kt0 and E'iQ are the connected components of the set M\Kio. Taking an 

A > 0, we obtain, that for a compact set KfQ C Kj, so the distance between Ej and 

Ej is not less than 2A. Since A is an arbitrary number, we have that the distances 

d(fn(p), fn(q)) are unbounded, where n G N . So, E = E'. 

Proof of 3). follows immediately from those of 1) and 2). 

Using the above theorem, we can derive 

Corollary 2.13. If G is a finitely generated group of isometries acting in a dis­

continuous way on a complete Riemannian manifold M and if there exists a point 

w G M such that the Dirichlet set D(w) is bounded for the group G, then each 

geometric direction in G accumulates at one end of M. 

Proposi t ion 2.14. Let M be a connected complete Riemannian manifold and G 

a finitely generated group of isometries acting on M, such that the Dirichlet set 

D(w) is bounded for any w G M. 

Then each algebraic direction in G generated by a finite set G\ is geometric 

direction in G generated by G\. 

Proof. - analogous to that of Proposition 1.17. 
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