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Abstract 

Moduli space of Hopf structures on the Borel subalgebra of $1(2) is a line 
with the origin (the point /3 = 0, where 0 is a parameter on the line) excluded, 
and with two points at /3 = 1, the classical cocommutative algebra and a Hopf 
algebra J. The algebra J is triangular. We describe its properties and give its 
differential operator realization on the Jordanian quantum plane. 
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1 Moduli of Hopf structures 

The simplest nonabelian Lie algebra is the algebra with two generators r3, TT_ satisfying 

[r3,7T_] = -27T_ . (1) 

It has the standard cocommutative coproduct, A0r3 = r3 ® 1 + 1 Q r3, A07r_ = 7r_ Q 
1 + 1 ® 7r_. The theory of Hopf algebras generalizes the theory of Lie algebras like the 
theory of nonabelian Lie algebras generalizes the theory of abelian Lie algebras. For 
Hopf algebras the coproduct becomes noncocommutative. 

In the simplest situation of the algebra (1) one can ask what is the most general 
coproduct for this algebra. It is easier to consider this question from the dual point 
of view. Let A be the coalgebra of linear functionals on the algebra U = W(r3,7r_) of 
polynomials in r3,7r_. The comultiplication law on A is given by (A<£, u Q v) = (0, ut>), 
<t> G -4, u, t; € W(r3,7r_). Consider two linear functionals t and p, given by 

(*,rf«i) = 2% , (p,T3y_) = 6*s[ . (2) 

Computing values ofsA*, Ap on monomials we obtain using 7rir3 = (r3 + 2j)kwL, 

(A^r.J7ri®r3V) = 2 « + ^ , 

(Ap,r>i ® r3*7rL) = 6i(2k6l
0S{ + 6[6k63

0) . (3) 

Therefore 

A* = t ® t , (4) 
Ap = p ® t + 1 ® p . (5) 

Thus the coproduct closes on p and t in a simple way. This is the reason for our choice 
of p and t. 

Possible coproducts for the algebra (1) become multiplication laws for the coalgebra 
A. To find the coproduct on the whole of A one can directly compute values for every 
linear functional like in (3). Alternatively one can find some commutation rules for p, f, 
making A an algebra, in such a way that A is generated (in a proper topological sense) 
by t,p, and A is a homomorphism. The precise formulation of our question is: what 
is the most general ordering prescription preserved by the coproduct (4, 5)? Assume 
we order functions of p, tin such a way that p stands before t. The ordered monomials 
pxt* we assume to be linearly independent. Then writing 

<p'=EA(.) (6) 

with the most general r.h.s. and applying A we obtain 

(t®t)(p®t + l®p) = ^ ( p ® i + l®p) , 'a>(*®0. (7) 
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The ordered expression for the l.h.s. is 

£ | ^ ) ® i 2 + t ® £ j ^ ( t ) . (8) 
i i 

Collecting terms not containing p in the first factor, we find 

a0(t) ® t2 +1 ® 2>'ai(t) = £ ( 1 ® p>,(* © 0 . (9) 

The terms of the form f(t) ® p*g(t) are linearly independent for different ?. Writing 
ai(t) = J2j atj*J w e obtain for i > 0 

J3°«(* © *' ~*' ® **') = ° • (10) 
i 

Therefore ay = 0, j ^ 1, i > 0. 
For i = 0 we have ao(t) ® t2 +1 © ao(f) = a0(* © t), which after decomposing «0 in 

power series, a0(t) = Ylj aojt*, implies that aoo = 0, a02 = — a0i, aoi = 0, i > 2. 
Thus, eqn. (6) takes the form 

tp = S > W - < - o i * 2 . (11) 

Eqn. (7) reduces to 

] [ > W ®t2 = ^{(p®t + 1 ®p){ - 1 ®p'} an -(t®t). (12) 
i>0 t>0 

Compare terms containing pk
y k > 2, in the first factor. Eqn. (11) shows that At 

is the both-sided ideal. Therefore, terms containing pk in the first factor in the r.h.s. 
of (12) have at least tk+l in the second factor. For k > 2 such terms are absent in the 
l.h.s. Therefore we find that a*i = 0 , k>2. 

Thus, denoting 2a = a0i, 0 = an, we conclude that 

*p =/?pt + 2a(* - *2) (13) 

is the most general ordering prescription compatible with (4, 5). The factor 2 stands 
for convenience. 

We have now to identify equivalent products (13). The coproduct (4, 5) allows 
automorphisms 

t*-*t , •pi^1 / = 7 p + / i ( t - l ) . (14) 

Then 
tp' = pj/t + (27a +,.(/? - 1))(* -1 2 ) . (15) 

Therefore, if ft =fi 1 we can set a to 0. The product tp = 0pt corresponds to the 
coproduct Ar3 = r3 ® 1 + 1 ® r3, ATT_ = 7r_ © 1 + fi^l2 © 7r_ for the algebra (1). This 
coproduct appears in the standard ^-deformation of the Borel subalgebra of sl(2) [1]. 
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For /? = 1 one can set a to 1 by the transformations (14). But since the classical 
limit corresponds to a = 0, it is convenient to leave a free. Below it is shown that this 
bialgebra structure actually extends to the Hopf structure. 

For ft = 0 one can set a to 0 by the transformations (14). Then tp = 0. The 
counit e should obey (e ® id)At= t, or e(t)t = t. Since the ordered monomials are 
linearly independent it follows that e(t) = 1. Then te(t) = tis satisfied as well. One of 
the properties of the antipode S is e(t)= m(S ® id)A*, where m is the multiplication. 
Thus we should have 1 = S(t)t. Multiplying this by p from the right one finds p = 0. 
Therefore for ft = 0 the antipode does not exist, so this bialgebra does not admit a 
Hopf structure. 

To conclude, Hopf structures (admitting ordering in which the ordered monomials 
are linearly independent) form a family described by the parameter /? ^ 0,1, and two 
points for /? = 1, one is the classical algebra, a = 0, another corresponds to a = 1. In 
the topology induced by the transformations (14), neighbourhoods of the point a = 1 
are open sets of the line of /?, but neighbourhoods of a = 0 include an open set of the 
line of P and always the point a = 1. Thus the point a = 1 can be considered as a 
nonstandard "classical limit" of the ^-deformation. Note that the classification of the 
Hopf structures coincides with \he classification of quantum groups in two dimensions 
admitting left and right quantum spaces [2]. 

2 Algebra J 

We now study the bialgebra structure with /3 = 1, a ^ 0. 

Lemma 1.1 The product [t,p] = 2a(t — t2) corresponds to the coproduct 

Ar3 = r3 ® A + 1 ® r3 , 
. A7r_ = 7T_ ® 1 + A""1 ® TT_ . (16) 

for the algebra (1), where 
A"1 = 1 - 2a7r_ . (17) 

Proof. One checks that A given by (16) is a homomorphism, and that it is coassociative. 
We will show that the coproduct A induces the needed multiplication rules for t, p. 

The product on the coalgebra A is defined by (4>i>,u) = (</> ® ^ , Au), </>,i/> € -4, 
ueU. 

Denote by K a two-sided ideal Uir~ ® U + U ® Uirl. of U ® U.. We have 

A ( r > i ) = (r3 ® A + 1 ® r a W . ® 1 + 1 ® *_)'" 

s *o(r3 ® A + 1 ® r3)' + 5j(r3 ® A + 1 ® T3y(l ® 7r_)(mod /C) 

s 6&(T3 ® 1.+ 1 ® r3 + 2ar3 ® TT.)'' (18) 

+ ^ I ( T 3 ® 1 + 1 ® T3Y(l ® 7r.)(mod X;) . 
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If [h,x] = -2x then (h + 2ax){ = ti + a((h + 2)' - ti)x (mod a:2). Using this with 
h = r 3 ® 1 + 1 ® r3, x = r 3 ® 7r_, we find 

(*• ^ ) = *o(* ® P, (r3 ® 1 + 1 ® T*)' + a((r 3 ® 1 + 1 ® r 3 + 2)' 
- ( r 3 ® 1 + 1 ® T3Y) • (r3 ® 7T.)) 

+ $ J ( * ® M r 3 ® 1 + 1 ® r3y • (1 ® 7T-)) (19) 

= 2a63

0(22i - 2*') + 6[2{ , 

since p takes a non-zero value only on the linear monomial 7r_. 
It is simpler to compute 

( p . , r > i ) = «J2', 

. ( . - 2 - t , r > i ) = ^ ( 2 " - 2 ' ) , (20) 

and we obtain tp — pt = 2a(t2 — ^), as required. • 
The bialgebra (1), (16) has an antipode 

S(T3) = -r 3 A- x , 5(TT_) =-7T.A , (21) 

and a counit 
c(r3) = c(7r.) = 0 . (22) 

Thus, the algebra (1) with the coproduct (16) is a Hopf algebra. 

Definition. We denote by. J0 the Hopf algebra generated by elements A, A"1, r 3 with 
the product 

AA-1 = 1 , [A, r3] = 2A(A - 1) , (23) 

the coproduct 

Ar 3 = r 3 ® A + 1 ® r 3 , 

AA = A ® A , (24) 

the antipode 

and the counit 

5(rз) = - rзЛ- г , S(Л) = Л - \ (25) 

«(rз) = 0 , б(Л) = l . ü (26) 

It is convenient to take the logarithm of A. There is a minimal completion for 
which the logarithm is defined. Define the vector space J of finite sums £• /,-(r3)#(<7), 
where /t- are polynomials, and for each # there exists such n G 2S that gi(a) differs 
from exp(n<r) by at most a polynomial in a. 

Definition. The commutation relation 

[r3,(7] = 2 ( l - e ' ) (27) 
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together with the coalgebra structure 

A<T = <7® 1 + 1 ®<r , Ar3 = r 3 ® e a + l ® r 3 . (28) 

and the antipode and counit 

S(cr) = -<7 , S(T3j=-T3e-* ,e(<j) = e(r3) = 0 . (29) 

make J a Hopf algebra. • 

The Hopf algebra Jo is a dense Hopf subalgebra in J, the embedding is given by 
A = e*. 

We now describe some properties of J. Below Jopp denotes the Hopf algebra 
obtained from J by taking the opposite comultiplication (and the same multiplication), 
and Jopp - the Hopf algebra obtained by taking the opposite multiplication and the 
same comultiplication. 

Lemma 1.2 (a) J is isomorphic to J0**. 
(b) r3 i-+ —r3, a »-» <T is an isomorphism between J and Jopp. 

Proof, (a) Let f3 = r3e~*, a = — a. Then 

[r3^] = [r3e-',-cr] = 2 ( l - e 5 ) (30) 

and 

Af3 = (T3 ® e* + 1 ® T3)(e-a ® e'*) = f3 ® 1 + e* ® f3 , 
ACT = cr®l + l ® c r , (31) 

which proves (a), (b) is obvious. • 
The composition of the mappings (a) and (b) is the antipode S. 
Any other isomorphism between J and J0™ or Jopp is the composition of the ones 

given in Lemma with some automorphism of J. Here is the description of the group 
of automorphisms of J. 

Lemma 1.3 Any automorphism of the Hopf algebra J has the form 

<j i-+ a , r3 •-> r3 + c(l - ea) (32) 

with some constant c. 
Proof. Choose a basis r3<7J of J. 
1. Let ^ be an automorphism of J. Then A o <j> = (<j> ® <f>) o A, therefore, a' = <f>(a) 
must obey A<7; = a' ® 1 + 1 ® <r\ For & = £ y a^cr-1' € J this gives 

£ a0'(*3 ® e* + 1 ® r3)'(<7 ® 1 + 1 ® ay = S3 curia* ® 1 + 1 © S3 **& . (33) 
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Compare terms not containing r3 in the first factor: 

£ a.j(l ® Ti)(<r ® 1 + 1 ® <r)j = £aol<r l ® 1 + 1 ® £ amnr3
m<7n . (34) 

ij / ran 

Denoting Oi(z) = J^j <*ijz*> -c = cr®l,y = l®(7 and comparing terms with T£ we find 
<*o(x + y) = do(x) + a0(j/) and ajfc(a: + y) = a*(y), A; > 0. Therefore, a0(-r) = 70a- and 
ak(x) = 7fc, fc > 0, for some constants 7,-. Hence, a* = 7o<7 + H,>o7i73» a nd e(ln- (33) 
reduces to 

£7.(^3 ® e" + 1 ® T*)'" = £ 7 . ^ ® 1 + 1 ® £ 7 . ^ . (35) 
>>0 t>0 t>0 

Modulo the ideal J ® J a this implies i(t + s) = 7(2) + 7(5), where 7(7*) = H,> 07.T ,« 
* = r3 ® 1 and 5 = 1 ® r3. Therefore 7(r) = 7ir. Substituting a' = 7o<7 + 71 r3 in (35) 
one gets immediately 71 = 0. Thus, <r' = 700". 
2. For r3 = J2 bijT^a* we obtain 

£ 6fi(r3 ® e" + 1 ® r3)*> ® 1 + 1 ® <r)j = £ t^r^ ® e™" + 1 0 £ 6y r^" . (36) 

Terms not containing r3 in the first factor are 

£ M l ® *3)(* ® 1 + 1 ® *Y = £ *>oi°l ® c w + 1 ® £ 6m„r3
m(7n . (37) 

ij l mn 

It follows then that b0(x+y) = b0(x)eyoy-{-bQ(y), bk(x+y) = 6*(y), & > 0* where 6,(2) = 
S j bijZ*. Thus, 6o(-c) = A( l — e''0*), 6jb(a;) = ,5* with some constants /.?,-. Considering 
(36) modulo J%J<r one finds that /3k = 0, i > 1. Thus, r̂  = ^0(1 - €»') + /?xr3. We 
have /?i 9-- 0, otherwise the image of ^ belongs to the proper subalgebra generated by 
<7 only. Now eqn. (36) reduces to 

P\(T3 ® e<r + 1 ® r3) = 0\T3 ® c w + 1 ® AT* , (38) 

which implies 70 = 1. Thus, & = <r, r̂  = /?0(1 - e*) + ftr3. 
3. Substituting expressions for <r' and rg in (27) one finds immediately /3\ = \. ---

We now return to the dual algebra A. One finds that the linear functional t,p take 
the following values on the basis T^CT* of J: 

( t , r ^ ) = 2««0" , ( p , r ^ ) = 2 a ^ ' . (39) 

Introduce also a functional 5, (s,r3(7
J) = 26[6Q. By induction one finds then that 

(sk>T3<rj) = k\2k6\6i. Therefore, (e'-rja*) = 2,'<50\ which implies that t = e*. The 
functionals skpl are characterized by the property that they take nonzero values only 
on finite number of monomials TI<T*. SO, in this topology they form the dual coalgebra. 
However, to make it an algebra one has to add the exponent of s. In other words, 
we define the dual Hopf algebra J' to be the vector space of finite sums £ fi(s)gi(p), 
where # are polynomials, and for each/,- there exists n G Z such that fi(s) differs 



192 O. OGIEVETSKY 

from exp(ns) by at most a polynomial in s. Above we have found the algebra structure 
on J', which for the generators s,p takes the form 

[5,p] = 2 a ( e ' - l ) , (40) 

and its coalgebra structure, 

A s = s ® l + l ® s , Ap = p®e* + l ® p . (41) 

The antipode and counit translate to J' as 

S(s) = - 6 , S(p) = - p e " , e(s) = e(p) = 0 . (42) 

Comparing (27,28,29) with (40,41,42) we conclude: 

Lemma 1.4 The map 

X ' r3 H* - p , (? H* s (43) 
a 

is an isomorphism between the Hopf algebra J and its dual J'. • 
Thus, all eight Hopf algebras which can be obtained from J by taking opposite 

multiplication or opposite comultiplication or dual are isomorphic. Together, Lemmas 
1.2,1.3 and 1.4 give the description of the spaces of isomorphisms between them. 

In the next section we find the universal 7^-matrix for J and show that J is 
triangular. 

3 Universal 7^-matrix 

We will often use the original generators r3,7r_ of J. 
The universal 7£-matrix satisfies 

TCAr3 = A , r 3 ^ , (44) 

ftATT- = A'x.. 72,, (45) 

where A' is the opposite comultiplication. 
Considering a as a variable, one can introduce a grading on the Hopf algebra J 

by deg r3 = 0, deg 7r_ = 1 and deg a = — 1. (Exactly the fact that a has a nonzero 
dimension, allows to set it to 1, in contrast to the standard #-deformation, where q is 
dimensionless.) We assume that 1Z has the grading zero. This means that it depends 
on 7T_ only in the combination Q7r.. 

Also, since the classical limit is a = 0, we assume that 7£|a=o = 1-

Lemma 2.1 Let 
F = exp(-<7®r3). (46) 
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Then 
W = -Fi2F2-1

1. (47) 

Proof. For any dimensionless function /(a7r_) we have 

'-*./]—*-£/• (48) 

Rewriting (44) in the form 

[r3 ® 1 + 1 ® T3, 7̂ ] = 7̂ (T3 ® (A - 1)) - ((A - 1) ® TZ)K , (49) 

using (48) and A — 1 = 2aA7r_, we find, after cancelling by (—2a), 

?t = (A7r_®r3^--^(T3® ATT_) , (50) 

where dot means the derivative in a. 
We have 

F12 = ( A T . ® r3).Fi2 , (Fn1)' = -iTi'^a ® ATT_) . (51) 

Therefore, 7̂  = F^WF^1 with W = 0. Comparison of values at a = 0 gives W = 1. 
It remains to check (45). We have 

(TT. ® 1)11 = e H ^ e - i ^ + ^ T r - ® 1) = ft(7r_ ® A"1) . (52) 

Here we used that 7r_flf(r3) = g(rz + 2)7r_ for any function g. Now, 

(A"1 ® 7r_)ft ^(A"1 ® l)e-"*®to+2>e-^®*(l ® TT.) = 11(1 ® TT_) . (53) 

Since A-_ =7r_ ® 1 + A"1 ® 7r_ =7r_ ® 1 + 1 ® 7r_ — 2a7r_ ® 7r_ =TT_ ® A"1 + 1 ® 7r_, 
eqs. (52) and (53) imply (45).D 

Lemma 2.2 (J, It) is triangular. In other words, 

^12^21 = 1 , (54) 

and 

(A ® id)72.12 = fti3ft23 , (55) 
(id ® A)7^l2 = 7^l37^l2 . (56) 

Proof. 1. Eqn. (54) follows from (47). 
2. Obviously, 

(A®id).Fi2 = .Fi3F23. (57) 
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For any c commuting with 7r_ and r3 one has [r3, A
c] =—4acAc+17r_ which implies 

Acr3A"c = r3 + 4acA.T.. . (58) 

Using this, one finds 

e|73®<r®i(1 © T3 © aJe-J^o^oi = i © r3 © a + r3 ? (A - 1) Z * 

= ( A r 3 - r 3 ® l ) 0 < 7 . (o!)) 

Ar3 commutes with r3 © 1. Dividing by 2, taking exponent of eq. (59) and using 
exp^j/aT1) =xexp(y)x"1, we obtain i^iF^I^l1 =-f3i

1 • (A .? id)F21. which implies 

(A 0 i d ) ^ 1 = F2lF^Fr1
1F^1 . (60) 

Therefore 

(A®id)ft12 = {±eid)(FuF.»1) = Fl3F23F2iF£Frl
1Fj 

= FuFnUnFrfFn1 , (61) 

since F& commutes with F21. 
On the other hand, (id ® A)F2T = FrfF^1, (id 0 A')F2T = FrfF^1. By Lemma 

2.1 we have (id ® A)F2~1
1 = K£ • (id 0 A').F2T • 7£23, therefore 

ft»*S.,-!M = - T i 1 - ^ 1 ^ • (62) 

Substituting this in (61) we obtain 

(A © id)ft12 = Fl3F21n23F^1
1F^1 

= F13F^n23 = ft13ft23 , (63) 

which proves (55). 
3. When 7£12 = TfcJi1, eqn. (56) follows from (55) (if (A Q id)i/12 = tvi23 for some w. ic , 
then (id ® A)u21 = w231) and we need not check it separately. • 

Notes. 1. The element F21 twists the classical coproduct, 

Aw = F21 • A0w • F^1 (64) 

for any u (to check it for u = r3 one uses (58)). The element F satisfies the condition 

F32 • (id © A0)F21 = F21 • (A0 0 id)F2i (M) 

ensuring the coassociativity of the twisted coproduct [3]. To prove (65) we notice that 

c**©* • (A0A-1) • e-27*®" = A"1 © A"1 . (66) 
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Therefore ei107*®" • (id ® A0)(l ® A)c • e~ J1®7*®* = 1 ® Ac ® Ac for any c commuting 

with 1 ® U ® U. For c = - r 3 ® 1 ® 1 this gives 

F32 - (id ® A0)F21 - Fg = F21F31 , (67) 

which is equivalent to (65) since (A0 ® id)F21 = F31F32. 
After we know the twisting factor F, we can build the Hopf structure on the whole 

of sl(2) by adding the generator 7r+ satisfying [7r+,7r_] = r3, [r3,7r+] = 2*+, A7r+ = 
i^iAoTT+i^1. Using the identity [TT+,AC] = 2acAc+1r3 - 4c(c + l)a2Ac+27r_ which 
implies A~c7r+A

c = 7r+ + 2acAr3 — 4c(c + l)a2A27r_ one finds explicitly the coproduct 
on 7r+: 

A7T+ = 7r+ ® A + 1 ® 7T+ - ar 3 ® Ar3 - a2(r3
2 - 2r3) © A27r_ . (68) 

It looks simpler on a generator <j> = 7r+ + \OLT^ 

A0 = <£®A + 1®<£. (69) 

We denote this Hopf algebra with generators 7r+, 7r_, r3 by UJsl(2): Hopf algebras 
related to J, UJsl(2) and its dual were appearing in a number of contexts [4], [5], [6], 
[2]. 

2. Let ea be a basis of some Hopf algebra, mk
9t, y.\} are the structure constants of 

the multiplication and comultiplication respectively, S\ is the matrix of the antipode, 
ea and ea are the unit and counit respectively. Let ea be the dual basis of the dual Hopf 
algebra, (e*,et) = 6a. For the self-dual Hopf algebra let x be the isomorphism between 
the algebra and its dual, in components x(e*) = 98tet- If 9at is symmetric, gat = gta, 
it is natural to call the Hopf algebra symmetric self-dual. The matrix g*1 relates the 
structure constants m and [i, it is compatible with the antipode, and maps the unit to 
the counit: 

mk
t = gMgti9

kelif , (S"1)} = tf*S*fly , e' = g'e, , (70) 

where gat is the inverse to gat
y gatg

tk = 6k. The universal 7£-matrix for the standard 
g-groups can be obtained by the double construction [1]. In the self-dual situation one 
can find a "self-double" interpretation of the 7c-matrix. The element ea © ea satisfies 
the Yang-Baxter equation. This element reverses the coproduct if 

Pa mic9 ™3b = Pa mum9 ™ v n • ( ' 1 ) 

For the algebra J we take a basis e*i = r3crl. One computes then that the dual 
basis is 

^-uSW***' (e*'c*')5=^'- (72) 

Thus, J is symmetric self-dual. One sees immediately that its 7^-matrix has the form 
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4 Differential Realization 

Any representation of J7 in a space V gives rise to a numerical .R-matrix, acting in VQ V, 
and a .R-matrix R = P.R, where P is the matrix of permutation, P(v © w) = w Q v. 
The triangularity (54) implies RR = PRPR = .R21-R12 = 1-

The .R-matrix corresponding to the simplest two-dimensional representation of the 
relation (1) first time appeared probably in [4]. It defines a quantum group called 
Jordanian [6], dual to UJsl(2). The Jordanian quantum group coacts on the noncom-
mutative quantum plane given by the relation 

yx = xy + ay2. (73) 

This relation is defined by one projector entering the R-matrix, and therefore one can 
build the derivatives by the formula [7] 

dirt = 6{ + R$xldk . (74) 

This reads explicitly 

дxx = 1 + xдx + ayдx , дyx = xдy — axдx — ayдy + a2yдx 

дxy = yдx , дyy = 1 + yдy + ayдx . 
(75) 

Derivatives satisfy 
dydx = dxdy + adxdx. (76) 

We are going now to build a realization of UJsl(2) in terms of differential operators on 
the Jordanian quantum plane, similar to.the realization of Uqsl(2) and Uqsl(2,C) [8]. 
We shall see that the coproduct for UJsl(2) is naturally implied by the Leibnitz rule 
for differential operators acting on the space (73). 

The operator 1 +2aydx will turn out to represent the element A appearing in (17). 
Thus we denote it by the same letter, A = 1 + 2aydx. It obeys 

Ax = (x + 2ay)A , Ad* = &A , 
Ay = yA , dyA = A(dy + 2adx) . 

The operator A is a Jordanian analogue of the multiplicative factors used in [9]. 
The commutation relations between the operators x%dj are 

(77) 

[xdxixdy] = xAdy , [xdy,ydx] = xAdx — yAdy, 
[xdXiydy] = 0 , [xdy,ydy] = xAdy , (78) 
[xdx,ydx] = -yAdx, [ydx,ydy] = -yAdx . 

Thus three operators 

T_ = ydx , T3 = xdx - ydy , r+ = (x - 2ay)dy (79) 
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form a closed subalgebra, We have 

[T3,T,] = -2Ar_ , [T3,T+] = 2Ar+ , [T+^] = Ar3 - 4oAr_ (SO) 

and A = 1 + 2ar_. We find a comutiplication for this algebra using the Leibnitz rule: 
if an operator T obeys T(fg) =5_* adf)bi(g) with uniquely defined a,- and 6,- then we 
set AT = 2t a% ® bi> This requires a knowledge of the action of the operators r+. r_ 
and r3 on a whole basis of functions. It turns out to be convenient to work in the basis 
Fmn = x{myn where we denoted for any v 

v{m = v(v + ay)...(v + a(m - l)y) , v{0 = 1 . (81) 

The following identities are useful in computations in the basis Fmn: 

(x + amy)(x + any) = (x + a(n + l)y)(x + a(m - l)y) , 
(xy)n = * < V \ (82) 

(sA1/2)n = s(nAn/2. 

By induction one finds 

T3x
{n = nx{nA + x{nT3 , 

T3y
n = -nynA + ynT3 , 

r_x(n = ny(x + ay){n~l + (x + 2aj/)(nr_ , 
r_yn = ynr. , (83) 

r+x(n = (a: - 2ay)(n(r+ - naT3 - a2n(n - 2)r_) , 
T+yn = n(a: — 2ay)yn"x + yn(r+ + anr3 - a27i(n + 2)r_) . 

This easily extends to the basis Fmn and we obtain the following formulas for comul-
tiplication: 

Ar3 = r3 ® A + 1 © r3 , 
Ar_ = r_ ® 1 + A © r_ , (84) 
Ar+ = r+ ® 1 + A"1 © r+ - aA -1r3 © r3 - a2A~1(T3

2 - 2ar3) © r_ , 

and AA = A® A. Here only the expression for Ar+ requires an explanation. Introducing 

a generator </> = Ar+ + -arl one finds, using (83), 
_ 

<f>x{n = l<m2xlnA + xln<l>, 
_ 

hn = ( n ^ " 1 + | a n V ) A + j/n0 , (85) 

which implies 
A<£ = <£®A + 1®<£. (86) 
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This is equivalent to the last line in (84). 
To compare with UJsl(2) we choose another set of generators 

7r_ = r .A"1 , 7r+ = Ar+ . (87) 

Now A"1 = 1 — 2a7r_. For the generators 7r+, 7r_ and r3 the commutation relations are 
those of the classical s/(2), 

[r3,7T+] = 2TT+ , [r3,7r_] = -2TT_ , [-+,7r_] = r3 , (88) 

while the coalgebra structure is 

Ar3 = r3 ® A + 1 ® r3 , (89) 

ATT_ = T r . S l + A " 1 ® ^ . , (90) 

A7r+ = 7r+® A + l ® 7 r + - a r 3 ® A r 3 - a 2 ( r | - 2 r 3 ) ® A27r_ , (91) 

which coincides with the above formulas for UJsl(2). 

Notes. 1. In [9] the isomorphism between certain completions of the rings of dif­
ferential operators on the q-spaces and the ring of usual differential operators was 
established. Here it holds as well. Let 

i1 = sA 1 ' 2 , f2 = yA- a /2 , (92) 

d1 = A-1/2dx, d2 = Al/2dy. (93) 

Then 

ee=ee, **=**, 0,̂  = 3 + ^ , 04> 
which gives the needed isomorphism. 

2. As shown in Sect. 1, the Hopf algebra UJsl(2) is a limit of the standard 0-deforma­
tion. La the dual picture this limiting procedure looks as follows. 

Let v = (£,y)* be the quantum vector for SLg(2), xy = qyx. Introduce a matrix 

M = f n ;T I, where p = a / ( l — q). The matrix M is singular at q = 1. However 

the components x,y of the vector v = Mv satisfy the nonsingular relation xy = qyx + 
ay2, which in the limit q -* 1 defines the Jordanian plane. Similarly if A is the 
SLfl(2) quantum matrix then limg_>i MAM'1 is finite and satisfies the relations for 
the Jordanian quantum matrix. Twisting with M and taking the limit one obtains also 
the Jordanian .R-matrix from the _R-matrix for SL(2). 
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