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THE MAXIMAL FUNCTION OF A COMPLEX MEASURE 

Nadine Van Acker 

ABSTRACT. The Marcinkiewicz Interpolation Theorem is proved in the setting 

of the unit sphere in euclidean space of arbitrary dimension. This leads 

to a key result in the study of the maximal function of a complex measure 

and, in particular, of an integrable function on this unit sphere. 

1. INTRODUCTION 

In the theory of the H spaces of monogenic functions [2], which is 

developed in the framework of Clifford analysis [1], an important role is 

played by the results concerning the boundary behaviour of Poisson 

integrals of complex measures and, in particular, of integrable functions 

on the unit sphere. 
o JTJ 

Let P denote the Poisson kernel in B , the unit ball in IR ; it is given by 
m 

l-r2 P(x,y) = 
I I 1 

|x-y| 

where r = |x| and y is on the unit spere S 

Definition 1.1. 

If ii is a complex measure on S , then its Poisson integral T[^i] is 

defined as 

P I M H X ) = S P(x,y) du(y) , x € Bm . 

sm-i 

In the special case where the measure [i is derived from an L -function f, 

this definition rewrites as 

. P [ f ] ( x ) = S P(x,y) f(y) dcr(y) , x € &m , 

cr being the normalized Lebesgue measure on S , <r(S ) = 1. 

The main result about the boundary behaviour of Poisson integrals is the 
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so called Koranyi theorem, relating the maximum value of the continuous 

function T[\i] in a cone D , to the value of the maximal function of \i at 

the top of the cone. Let us first introduce these notions explicitly 

before stating the theorem. 

Definition 1.2. 

Let C € S and c > 1. The conical region D with top £ is defined by 

Da(?) = {y € Rm : |?-y| < ca(l - |y|)> 

Definition 1.3. 

If ji is a complex measure on S , then its maximal function 

Mfi : Sm-1-> [0,+oo] is given by : 
lnl(bk(S,0)) 

M ^ > " ~ P <r(bkO~,*)) 

where |u| is the total variation of n and b k ( £ , 0 V is a sphere segment 

centered at § € S with half a solid angle 0. 

Theorem 1.4. (Koranyi) 

Given a complex measure fi on S , for each conical region D there exists 

a constant A such that on S : 
a 

sup |̂ [fx] (x) | -S A„ Mfx(?) . 

x€Da(?)
 a 

Proof : see [ 2 V 

The aim is to study, in the third section, this maximal function of a 

complex measure, especially when that measure is derived from an 

integrable function on S . The key result on the maximal function is 

strongly related to the so called Marcinkiewicz Interpolation Theorem, 

which we treat of first in the second section. 

2. THE MARCINKIEWICZ INTERPOLATION THEOREM. 

Let Z denote a positive measure on Sm-1. We consider an operator T, acting 
~ m—i 

on functions f € L^S ), and mapping them into Z-measurable functions 

Tf : S -> [0,+ooV Moreover we assume T to be subadditive : 

T(f + i) -s Tf + Ti for all f,i € L^s"1"1) . 

Next we define numbers cr> 1 -s r -s oo f as to be the smallest constants for 

which the estimates 
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Z({Tf > t } ) * c t " r S If |FdZ and IITfll < c llfll 
r 00 00 00 

s m - i 

hold over the whole of S and for all t, 0 < t < oo. Notice that the 

constants c might be oo. Finally we introduce the notation K(a,b,c,...) 

for a constant K, depending upon the parameters a,b,c,..., and which is 

finite whenever all the parameters are finite. 

Theorem 2.1. 

For all f € L (Sm_1) and 1< p < r -S oo , 

S (Tf)P dZ -* K (ci,cr) S If lP dZ . 
sm-i

 P ' r
 sm-i 

Proof : 

Let F : S -> [0,+oo] be a Z-measurable function. It is then easily seen 

that 
00 

J" F(T))P dZ(n) = S ptP_1 E({F(T>) >t})dt . 
sm-i 0 

Given t > 0, consider the decomposition of f € L (Sm_1) : 

f = gt + ht where £t(£) = ( 0 if |f(£)| < t 

„ „ 1 f(€) if l?(?)l * t 
and where h. = f - g.. We define 

G(t) = Z({Tit > ̂ }) and H(t) = Z({Tht > ^}). 

2 C1 
Let G (t) denote —— S If IdZ , and, for given r < oo , 

1
 r |f|-*t 
2c 

H(t) = — X S IfTdZ . 
1 tr |f|<t 

It is then clear that 
-> 2ci 

G(t) a cf * S Igtld2 s ---• J If IdS = Gt(t) , 
sm-l |f|2-t 

and similarly, H(t) -s H (t). 

Now applying Fubini's Theorem on 

00 _ 00 

S ptP *G (t)dt = 2c p S S tP"2|f |dZ dt 
0 0 |f|^t 

oo 2c . p 
we find that S ptp G (t)dt = — J - J If |PdZ . 

0 P sm-i 
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Similarly, one gets 

00 00 

S ptp_1H(t)dt = 2rc p S |f(?)|rdS(?) S t p _ r _ 1 dt 
0 r

 sm-i |f(j;)| 

2rc p 
= — S If lPdZ 

r-p 
sm-i 

since p < r by assumption. 

In view of Tf -£ Tg + Th , it follows that 

Z({Tf > t}) -s S({Tit > £}) + Z({Tht > ̂ }) * Gx(t) + H^t) . 

Combining the obtained results we find that 
00 00 00 

S (Tf )pd2 = J1 ptp-1 Z({Tf > t})dt £ S ptP_1 G (t)dt + J- ptp_1 H (t)dt 
sm-i 0 0 0 1 

s K (c ,c ) S IflPdS 
sm-i 

whence the desired result for r < +oo. 

If r = +oo , we may assume without loss of generality that c -s — (if 
r- 00 2 

not, consider ~ — ) . 
Zc 

00 

It is then easily seen that 

llh.ll = sup | h . ( ? ) | = sup | f (?) | < t 
t M ^ - i * I f K t 

and hence IITh. II -S c II h . II is £ . 
t oo oo t oo 2 

As Tht -s ~ a.e. on S m~\ it follows that H(t) = Z({Tht > ̂ }) = 0 

leading to S({Tf > t}) = G(t) -s G (t). Combining the obtained results, the 

desired result indeed follows since 
00 

S (Tf)PdZ = S ptP"1S({Tf > t})dt 

sm-i 

S ptP"a G (t)dt 
0 

2pc 

0 

- J" |f lPd2 
p-1 

sm-i 

K (c ,c ) S |f|PdS 
p 1 00 

sm-i 
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3. THE MAXIMAL FUNCTION OF A COMPLEX MEASURE. 

The notion of the maximal function of a complex measure \i on S was 

already introduced in the first section (definition 1.3). The following 

two propositions may be proved along classical lines. 

Proposition 3.1. 

The maximal function MJI of the complex measure fionS is lower semi-

continuous. 

Proposition 3.2. 

There exists a constant c such that for all complex measures \i on S 

and a l l A > 0 : „ „ 
II /Li II 

<r({Mfi > A} ) <• c — . 

1 A 

Now consider the special case where the complex measure \i is derived from 

an L -function : [i = fdcr , f € L (S ) . Its maximal function also 

reads 

Mf (?) = sup — S |f(7j)|d<r(7)) 

0>O G>(C,0) bk(£,tf) 

where w(?,0) = <r(bk(£,0)). 

From proposition 3.2 it now follows readily that 

Corollary 3.3. 
For a l l f € L (s"1"1) and a l l A > 0 : <r({Mf > A}) <. ^ llfll . 

1 A 1 

The following proposition is also easily verified : 

Proposition 3.4 

The operator M : f 6 L (S ) h-> Mf is subadditive and moreover 

satisfies 
Mf (?) -< llfll , ? € s"1"1 . 

00 

Combining the above results with the Marcinkiewicz Interpolation Theorem 

of the second section, we finally arrive at the main result 

Theorem 3.5. 
*" m—l 

Let f € L ( S ) , l < p < o o , then there exists a constant A(p) such 
that 

S IMf |Pdcr < A(p) S If lPd<r . 
sm-i sm-i 
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