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Geometry of Banach spaces and solvability of

~

nonlinear equations

Josef KOLOLY

v

Deep characterizations of reflexivity (or v;eak
compactnelss of subset) of bané;;h epeces (orflocally )
convex spaces) due to Eanach-BourbaLi, S—xulian, James
end rackey are well-knovm. Further characterlz_tions
of reflexivity of banach spaces have been obitained by
nmeans of (i) proximal properties of subsets ané’ . sube
sphéeé, (11) 's'eparation propertiéé of convex sets,
(iii) duality mappings (or support mappings) and
dii‘ferentlability of the norams, We refer the reader to
1, [4] 51, [8] (5], 0] for extensive literature in
these topics, Let X be a no:z cmed 1inear °pace, z* its
dual space, <, > a pairing,' between X* and X . Let
B,(0) be a cloced unit ball in X , ‘d:a canonical
zapping of X into X", J : X —> 2ZX a duslity mapping
defined by )

% ) ‘
J(u)={u*ex : <u*.u>= lluiz,lm‘u = ll’ull}.
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It is well lcno"m 4that for eack ue X J(u) is non=-
enpty r.'e‘.l.ly cozrz ct sutset of 1’ e ihe mzrping J is
cingle-valued <> X .i.i: szooth (i.e, the :jj of X
is Glteaux differentiable on 5,(0) ={u e X : huh= 1} )&r7J
is continuous from the strong topology of X to the weak*F
topology of x* (see [3] ). According to the Bishop-Fhelps
theorem [1) the set of all linear continuous functionals
of SJ; (0) ={n*é s u’l =1 ,} wkich attain their
norss on 51(0) is norm~-dease in S; (0). Eence we ghall
sey that for » given uo*e S;'(O) sequences (u.:) < S; (o),
(u,) < 5,(0) have the Bishop-Fhelps property if uY —» u*

o
end <oy , > =1 foreach n.

Tpen: . 1y Let X be & Eanach space.

Tren: (1) If X, x* are both smooth, then X is
reflexive if and only 1t 3"l i continuous from the
strong topology of x into the weak topolo of X g
(41) 1If x* 1o smooth, then Z 1is reflexive if end only
if ’C‘(B'(O)) is sequentially wealcly*' closed in X*¥

Theorem 2, Let X be a Benach space.

Then X is reflexive if and only if the following
condition is saticfied: For a given u*e 5 (0) and
the cequences ("n K= 51 ) , (w) c.SI(O) having
the Bichop-thelps property there e:ists at least one
sutnet (t(%))qel of thw secuence (’C'(ui)) such
that its weak™ limit point it a O'(X*,X )-continuous

functional con ¥
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Accordiny to Jultert [15] we skall sey that
& ncrmed lincar spece X gdcite necrest points if for
each closed tubset E ¢ X the set fuc X : there is a
point ve E cuck that lHu-vl= 4dnfju-zhi: zecE}
is dense in X , Wulbert [15] has proved that a Banach
epace X admits nearest points if either g) X 1is
(2 R)-space of Ky Fan and Glicksberg [7] (in particular
wmiforrely rotund space), or b) X is uniformly scooth
and (H)-space.

Definition 1, Let X,Y be ncrzed lincar spaces.
We £hall say that a mapping G ¢ X—> Y hLas the property
(B), if G 4is onto and 'l;.here exists a congtant <« >0
guch that for each v ¢ ¥ there exists - u ¢ X such that

G(u) = v and xhult = bhvi ,

Definition 2, Let X,Y be normed linear gpaces,
L an algetraically open subset of X, Fi3 N> 1Y,
We chall say that F has an approrimation property (AF)
on li if for each fixed ue Il there exists a positively
homogeneous mappin-g. G, : X—=>Y having the property (B)
such that for given h €X there is a constant
d = 8y, ,h)>0 ouchthat O <t = & =>

MP(uo#th) - P (u) -G, (th) I = btal

where °<.u is a constant from the Defirnition 1.
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Eezcrk 1, Let X,Y- be norzed linesr sreces, k ¢ X
an algébrz:ically open subset of Z, Fi3 ik > Y g mapping.
" having the ‘one~sided GAteaux differential vV, Mu, )
for ealh’ ne'M , If V, F(u , ¢)- has the property (B)
for each fixed u &It y theh: P has {4&P) on X,

In perticular, F has this property, when X,Y are both
‘complete, F po;sesses' the GAuteaux derivative P (u)

on LK and PF°(u) is onto for each (fixed) ue ¥ .

Yheorem 3, Llet X,Y be norazed linear spaces,

¢ X-> Y a mapping having the approximation property
on X, .tvoreover, assune, that one of. the followmg three
conditions is satisfied 3 (i) Y. is a Banach space
havirng the nearest po:.nts ‘and F(X) is closed' (11) Y is
reflexive and F(I) is seguentially weakly closed-
(11i) F is sequentially weakly continuous, _F(0) =
and n(c) {u eX: NF(u)ll = c } is ielatively

weakly com,.act for each ¢ 2 0,

Then- F(X) =Y ,

“et us remark that the results of ‘heorem 3 are
related to that of fochozajev [12] ,[13] Zabrejko and
Krasnoselskij [14] . For the further results in so called

normal solvability see for instance Browder [2] and

Downing azd Kirk (6],
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