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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980) 
cr 

Open relations 

M. Wilhelm 

The letters X and Y will stand for topological spaces, G 

and H for topological groups, E and F for topological vector 

spaces over R or C. The letter P will stand for a relation in 

X*Y, or in GXH, or in E x F. Given A c X, T ( A ) denotes the 

image set £y € Y : (x,y) < r for some x £ A } . V is said to 

be open if the image of each open set is open; I* is open at a 

point y e Y if for each open set U in X, y 6 r(U) implies 

y e Int rCU) • r is said to be nearl.v open if the image of 

each open set U is nearly open, i.e. rCU)c Int f( U) ; T is 

nearly open at y 6 Y if for each open subset U of X, y e I*(U) 

implies y e Int-T(U) . The set of all points at which r is 

nearly open will be denoted by N0(D . 

Theorem 1. Let V be a surjective relation. 

(i> If X is second-countable and Y is second category, then 

N0(T> is non-empty. 

Cii> If X is second-countable and Y is Baire, then N0(T) is 

dense in Y. 

(iii) If G is separable or LindelBf, H is second category, and 

r is a subgroup or GxH, then T is nearly open. . 

(iv) If F is second category and V is a vector subspace of 

EXF, then r is nearly open. 

(»v) If E and F are locally convex, F is barrelled, and F is a 

vector subspace of E x F, then T is nearly open. 

Consider the following condition strictly related to Banaeh's 

Open Mapping and Closed Graph Theorems: 

(B) If r is nearly open , then V is open. 
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Theorem 2. If X is locally compact and Г is a closed suЪ-

set of XXY, then (B) holds. 

I* is said to Ъe separating if for each two points x^e X there 

exist open sets Uj. in X containing x^ (i * 1,2) such that 

ï (U^ Л Г(U
2
) • 0. Thiз implies that Г is an in-jective re-

lation which iз a closed suЪset of XX Г(X), and that TІX)Є Tp. 

Theorem 3 Ĉ QЗ • If X is ðech-complete and Г is зeparating 

and surjective, then (B) holdз. 

Theorem 3 partially supports Conjecture from [5j* 

Corollary [2]. If X is ðech-complete , Y 6 Tp and f iз a 

Ъijection of X onto Y, then (B) holds (for Г » f) provided 

either Y is ðech-complete or f is continuouз. 

The following two examples anзwer some questions from [бj. 

Example 1 [2]. There exiзts a separaЪle complete metric 

space X and a continuouз nearly open surjection f : X — > C0,1] 

which is not open. 

Example 2 C9.3• There existв a sepaгaЪle complete metric 

space X, a separaЪle second category metric зpace Y and a near-

ly continuouз nearly open bi-jection f of X onto Y having a 

cloзed graph, which iз neither continuouз nor open. 

Theorem 4 [8,10Д. If G- is бech-complete and Г is a closed 

suЪgroup of G*H, then (B) holds. 

Some partial results in the direction of Theorem 4 were pre-

viouзly oЪtained e.g. in C^.З,lJ^the last under the assumption 

that Г îз a continuous function). Por locally convex spaces 

the гesult iз in t7](prooî Ъaәed on duality theoryj . ђech-

-completeneзs cannot Ъe replaced with completeness in the left 
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(or two-sided) uniformity. 

In the following X and Y stand for uniform spaces, and U (V} 

stand for members of the uníformitieз on.X (resp. Y). Г is 

said to Ъe unifořmly open if V u Зv Vx, Г( U(x)) => V(Г (xì); 

Г is uniformly* nearly open if V u Эv Vx, Г(U(x)) -=> V(ГCx)). 

Consider the condition 

(B') If Г is uniformly nearly open, then Г i uniformly 

open. 

Theorem 5 [ Ю ] . If X is uniformly Öech-complete and Г is a 

closed suЪset df XKY, then (B') holds. 

FoГ complete metric space the result is in C4-3 • Theorem 5 an-

swers some question from ПбJ. 

The notion of uniform бech-completeness (UÖC) is зtudied in 

CЮЗ; X is UCC if there exists a countaЪle complete family of 

uniform covers of X. If X iз üбc, then X is complete and (to-

pologically) íech-complete and paracompact. If X is uniformly 

locally cbmpact, then X i uбc. If a unifoгm space X ìs metri-

zable, then X is üбc iff X is complete. If a topol
ч
ogical space 

X is Öech-complete and paraccmpact, then X is uбc with respect 

to the finest uniformity on X. X is uбc iff there exists a 

perfect uniformly continuous mapping of X onto a complete met-

ric space. A closed suЪspace of a UÖC space is uбc. CountaЪle 

product of UÖC spaces is üбc. A topological group G is UЙC 

with respect to the two-sided uniformity on G iff G is Cech-

complete; G is üбc with respect to the left uniformity on G 

iff G iз Cech-complete and left-complete. Atopological vector 

space E (over a numЪer f ie ld)which i s UÍC (with respec t to the 

translation-invariant uniformity on E) admits a complete г*t 

,ric. 
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