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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980)

Open relations
M. Wilhelm

The letters X and Y will stand for topological spaces, G
and H for topological groups, E and F for topological vactor
spaces over R or C, The letter I' will stand for a relation in
XxY, or in GxH, or in ExF. Given A& X, I'(A) denotes the
image set {y €Y : (x,y) €I* for some x & A} . I' is said to
be open if the image of each open set is open; I' is open at a
point y € Y if for each open set U in X, y ¢ I"'(U) implies
ye Int T(U) . I is said to be nearly open if the image of
each open set U is nearly open, i.e, I'(U)c Int T‘Ttﬁ y I 1is
nearly open at y € Y if for each open subset U of X, y € T(U)
implies y € Int_T(U) . The set of all points at which I' is
nearly open will be denoted by RO(T) .

Theorem 1, Let I'" be a surjective relation.
(1r 1f X.is second-countable and Y is second category, then
NO(I") is non-empty. >
(i1 If X is second-countable and Y is Baire, then NO(I') is
dense in Y. '
(iii) If G is separable or Lindel¥f, H is second category, and
I’ is a subgroup or GXxH, then I’ is nearly open.
(iv) If F is second category and I’ is a vector subspace of
EXF, then I is nearly open, )
(v) I£ E and F are locally convex, F is barrelled, and I’ is a

vector subspace of EXF, then I' is nearly open,

Consider the following condition strictly related to Banach’s
Open Mapping and Closed Graph Theorems:

(B) If I' 1is nearly open , then I' is open.
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Theorem 2, If X is locally compact and I' is a closed sub-

set of XXY, then (B) holds.

I is said to be separating if for each two points xy € X there
exist open sets U; in X containing x; (i = 1,2) such that
T(UIN T(U,) = §. This implies that T ia an injective re-
lation which is a closed subset of XX I'(X), and that I*(X)€ T2.

Theorem 3 {10}, If X is 8ech-complete and I' is separating
and surjective, then (B) holds.

Theorem 3 partially supports Conjecture from [S].

Corollary [2]. If X is Sech-complete , Y € T2 and £ is a
bijection of X onto Y, then (B) holds (for I" = f£) provided

either Y is Sech-complete or £ is continuous.
The following two examples answer some questions from [6].

Example 1 [2]. There exists a separable complete metric
space X and a continuous nearly open surjection f : X — [0,1]

which is not open.

Example 2 [9]. There exists a separable complete metric
space X, a separable second category metric space Y and a near-
ly continuous nearly open bijection f of X onto Y having a

closed graph, which is neither continuous nor open.

Theorem 4 [8,10]. If G is Eech-complete and I" is a closed
subgroup of GXH, then (B) holds.

Some partial results in the direction of Theorem 4 were pre-
viously obtained e.g. in [4,3,1] (the‘ last under the assumption
that I' Jis a continuous function). For locally convex spaces

the result is in [7](proof based on duality theory). Bech-
-completeness cannot be replaced with completeness in the left
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(or two-sided) uniformity.

In the following X and Y stand for uniform spaces, and U (V)
stand for members of the uniformities on.X (resp. Y). T is
said to be uniformly open if VU IV Vx, T(U(x) 2 V(I (x);
T is uniformly nearly open if VU 3V Vx, T(U(x) 2 V(T xN.

Consider the condition

(B) 1f T is uniformly nearly open, then I' is uniformly
open,

Theorem 5. [10]. If X is uniformly fech-complete and I is a
closed subset of XXY, then (B’) holds,

For complete metric space the result is in [4). Theorem S5 an-

swers some question from [6].

The notion of uniform éech;completeness (utc) is studi-d in
£10); X is UCC if there exists a countable complete family of
uniform covers of X. If X is U§C then X is complete and (to-
pologically) éech-complete and paracompact, If X is uniformly
locally compact, then X is véc. If a uniform space X is metri;
zable, then X is ulc iff X is complete, If a topological space
X is Sech-complete and paraccmpact, then X is v8c with respect
to the finest uniformity on X. X is vlc iff there exists a
perfect uniformly continuous mapping of X onto a complete met;
ric space. A closed subspaé& of a UlC space is v8c. Countable
product of USC spaces is USC. A topological group G is UYC
with respect to the two-sided uniformity on G iff G is Cech-
complete; G is U8C with respect to the left uniformity on G
iff G is 5ech;complete and left-complete, Atopological vector
space E (over a number field)which is USC (with respect to the

translation-invariant uniformity on E) admits a complete rat
,ric. ‘
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