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EIGHTH WINTER SCHOQL ON ABSTRACT ANALYSIS (1980)

Weak-join of matroids

S. Poljak, D. Turzik

This note deals with glueing of matroids. Some construc-
tions in the matroid theory can be considered as glueing, e.g.
the sum of matroids, the simultaneous extension [27], the
Dilworth_truncation [3]. The presented approach aims to
applications in Ramsey theory, for particular results see [4].
We introduce the notion of ihe weak-join which, if it exists,
is the free-est amélgamation. We give a sufficient condition

for the existence of a weak-join.

A matroid M(X) is a set X with a rank function
Tyt PE) —>N satisfying:
1/ r(¥)=0 '
2/ r(f{x}) ¢1 for x¢X
3/ r() ¢ r(B) for A< Be¢X
4/ r@)+ r(B)> r(AuvB) + r(AnB) for 4,BCX

A matroid M is called modular if
r(FY+ r(G) = r(FuG) + r(FnG) for every pair F,G of flats.
For Ac¢X ‘the restriction of M to the subset A 1is denoted

by M|A.

Definition 1: Let ¥ =(V,(Ei] ieg I)) be a hypergraph and
m = (Mi(EiX\ i€I) be a system of matroids. A matroid M(V)

is called an amalgamation of M with respect to X if

4 N
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A. Weak-join of two matroids

if M(Xlu XQ ig an amalpamation of matroids Ml(xlx Mz(xz)
then
ry(8) & rl(ar\xl') + rQ(Bn){?) - r(Ba¥n x2)
for every A< BéXlu ':(2.
Definjtion &: Let ?»:i.‘(?;l) , r;::)(xz). be matroids with

2

Ml\)’.ln Xoo= MolX 0 X, o Put
?(A) = r(A;le) + r(a nxg) - r(AnX;nX,) and
R(A) = mini p(B) | <¢BY  for AEX) Xy
If R 1s a rank functicn then the matroid N(Xlu X2) defined

by R is called & wonk-join of Ml and Mz.

Theorem 1: Let I (X)), rv12(x2\ be matroids with ml\xlnx2 =

n XZ’ Then

= MZ \ Xl
(i) If a weak-Join exists then it is an amalgamation of M

and M

1 2°

(i1} If a weak-join M(X,ber\ exists and N(th)x?) is

o

(o]

2lher am:

smmation then the identity mapping 1:M—>N
io a-weak’map, i.¢. weak-Join is the free-est amalgomation
(with respect to wesk maps).

(3i1) If the moiroid mllxl.xx? ie modular then the weak-join
cl Ml and K? exliats,

xorple:  The swellest non-modular nmatroid C is thet formed

4
tr tour points in general position in the plane, The following

victure gives en exonpls of two matreoids which intersect in 04

and which nave no emslgaration,
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In [1] Brylawski introduced. s notion of a strong-join,
which is, if it exists, the free-est amalgsmation with respect
to strong maps. Let us remark that any strong-join is the

weak-join.

B, Weak-join with respect to tree

Definition 3: A hyvergraph (V,(Ei\ i¢1)) is called = troe=-
hypergreph if there exists a graph g =(I,T) which 1s a tree
such that: if the vertex 1 1lies orn the poth between vertices

¢E.

j end kx in J then E.nE

Tre following defirnition is a gencralization of the weok-JQoin
to the tree-hypergraph.
Definition 4: Let X = (V,(Ri\ ié I}) Lo a troo=-ramer ooy
ard o M= (m;(ﬁi\ [i¢I) be a system of matroids satisfying
1= " =z M.IF.ATR. . Ly i, jeT, bu

Z.NE LJ]El'\LJ for every 1,J¢l ut
FA) = Zr@aE) - Zr(@ezoE) v e+ ()N
) ‘€L b Arjer v 1 J
minf{ ¢(B)|AcB] for Acv.

j=¢)
-

g
i

—
—
o
§

is a rank function then the matroid E(V) defincd by &

is called n weak-join - of M with reopeet to ¥,

Ael

N
-t
1



Theorem 2: Let ¥ an

(i)
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4 M be as. in the above definition. Then

If the week-join of M with respect to ¥ exists then

it is the free-est amalgamation,
ir mil;,nk,; is moduler for every i,5¢I, i ¥ j then
the weak-join of W with respect to ¥ exists,

Reforences:

(11
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