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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1980) 

Weak-join of matroids 

S. Poljak, D. Turzik 

This note deals with glueing of matroids. Some construc­

tions in the matroid theory can be considered as glueing, e.g. 

the sum of matroids, the simultaneous extension [2~\ , the 

Dilworth truncation [3]. The presented approach aims to 

applications in Ramsey theory, for particular results see [4̂ ]. 

We introduce the notion of the weak-join which, if it exists, 

is the free-est amalgamation. We give a sufficient condition 

£or the existence of a weak-join. 

A Matroid M(x) is a set X with a rank function 

rM: (P(X)—>N satisfying: 

1/ r(tf) = 0 

2/ r([xj) £ 1 for xC-X 

3/ r(A) £ r(B) for ACB^X 

4/ r(A^ + r(B) > r(AuB) + r(AoB) for A,B£X 

A matroid M is called modular if 

r(F) + r(G) = r(FuG) + r(FnG) for every pair F,G of flats. 

For ACX the restriction of M to the subset A is denoted 

by M|A. 

Definition 1: Let ^ = (v, (E^ | i £ i)) be a hypergraph and 

%. = (M. (E.) j i£ i) be a system of matroids. A matroid M(v) 

is called an amalgamation of % with respect to $C if 

M| Ei = Mi(Ei). 
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A. Weak-join of two matroids 

If M(X, O X9) is an amalgamation of matroids M-(xA IvI?(Xr,) 

then 

rM(A) 4 r^BrxX^ + r2(3nX 2) - r ^ B . X ^ X . ) 

for every A <-. B ^ X. <J X" 

Defini tion c;: Let Iv:., (X-.} , fcy(X2). be matroids with 

M 1U 1^X^ = M9U1 o X2 . Put 

(j)(A) = r(AnX1) + r(AnX 2) - rfAnX^nXg) and 

R(A) = min $ p(B) | A ^ B } for A-.X^-Xg, 

If R is a rank function then the matroid !/;(X.uXp) defined 

by R is called a weak-join of Wu and M?. 

Theorem 1: Let M. U-j) , M2(X?} be mstroids with M]L|X1oX2 = 

- M2|X. r. X?. Then 

(i) If a weak-join exists then it is an amalgamation of M, and M~-

(ii) If a weak-join M ( A 1 U X , ( ) exists and N (X, Ll X J is 

another amalgamation then the identity mapping i:M—~>N 

is a weak map, i.e. weak-join is the free-est amalgamation 

(with respect to weak mapsj . 

(i i i) If the matroid M, | X-, r\ X? is modular then the weak-join 

c.V M-, and M,, exists. 

r. xaJ.u 1 €•: l'he s;r.a 11 est ncn-modu 1 ar matroid C, is that formed 

by four points in general position in the plane. The following 

picture gives an excn.pl? of two matroids which intersect in C 

and which nave no amalgarraticr;. 
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In Ql] Brylawski introduced, a notion of a strong-join, 

which is, if it exists, the free-est amalgamation with respect 

to strong maps. Let us remark that any strong-join is the 

weak-join. 

B. weak-join with respect to tree 

Definition 3: A hypergraph (v,(E. \ i tl)) is called a tree-

hyper/?raph if there exists a graph "J ~(.I,T) which is a tree 

such that: if the vertex i lies on the path between vertices 

j and k in if then E.. n E, C-E. 

The following definition is a generalization of the vw.k-join 

to the tree-hypergraph. 

Definition 4: Let X = (v%(E.,\ i £ I V) ce a ti'.yy}:^ -f,-, 

ar.d 1YI - (JM. (••:.. N 1 i t I ) be a system of matroids satisfying 

^ Л E - ҸЧ^І for every i , j ti. Put 

\iiИ~. 

R(A^ = min { y(B) |A £133 for A£V. 

I,f R is a rank function then the matroid Iv;(v) defined by__ h 

is called a v.̂ ak- join - of '''H. v;ith rt.;pect t o ML . 



І Ҙ 

Theorem 2: Let X and 1U be as.in the above definition. Then 

Ci) If the weak-join of 'H with respect to K exists then 

it is the free-est amalgamation. 

(ii^ If IvI.| Z-- r\ i; . is modular for every i,j«.-I, i $ j then 

the weak-join of VVl with reject to $£ exists. 
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