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* SZVINTH WINTCR SClLIGOL (1979)

. A GENERALIZATION OF COMPONENT CATEGORIES

Reinhard Bbrger

Component categories have been investigated by severa]. authors
(see [2], [4])., for topological functors G : X + Ena, where Ens
is the category of sets. We give a-generalization to arbitrary
functors G : X » Ens, following an idea of Pumplin and Holmann
(unpublished) {.and we are let to a generalization of a Galois

correspondence given by Maranda. [3]. The results are part of
my thesis. . '

Theorem: Let G : X - Ens "be a functor, and ACX a full
subcate_gory such that G |A- is pointwise non-void, i.e.

G(A) # # for all .A€0b(A). "Then there is‘a functor

Q €A : X - Ense and a natural transfomtion CG, A :. G -~ Qé' A
with the following properties:

(1) For all A€O0B(A) the cardinality of G(A) is- 1.
-(44) If a : G - P is a natural transformation, such that
a(A) 1is of cardirality 1 for all A €0b(a), then
there is a unique natural’transformation § : QG,A +P
with ELg , = a. R _
(111) For all X €0b(X), cG.A(X)- is onto.

Definition: Let a : G + P. be a natural transformation, such
that a(X) 41is onto for all X €0b (X). Then Conneet (a)
denotes the full subcat'egory of X generated by all X-objects
A where P(A) is a singleton.

Now the above theorem can be interpréte'd as a éalois adjunction.
between Connect and §{, _, considered as meta-~functors

-
between the meta-category of all full subcategories A of X

‘with G|A pointwise non-void and the meta-category of all
pointwise surjective natural transformations with domain G.
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:Jinition: Let G : A » Eus be a functor. A full subcategory

D

yCX is called a G-component category, Lff A = Connect (CG,A)
» and a uatural

c

(or, equivalently, iff there exist a funclor
transformation a : G » P, such that A iz the Full subcategory
gencrated by all objects A €0bh(X) where P(A) is a.singleton).

Corollary: 1f AcX is a full subcateogry and G : X » Ens

is & functor with Gi 3 rointwisc non-void, tacn Connect (CG,A)
is Lhe smallest G-corpouent cateqgory containing X.

Theorem: Let G - X + kns be a mono-fibration (i.e. any injective
map m : U~ G(X) has un initial 1ifting to an X-morphism
m:U=-X). Let M denote th. class of aitl G-initial liftings
of injective maps.and let AC X be a full ind replete subcategory
with G IA pointwise non void. Iet A contain all A €0b(X)
for which P({A) 1is a singleton. Then the following state.. ity
are equivalent.
(i) A" is a G-component category.
(ii) A is strongly locally M-coreflective in the ense of [1],
i.e. for any X€0b(X) therec is ~ family (u; = 2; » X)jer
all 2Z; are in A, such that for any £ : A » X
with A €0b(A) ther. is a unique pair (i,h) with ierx,

h: A=~ 27, and u;h = £,
(iii) A fulfills the following conditions:
L) If A€0b(A), £ : A - B is an X-morphism,
G(f) 1is onto, then B €0b(A).
2) Let X €0b(X), (mi : Ay X)iGI’ I #¢ be a family
of G-initial morphisms, such that G(mi) is onto
one for all i€I. If now B}
N{Gm;)[A; 1} # 4, u{c(m)[a;]} = G(X) then Xe€0b(a).
)
This characterization leeds to a general investigation of full
replete strongly coreflective subcate,uiiits of an arbitrary

category.
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Definition: Let X be a category..

m
{i) If A.EObQ{_),(Y,(Xi - T Y);ey) 15 a sink, A is called
locally uniquely projective with respect to'_g .

m

(y, (x - AN Y) iff for any X-morphism £ : A+ Y
i . .

iEI)f
there is a unique pair (i,h) with i Ei,'h m, = f£.

m,
Equivalently, we say (Y,(X.i <15 v) } 1is locally

i€er
uniquely coextendable with respect to A.

(ii) If ACX is a full subcategory let pf°?(ga\ i denote
“the conglomerate of all locally coextendable sinks with

respect to all A €0b(A).

(iii) If S is a conglomerate of X-sinks, let qud (S)
denote the full subcategory of X generated by all
locally uniquely projective objects with respect to

all S-sinks.

(iv) If M is a class of X-morphisms, let M denote
the cong}omerate of all sinks (Y, (X Ti"—> ¥.)) ) with
my eM for al} .i EI.

(v) Let A be a full replete subcategory of X and M a
class of morpi’:ism;. A 1is called stroﬁgly locally
M-coreflective, if for any Y €0b(X) there is a sink
(Y, (x; N ¥)iep) € ql“ig) ol with X; €0b(a) for all
i €I. A is called strongly locally coreflective, iff

.A is strongly locally X-coreflective.
As ﬁzéc' and ‘ cfoc, form a Galois correspondence,

we look at the full subcateogires closed under the

correspondence. We get the fqllowing
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Theorem: Let X be a category, ACX & full subeategory.
¥ a class of X-morphisms.

(0 1= a=PP c°@W, then A 1s closed under the

formation of c¢onnected colimits.

(i1) IFf A is strongly 1ocaliy H-coreflective, then
. A
A= PP @in.
{1i1) If A has locally coorthogonal (E,M)-factorizations
A -
(see [51), then A = B (c3°(a) al) implies
that A is strongly locally MH-coreflective.
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