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Combinatorial properties of uniformities

Jan Pelant, Prague (Czechoslovakia)

In [S], A.H.Stone raised a question of whether each uniform space has
a basis consisting of locally finite covers (recall the A.Stone theo-
rem asserting that each metric space is paracompact).It is shown easi~
ly in [I] that the existence of a basis consisting of locally finite
covers is equivalent to the existence of a basis consisting of point-
-finite covers. Stone’s problem is restated in [I] and other related
problems are pointed out (e.g. the problem of when the Ginsburg-
-Isbell derivative forms a uniformity, see Bﬁ],[PPV]). The negative
answer to Stone’s problem was given independently by E.S&epin and
myself in 1975. Hence the class of all spaces with a point-finite ba-
sis forms a "nice" proper epireflective subcategory of UNIF. However,
it appears that even spaces having point-finite bases are very wild
and that perhaps the best uniform spaces are those having bases con-
sisting of G -disjoint covers. (A G-disjoint basis implies the exi-
stence of a point-finite base (see e.g. [BR],[Pi}, but the converse
is not true, (see [Pé])). This paper illustrates the use of “combina-
torial” (or discrete) reasoning, as opposed to "continuous" reason-
ing, in the theory of uniform spaces. This approach seems particular-
ly applicable to problems dealing with covering properties of unifor-
mities.
We are going to estimate point character of some uniform spaces. Fi-
nally, we show that the properties of cardinal reflections in UNIF
depends on set-theoretical assumptions.

Notation: Let A be a set and let & be a cardinal. We define:

fia) = {BlBca}

(A1 = {Bca|lBl<a]} , [41*" = {Bca|IBl=a}

[A]“’ {Bcallsl =0¢}; the meaning of [AJ®® and [4]®**™ is obvious.
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pDefinition: Let & be a collection of sets.
1) The order (ord &) of & is defined by ordd = sup"lm Ibe’ﬂ;]

Nh#s}.
2) The degree (deg ') of & is defined by degd = max (W, ,

sup{lbr’ b , Nz ¢}.

Remark: Following [I], if a uniform space (X,7/) has a basis con-

‘'sisting of covers of order at most (n+l), (n is a non-negative in-
teger) and does not have a basis consisting of covers of order at
most n, then (X,!/) is said to be n-dimensional (AJ(X,'I)’) =n).
If there exists no integer n such that ASX,?V’) £ n, then we set
ASX, ) =

Definition: The point-character pc(X,?) of a uniform space (X, )
is defined to be the least cardinal « such that (X, /) has a ba-

sis consisting of covers whose degrees are at most o .

Basic notation: Let p be a positive integer and let M be a non-

empty set. The symbol ,‘K,p(M) denotes the set of all sequences

{Cij__l such that CpcM and CJCCJ+1’ J=l,eeeyp-1. The members

of J{,p(M) are called cornets (of length p on a set M).

if Ce){,p(ld), then Cj' jefl,...,p}, denotes the ,jth coordinate of
: = P

the cornet C, i.e. C = {Cj}j=1'

Ir Ve %P a0, we derine W(V) = {c eXPanlv;cc

. -’p} .
Now let {.Di}':?wl’ je{l,...,p_}. be a sequence of subsets of M. Let
C ERP(M). We define C - {D.}q =) to be the cornet Ce XP(M) sa-

UD t=1l,e0e,D &
t it 1’ 1 ’

Let Ve XPan). we derine Vp{p;}d; = {ceXPanice Wv-} i)
and an -ﬂ, 1—1,.--,JJ. '

jC.VJ-+1 ’ j=1,oo

. ~
tisfying Ct

Remarks: The definition of C = {Dl} is really correct. VV{DI}I_I
CWV-{T }J*l ) where T;=D,UD; ., i=25 0009 » TJ+1 DJ, T,= D
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Notation: Let Q be a set, Fe £(Q), Ceycp*lm, jefl,...,P}- Let
T /’(_%p(M))—* /’(Q) be a mapping and let f be an infinite re-
gular cardinal less than |M}. A(p,j,F,C) denotes the following for-

mula(where the sets X; and ¥, in A(p,j,F,C) are members of

[]%§ YW ¥y 3% 25, V Yy :xjaxj_lpzjVYj_lpxj_l ee. 3

Y VY ox & ree - (Y} )V X er .

Basic lemma: Let n be a positive integer. Let M be an uncountable

set and let f be a regular infinite cardinal less than |[M|. Let Q

be a set. Let r : f (¥ (M))—/(Q) be a mapping. If the follow-

ing conditions (0), (1) are satisfied:

(0) for each pair X,Y : if XcchCn(M), then r(X)c r(Y), and

(1) there exist joe{l,...,n} and Ce%nﬂ'(u) with ICl| = |M|
such that the formula A(n,j ,F,C) is not valid for any
Fe[_-_Q]gg (i.e. EJOVCVF : non A(n,j,,F,C)),

then there is gey(,nﬂ(m) such that |r(u(8l))[2§'.

In addition, we may suppose that Ci = ’&/i for all i>j° .

Proof: The Basic Lemma can be found in [P3]. We omit the proof due

to its length and complexity.

Point-character of uniform box-product

We are going to show that there is a very simple construction of an

& =box product which yields uniform spaces of large point-character.

Definition: Given a uniform space (X, %), an infinite cardinal &,

and a non-empty index set I, we define a uniform «&-box product

I

@, XI= (XI, V;I) as a uniform space whose underlying set is X~ and

the basis of the uniformity %I is formed by all covers of the
form: Y T0) where Se[I]“* ana Fle V.

Remarks: O) The uniform «& -box product of a zerodimensional uniform
space is O-dimensional.

1) ”&4- R (where R denotes the uniform space of real numbers) in-



157

duces the usual uniformity on Au(®), (La(®)E F) .

2) One can define the uniform & +~box product in a more general sett-
ing: it is not necessary to suppose that all éoordinate spaces are
equal to each other. Even then the following theorem remains valid
(the assumption of the following Theorem would then read that at
least o« coordinate spaces are not O-dimensional).

Theorem: Let (X,7”) be a uniform space that is not O-dimensional.
Let & be an infinite cardinel.If |I|=& then pc( f + x%) >€ for
each regular cardinal j <t .

Proof: The following lemmas are needed.

Definition: A finite sequence {Mi}ril___l of sets is a chain of length

n if: 1) ?ir”‘j #@ iff |i-jl=1,

2) M; ., - tLg)l M, #8 for i=l,...,n-1.

Lemma 1: Let (X,?”) be a uniform space. The following conditions

are equivalent: 1) (X,?7”) is not O-dimensional;

2) there is d/e v such that for each Ye UV~ y there is a chain

{Si}ril=l of members of Y such that S]_U Sn is not contained in any

member of i/d H

.3) there is a cover 0/6. 7/./ such that there is fe V ’ /’<0/ such

that for each Ale V' , A< and each LV , Y< A& there is a

chain {Si}ri;l of elements of ¥ such that 8t(S;, 7N st(S,, P =

=g .

Proof of Lemma 1: (3)=3(1) 1is selfevident as non(l) =non(3).
(2)=3(3). Take eV , PZ ¢ where O is the cover guaranteed
by (2).

(1)=(2). We show: non(2)==non(l). Suppose that for each LV
there is 86(,,2 7 such that for each chain {Si}f{:l of elements of
5(,‘,, S,V Sn is contained in some member of ¢ . Choose Y& . We

show that there is a uniform refinement of & of order 1. Choose a
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uniform cover I such that j’i Y . Consider Bgf . We define a re-

lation fc< XxX by (x),%,)€ § iff there is a chain {Si}{;:l of

elements of x‘r 8o that xye Sl’ x,e Sn « Evidently, § 1is reflexi-

ve. Its symmetry and transitivity is given by the following

Lemma 2: Let {Ti}{::l be a system of sets satisfying: T;AT; ., ¥ #,

i=l,«.eyn-1 . Let xeT;, Y& T . Then there is a chain {Sj}];:l such

that {Sj|j=1,...,k}c_{’l‘ilid,...,n} and xs_Sl, yeSk .

Hence f is an equivalence relation that-induces a partition D or

X . Evidently, é@g\ﬂ Q, 8o ge 1)/ and it is easy to check that

<Y (use 24 ). qep.

Lemma 3: Let (X,?”) be a uniform space. Let fe 7©  vbe a cover of

deg f = &/ « There is q,e?)’ , ¢< P ana el suen that each

member of & intersects less then & elements of 4-

Proof: Apply the concept of & strict uniform shrinking ([I ], Lemma
VII. 3).

Proof of Theorem: We proceed by contradiction. Suppose that (®) :

pc(ﬂ;’ + x%) é; for some regular cardinal )g <& , Choose M"c1I,
{M" = & . Let VeV ena fe 7 ve covers whose existence is gi-

ven by Lemma 1 (3). Denote £ = N\ 1}';1(/)), hence £e 71;,':[. By ©
meM"

and Lemma 3, there is a uniform cover ';/ = N\ ﬂ--l(ﬂ'),u’e [I]é“' ,
melr T

E / . '
ﬂ/ev’ such that <* and there is 'Ve_ D‘I such that each We
~
e@w intersects less than £ elements of ?1/ . Using Lemma 1 (3) and

properties of a uniformity, we obtain a uniform cover W: /\ 71—;11(5/)
meM

1,10+
We V.’ﬁ , such that W< y and W< W’and there is a chain
{Si}{:::l of elements of & such that st(Sl,f)ﬂ at(S,, #) =9 (it
follows that the length of this chain is at least 4). Since W< Y ,
MOM' oM, so |Ml= & . Choose x,&X . We define 2 = {yexT|
n .
((meI-¥)=(y, = X5)) and ((meM)=(ype lk:J Si)).} .
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) o n-1 _ ) _ J ;
Define (f: 2—X"""(M) by ((y) =cC iff c = {_meMiymeikgl si}
j=l’.oo,n‘l .

Observation 1: (/ is onto j{,n‘l(M)

Proof: Use the properties of chains.

Observation 2: Let Ve ¥®(M). For XY e tf_l('l(,(V)) and meM, the
following holds: if xpe SJ. and y e Sk them |j-k| = lj.
Proof: Suppose Jj<k, hence j<n-1 . Vin> {LeM]xLe gsi)’ so

j+1
m&\l‘jﬁL . But VJ‘+1C{LE'MLVL€- D Si}, hence ymeS

i1 g+l °
Observation 3: For each cornet V& X™(M), the set L/-l(u(V)) in-
tersects less than § elements of U .

Proof: Let x¢& lf'l('u,(V)). For each meM, choose i(m)c—,{l,...,n}

so that xel ) 77;1(5

)). Set
meM

DM T ;xl(si(m)) = W_ . Evidently,
me

i(m

gt ’
wer. By Observation 2, L/'l(%(v))cst(wx,'w’) . Now use W< W
and the fact that each member of 'l{}" intersects less than § ele~
ments of % . '

Observation 4: Let V', Ve KM . If wn(vi - Vi) # @ (recall
that y = /\ )T;'ll(ﬂ,)), then there is no Ye% satisfying:
meM’

xmf’l(u,cvln 0 %10 y'l(u<v2)> .

Proof: Put Y = ﬁ’ T ;1(R(m)), R(m)e & for each meM’ . Let xe
meM

YN Y LYAV)) . Let moe (V] - VAINW . Then xS . Let

n-1 °
yeXN @A), Then 3 e S, - L) sy #9850 Rim)Ns) # 8 #

n-1 '
# R(mg)ﬁsn - U S; » which contradicts Lemma 1 (3) anda R<?P .
i=1
Now define a mapping r: £ (X T — £ (Y) vy r@) = {rey|
there is Def such that Y 1(D)NY # g} for Pc %P
Obgervation 5: If Ve XP(M) satisfies: |V1| =&, V, =MW then
A(n,n-1,F,V) does not hold for any Fe [Y.],«_.; .
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Proof: Perform an easy prolonged computation using Observation 4.
Hence the assumptions of the Basic Lemma are satisfied, so there is
Veaycn(M) such that I(r(14(63))3 € , which is a contradiction.
Remarks: 1) The Theorem shows that' pc(l@oat))>-£ , where é is a
regular cardinal less than & ; in particular, pc 1L°<w1).;joo .
The point character of /loo(“g} is an open problem, but we feel
that it should soon be solved.

2) By similar methods we have partially solved a problem concerning
the preservation of Cauchy filters by reflections in Unif (see [P4],
[PSJ). This problem is due to Z.Frolik and particular cases are men-
tioned in [I],[GI]). Our main result says thet if F 1is a reflection
preserving Cauchy filters, then the spaces in {F(,I/w(o())lﬁeCn }
do not have bounded point-character.

Cardinal modifications

Definition: Let Wy be a cardinal. We define a functor p? : UNIF—
—UNIF by pA(X, V) = (X,p*7) where p%7” consists of all covers
foe‘_ T such that there is a sequence {Wn};o:lc U with |/’n|< Uy

for n=1,2,... and l’nz (ﬂn-l’ n=1,2,ec¢¢ o«

Remark: p? is a reflection that preserves underlying sets and topo-
logy. Such reflections are called modifications.

Definition: Let (X, ") be a uniform space. Let Wy Dbe a cardinal.
We define b1l = {/’6 0’[ |4 < wp(} .

Remark: Clearly, (X,b”?’) 1is a quasiuniformity in the sense of [1].
The difficulties are connected with star-refinements. If (X,b%7V)

is a uniformity, then (X,0%?") = p%(X, 1) .

It is well-known that (X,b°%) and (X,0* 7)) always form uniformi-
ties. A more general theorem, proved in [V] and [K], says: if

pe(X, W) < Wy » then (X,U“%V) is a uniformity for any cardinal Wy .
On the other hand, A.Kucia proved under [GCH] : Let (X,7") be a uni-
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form space. Then (X,b?7’) forms a uniformity for any cardinal g .
Both these theorems are corollaries of the Folklore Lemma introduced
below. Since there are uniform spaces with large point-character it
is possible that the equality p#(X,7’) = (X,b"?%) depends on set-
~theoretical assumptions for a > 2. It is really the case.
Notation: The symbol s*(M) denotes the positive unit sphere in

Li(M), i.e. the subspace of Jo(M) on the set {fe,&w(M)' £ |l
and f(m)20 for each meM}.

=]

Notation: For each feS'(M) and a non-negative integer k , define
4 X .
ciHkle w2 any by cifrkKe (P22, 1], im1,...,25, For
2

k
ve X% tan, put WV = {festan|cF e N} .
Defm:.tlon. For a non-negative integer k, we define /’ {M'W)I
ve 2 T} .

Proposition: {,k}‘:ﬂ forms a basis for the norm uniformity on S*(M).
Proof (see [P;]).

Notation: The mapping which assigns C(f k) 3{/2 (M) to each

fe st (M) will be denoted by Lfk .

Let W4 be an uncountable cardinal. ZB(y) denotes the following
assertion: There is (L c [:lq,‘]“" VAR W, » an infinite regular car-
dinal §<cf wg , and a cardinal K = || such that lﬂa,“<§ for
each d/c[d,]"‘

Remark: [GCH] implies that 2ZB(4),) is false.

Theorem: If ZB(W,) holds, then there is a uniform cover P or
s*(w,,‘) such that |f| = Wy and q‘ZW implies lq/|>ld“' (i.e.
#s*t () # ¥sT(u)).

The following lemma is needed.

Folklore Lemma [Pgl: Let (X,77) be a uniform space. Let K be an
infinite cardinal. Let ¢ = {Pa}asAe T, |P|l< K . Let =

= {Rb}ch be a uniform star-refinement of ¢ . For xeX put
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S(x) .—.{ala"A and st(x,ﬂ/)cPa}. For Ye<X, put I(Y) = {alaeA
and Y« Pa} . A mapping t : X—>A satisfying t(x)e S(x) for each
xe€ X will be called a choice mapping.

Assertion of Folklore Lemma: There is qfe. v, ﬂf’ = {Qa}aeA’ such
that q,*<l) and ﬂ/<7’ iff the following condition (P) 1is sati-
sfied:

(P) There is a choice mapping t : X—A and a partition {Ba} aci
of the index set B such that: t( (U R)) = b\:lla t(Rb)c

beB
e U 1) =10 R . . a
beB, beB,

Proof of Theorem: For ae W, , put ¥ = {fe S+(l4(,‘)|aecoz f} o Defi-
ne P = {'5}‘%% e Clearly, # is a uniform cover of s*(w,,‘). Suppo-
: . . +
se that there is a uniform cover 7/ = -{Ql} L lon such that o}f < 4’ .

By the proposition, there is a k22 such that ﬂk < q/. By the
Folklore Lemma, there is a choice mapping 1t : S*(wd)—»w“ such
that st(f, fk)c ﬁ?) for each fes*(wd) and a partition {Ba}ac%
such that the following is satisfied for each aacwy @
=) (U t(Wv))e () I(UW)) (I was defined in the Folklore
V'e.Ba VeBa

Lemma).
Clearly, for each fe S+(tq,‘), there is gest(f, l)k) such that

- - N
coz g =7* 1(]]2 k,l]]) = C(fl'{’k); hence: (since st(f, J’k)ct(f)):

1

) tp)e k) | )
2"-1

k
Define r : & (X¥ w0 by r(2) = t({rest )| T Fe

e,ﬁ}) . We obtain from (%x) and Céi’:)c_ Vzk for each f£: (%% )

k
r(W))ev x for each Vs 3(,2 ﬂ(wm) . Let 4 be a collection of
: 2

sets whose existence is given by ZB(W,) . For Le A/, take a cor-

k
net VLe_TK,Z "1(w,,() such that VLk = w'x . va =L and |V1| =wd,
2™+ 2

1
It is clear from (xx») that A(Zk,Zk-l,F,VL) does not hold for any
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. Jk
Fe[&)aj'f, S0 we can use the Basic Lemma: there is Ve ®° 1w,

n .
such that !V];k l|= Wd , ?I';‘k = L and ‘ r("l{/(VL))l?: £ (we have used
+ B

correspondence given by (/ k)
'
Since there is fe 'Z(/V(VL) such that coz f = L we also have
~N
(Wit = 1.
. . _ L .
Now consider the restriction of {da}aeA to {V |Led/}. Since

| |> W, » there is a_ such that [{Lred|Te Bao}lz‘d/‘é K .
Denote dz/ = {Le’ﬂvl,\‘lll‘e Bao} « By (%) we have:

) vy = U r( @ () 1@y = N 1=NaAa .
Led Led Led Led!

According to za(w;,),lﬂd/'|<_§ , although lr(i(f(\hl'L))IE_{ for each
Le & , which is a contradiction.

Comment: We have mentioned that [[GCH] implies the negation of ZB(4y).
One could doubt whether 2ZB(«w,) is consistent with ZFC. Fortunately,
[_'B] removes these unpleasant questions.

Notation: AB(K, )L,{w, V) denotes the assertion: there is Fc [k
such that |F| =)  and [XOY|<y if X,YeF and X # Y .

Theorem Baumgartner [b]: It is consistent with ZFC to suppose that

AB(K, A, K,V ) holds, where V< K <€A and Y is regular.
Remark: Clearly, AB(%"MX’WNE ), where g is a regular cardinal
less than cf «, , implies ZB(4).

So we see that the assertion: "For each uniform space (X,7”) and
each « > 2, pA(X, V) = (X,b* )" is consistent with and indepen-

dent of ZFC.
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