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OSCILLATION CRITERIA FOR HALF-LINEAR PARTIAL
DIFFERENTIAL EQUATIONS VIA PICONE’S IDENTITY∗

NORIO YOSHIDA†

Abstract. A Picone’s identity is established for a class of half-linear partial differential equations,
and oscillation criteria are obtained by using the Picone’s identity. By reducing the oscillation problem for
half-linear partial differential equations to a one-dimensional oscillation problem for half-linear ordinary
differential equations, we derive various oscillation results.
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1. Introduction. Recently there has been much interest in studying the oscilla-
tory behavior of solutions of half-linear differential equations. There are many papers
(or books) dealing with oscillations of half-linear partial differential equations, see, e.g.
Bognár and Došlý [2], Došlý [3, 4], Došlý and Mař́ık [5], Došlý and Řehák [6] Dunninger
[7], Kusano, Jaroš and Yoshida [10], Mař́ık [13, 14] and Yoshida [15]. Picone identity
plays an important role in Sturmian comparison theory and oscillation theory of differ-
ential equations. We mention the papers [1, 2, 3, 5, 7, 10, 15] which deal with Picone
identity for half-linear partial differential equations. In particular, the paper [15] treats
the half-linear partial differential equation with first order term

∇ ·
(
A(x)|∇v|α−1∇v

)
+ (α + 1)|∇v|α−1B(x) · ∇v + C(x)|v|α−1v = 0. (∗)

The purpose of this paper is to establish a Picone identity for the half-linear partial
differential equation

Pα[v] ≡
n∑

i=1

∂

∂xi

((
Ai(x)

)2|∇Av|α−1 ∂v

∂xi

)
+ (α + 1)|∇Av|α−1B(x) · ∇Av

+ C(x)|v|α−1v = 0

(1.1)

and to derive oscillation results for (1.1) using the Picone identity, where α > 0 is a
constant and

∇Av =
(

A1(x)
∂v

∂x1
, ..., An(x)

∂v

∂xn

)
.

We note that the half-linear partial differential equation (1.1) is a generalization of
(∗). In fact, if

A1(x) = A2(x) = · · · = An(x) = A(x)
1

α+1 (A(x) > 0),

∗This research was partially supported by Grant-in-Aid for Scientific Research (C)(2) (No. 16540144),
The Ministry of Education, Culture, Sports, Science and Technology, Japan.

†Department of Mathematics, Faculty of Science, University of Toyama, Toyama, 930-8555, Japan
(nori@sci.u-toyama.ac.jp).
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590 N. Yoshida

we see that (1.1) reduces to

∇ ·
(
A(x)|∇v|α−1∇v

)
+ (α + 1)A(x)

α
α+1 |∇v|α−1B(x) · ∇v

+ C(x)|v|α−1v = 0.

2. Picone identity. In this section we establish a Picone identity for (1.1), and
obtain a sufficient condition for every solution v of (1.1) to have a zero on G, where G is
a bounded domain in Rn with piecewise smooth boundary ∂G.

It is assumed that Ai(x) ∈ C(G; (0,∞)) (i = 1, 2, ..., n), B(x) ∈ C(G; Rn) and
C(x) ∈ C(G; R).

The domain DPα
(G) of Pα is defined to be the set of all functions v of class C1(G; R)

with the property that
(
Ai(x)

)2|∇Av|α−1 ∂v
∂xi

∈ C1(G; R) ∩ C(G; R) (i = 1, 2, ..., n).

Theorem 2.1 (Picone identity). If v ∈ DPα(G), v 6= 0 in G, then the following Picone
identity holds for any u ∈ C1(G; R) :

−
n∑

i=1

∂

∂xi

(
uϕ(u)

(
Ai(x)

)2|∇Av|α−1 ∂v
∂xi

ϕ(v)

)
=− |∇Au− u B(x)|α+1 + C(x)|u|α+1

+ |∇Au− u B(x)|α+1 + α
∣∣∣u
v
∇Av

∣∣∣α+1

− (α + 1) (∇Au− u B(x)) · Φ
(u

v
∇Av

)
− uϕ(u)

ϕ(v)
Pα[v],

(2.1)

where ϕ(s) = |s|α−1s (s ∈ R) and Φ(ξ) = |ξ|α−1ξ (ξ ∈ Rn).

Proof. A direct calculation yields

−
n∑

i=1

∂

∂xi

(
uϕ(u)

(
Ai(x)

)2|∇Av|α−1 ∂v
∂xi

ϕ(v)

)

=−
n∑

i=1

∂u

∂xi
ϕ(u)

(
Ai(x)

)2|∇Av|α−1 ∂v
∂xi

ϕ(v)

−
n∑

i=1

uϕ′(u)
∂u

∂xi

(
Ai(x)

)2|∇Av|α−1 ∂v
∂xi

ϕ(v)

−
n∑

i=1

uϕ(u)
(
− ϕ′(v)

ϕ(v)2
∂v

∂xi

)(
Ai(x)

)2|∇Av|α−1 ∂v

∂xi

−
n∑

i=1

uϕ(u)
∂

∂xi

((
Ai(x)

)2|∇Av|α−1 ∂v
∂xi

)
ϕ(v)

.

(2.2)

It is easy to see that

n∑
i=1

∂u

∂xi
ϕ(u)

(
Ai(x)

)2|∇Av|α−1 ∂v
∂xi

ϕ(v)
= ϕ

(u

v

) n∑
i=1

(
Ai(x)

)2|∇Av|α−1 ∂v

∂xi

∂u

∂xi
(2.3)
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in view of the fact that ϕ(u)/ϕ(v) = ϕ(u/v). Since uϕ′(u) = αϕ(u), it can be shown that

n∑
i=1

uϕ′(u)
∂u

∂xi

(
Ai(x)

)2|∇Av|α−1 ∂v
∂xi

ϕ(v)

= αϕ
(u

v

) n∑
i=1

(
Ai(x)

)2|∇Av|α−1 ∂v

∂xi

∂u

∂xi
.

(2.4)

Using the identity ϕ′(v) = α(ϕ(v)/v), we obtain

n∑
i=1

uϕ(u)
(
− ϕ′(v)

ϕ(v)2
∂v

∂xi

)(
Ai(x)

)2|∇Av|α−1 ∂v

∂xi

= − α
u

v
ϕ
(u

v

) n∑
i=1

(
Ai(x)

)2|∇Av|α−1

(
∂v

∂xi

)2

.

(2.5)

Combining (2.2)–(2.5), we observe that

−
n∑

i=1

∂

∂xi

(
uϕ(u)

(
Ai(x)

)2|∇Av|α−1 ∂v
∂xi

ϕ(v)

)

= α
u

v
ϕ
(u

v

) n∑
i=1

(
Ai(x)

)2|∇Av|α−1

(
∂v

∂xi

)2

− (α + 1)ϕ
(u

v

) n∑
i=1

(
Ai(x)

)2|∇Av|α−1 ∂v

∂xi

∂u

∂xi

− uϕ(u)
ϕ(v)

n∑
i=1

∂

∂xi

((
Ai(x)

)2|∇Av|α−1 ∂v

∂xi

)
.

(2.6)

It is easily verified that

α
u

v
ϕ
(u

v

) n∑
i=1

(
Ai(x)

)2|∇Av|α−1

(
∂v

∂xi

)2

= α
∣∣∣u
v

∣∣∣α+1

|∇Av|α−1
n∑

i=1

(
Ai(x)

)2( ∂v

∂xi

)2

= α
∣∣∣u
v
∇Av

∣∣∣α+1

.

(2.7)

A simple computation shows that

− (α + 1)ϕ
(u

v

) n∑
i=1

(
Ai(x)

)2|∇Av|α−1 ∂v

∂xi

∂u

∂xi

= − (α + 1)
∣∣∣u
v
∇Av

∣∣∣α−1 n∑
i=1

(
Ai(x)

∂u

∂xi

)(
u

v
Ai(x)

∂v

∂xi

)
= − (α + 1)

∣∣∣u
v
∇Av

∣∣∣α−1

(∇Au) ·
(u

v
∇Av

)
.

(2.8)



592 N. Yoshida

Hence, combining (2.6)–(2.8) yields the following :

−
n∑

i=1

∂

∂xi

(
uϕ(u)

(
Ai(x)

)2|∇Av|α−1 ∂v
∂xi

ϕ(v)

)

= α
∣∣∣u
v
∇Av

∣∣∣α+1

− (α + 1)
∣∣∣u
v
∇Av

∣∣∣α−1

(∇Au) ·
(u

v
∇Av

)
− uϕ(u)

ϕ(v)

n∑
i=1

∂

∂xi

((
Ai(x)

)2|∇Av|α−1 ∂v

∂xi

)
.

(2.9)

We easily obtain

uϕ(u)
ϕ(v)

[
(α + 1)|∇Av|α−1B(x) · ∇Av

]
= (α + 1)

∣∣∣u
v
∇Av

∣∣∣α−1

uB(x) ·
(u

v
∇Av

)
.

(2.10)

Combining (2.9) and (2.10), we find that

−
n∑

i=1

∂

∂xi

(
uϕ(u)

(
Ai(x)

)2|∇Av|α−1 ∂v
∂xi

ϕ(v)

)

= α
∣∣∣u
v
∇Av

∣∣∣α+1

− (α + 1)
∣∣∣u
v
∇Av

∣∣∣α−1

(∇Au− uB(x)) ·
(u

v
∇Av

)
− uϕ(u)

ϕ(v)

[
n∑

i=1

∂

∂xi

((
Ai(x)

)2|∇Av|α−1 ∂v

∂xi

)

+ (α + 1)|∇Av|α−1B(x) · ∇Av

]
.

(2.11)

Since
uϕ(u)
ϕ(v)

C(x)|v|α−1v = C(x)|u|α+1,

we conclude that (2.11) is equivalent to the desired Picone identity (2.1).

Theorem 2.2. Assume that there exists a nontrivial function u ∈ C1(G; R) such that
u = 0 on ∂G and

MG[u] ≡
∫

G

[
|∇Au− u B(x)|α+1 − C(x)|u|α+1

]
dx ≤ 0.

Then every solution v ∈ DPα
(G) of (1.1) must vanish at some point of G.

Proof. Suppose to the contrary that there exists a solution v ∈ DP (G) of (1.1) satisfying
v 6= 0 on G. Theorem 2.1 implies that the Picone-type inequality (2.1) holds for the
nontrivial function u. Integrating (2.1) over G, we obtain

0 = −MG[u] +
∫

G

[
|∇Au− u B(x)|α+1 + α

∣∣∣u
v
∇Av

∣∣∣α+1

− (α + 1) (∇Au− u B(x)) · Φ
(u

v
∇Av

)]
dx

≥
∫

G

[
|∇Au− u B(x)|α+1 + α

∣∣∣u
v
∇Av

∣∣∣α+1

− (α + 1) (∇Au− u B(x)) · Φ
(u

v
∇Av

)]
dx.

(2.12)
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It is easily seen that

∇Au− uB(x)− u

v
∇Av = v∇A

(u

v

)
− uB(x) = v

[
∇A

(u

v

)
− u

v
B(x)

]
.

If

∇A

(u

v

)
− u

v
B(x) ≡ 0 in G,

then we obtain the following

∇
(u

v

)
− u

v
BA(x) ≡ 0 in G,

where

BA(x) =
(

B1(x)
A1(x)

, . . . ,
Bn(x)
An(x)

)
.

It follows from a result of Jaroš, Kusano and Yoshida [9, Lemma] that

u

v
= C0 exph(x) on G

for some constant C0 and some continuous function h(x). Since u = 0 on ∂G, we obtain
C0 = 0, and hence u ≡ 0. This contradicts the fact that u is nontrivial, and therefore we
find

∇Au− uB(x) 6≡ u

v
∇Av in G.

Hence, it follows from a result of Kusano, Jaroš and Yoshida [10, Lemma 2.1] that∫
G

[
|∇Au− u B(x)|α+1 + α

∣∣∣u
v
∇Av

∣∣∣α+1

−(α + 1) (∇Au− u B(x)) · Φ
(u

v
∇Av

)]
dx > 0,

which, combined with (2.12), yields a contradiction. The proof is complete.

3. Oscillation results. We consider the half-linear partial differential equation

Pα[v] ≡
n∑

i=1

∂

∂xi

((
Ai(x)

)2|∇Av|α−1 ∂v

∂xi

)
+ (α + 1)|∇Av|α−1B(x) · ∇Av

+ C(x)|v|α−1v = 0

(3.1)

in an unbounded domain Ω ⊂ Rn, where α > 0 is a constant, Ai(x) ∈ C(Ω; (0,∞))
(i = 1, 2, . . . , n), B(x) ∈ C(Ω; R) and C(x) ∈ C(Ω; R).

The domain DPα(Ω) of Pα is defined to be the set of all functions v of class C1(Ω; R)
with the property that

(
Ai(x)

)2|∇Av|α−1 ∂v
∂xi

∈ C1(Ω; R) (i = 1, 2, . . . , n).
A solution v ∈ DPα

(Ω) of (3.1) is said to be oscillatory in Ω if it has a zero in Ωr for
any r > 0, where

Ωr = Ω ∩ {x ∈ Rn; |x| > r}.

Theorem 3.1. Assume that for any r > 0 there exists a bounded and piecewise smooth
domain G with G ⊂ Ωr. If there is a nontrivial function u ∈ C1(G; R) such that u = 0 on
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∂G and MG[u] ≤ 0, where MG is defined in Theorem 2.2, then every solution v ∈ DPα
(Ω)

of (3.1) is oscillatory in Ω.

Proof. Let r > 0 be an arbitrary number. Theorem 2.2 implies that every solution
v ∈ DPα

(Ω) of (3.1) has a zero on G ⊂ Ωr, that is, every solution v of (3.1) is oscillatory
in Ω.

Lemma 3.2. Let 0 < α < 1. Then we obtain the inequality

|∇u− uW (x)|α+1 ≤ |∇u|α+1

1− α
+
|W (x)|α+1

1− α
|u|α+1 (3.2)

for any function u ∈ C1(G; R) and any n-vector function W (x) ∈ C(G; R).

Proof. The following inequality holds:

(∇u) · Φ(∇u) + α (∇u − uW (x)) · Φ (∇u− uW (x))
− (α + 1) (∇u) · Φ (∇u− uW (x)) ≥ 0

(see, e.g., Kusano, Jaroš and Yoshida [10, Lemma 2.1]). Hence, we have

(∇u) · Φ(∇u) + α (∇u− uW (x)) · Φ (∇u− uW (x))
−(α + 1) (∇u− uW (x) + uW (x)) · Φ (∇u− uW (x)) ≥ 0,

and therefore

|∇u|α+1 + α|∇u− uW (x)|α+1

−(α + 1)
[
|∇u− uW (x)|α+1 + uW (x) · Φ (∇u− uW (x))

]
≥ 0,

or

|∇u|α+1 − (α + 1)uW (x) · Φ (∇u− uW (x)) ≥ |∇u− uW (x)|α+1. (3.3)

Using Schwarz’s inequality and Young’s inequality, we find that

|(α + 1)uW (x) · Φ (∇u− uW (x)) |
≤ (α + 1)|uW (x)||∇u− uW (x)|α

≤ (α + 1)
[
|uW (x)|α+1

α + 1
+
|∇u− uW (x)|α+1

α+1
α

]
= |uW (x)|α+1 + α|∇u− uW (x)|α+1.

(3.4)

Combining (3.3) with (3.4) yields the following

|∇u− uW (x)|α+1 ≤ |∇u|α+1 + |(α + 1)uW (x) · Φ (∇u− uW (x)) |
≤ |∇u|α+1 + |uW (x)|α+1 + α|∇u− uW (x)|α+1,

and hence

(1− α)|∇u− uW (x)|α+1 ≤ |∇u|α+1 + |W (x)|α+1|u|α+1,

which is equivalent to (3.2). The proof is complete.
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Theorem 3.3. Let 0 < α < 1. Assume that for any r > 0 there exist a bounded and
piecewise smooth domain G with G ⊂ Ωr and a nontrivial function u ∈ C1(G; R) such
that u = 0 on ∂G and∫

G

[
K(x)
1− α

|∇u|α+1 −
{

C(x)− K(x)|BA(x)|α+1

1− α

}
|u|α+1

]
dx ≤ 0,

where K(x) =
(
max1≤i≤n Ai(x)

)α+1 and

BA(x) =
(

B1(x)
A1(x)

, . . . ,
Bn(x)
An(x)

)
.

Then every solution v ∈ DPα(Ω) of (3.1) is oscillatory in Ω.

Proof. It is easy to see that

|∇Au− uB(x)| ≤
√

max
1≤i≤n

(Ai(x))2 |∇u− uBA(x)| ≤
(

max
1≤i≤n

Ai(x)
)
|∇u− uBA(x)|

and hence

|∇Au− uB(x)|α+1 ≤ K(x)|∇u− uBA(x)|α+1. (3.5)

Combining (3.2) with (3.5), we obtain

|∇Au− uBA(x)|α+1 ≤ K(x)
1− α

|∇u|α+1 +
K(x)|BA(x)|α+1

1− α
|u|α+1.

Therefore, we observe that∫
G

[
|∇Au− u B(x)|α+1 − C(x)|u|α+1

]
dx

≤
∫

G

[
K(x)
1− α

|∇u|α+1 −
{

C(x)− K(x)|BA(x)|α+1

1− α

}
|u|α+1

]
dx

and consequently, the conclusion follows from Theorem 3.1.

Lemma 3.4. Let E(x) ∈ C(G; (0,∞)) satisfy E(x) > α. Then the inequality

|∇u− uW (x)|α+1 ≤ E(x)
E(x)− α

|∇u|α+1 +
|E(x)W (x)|α+1

E(x)− α
|u|α+1 (3.6)

holds for any function u ∈ C1(G; R) and any n-vector function W (x) ∈ C(G; R).

Proof. Proceeding as in the proof of Lemma 3.2, we see that the inequality (3.3) holds.
Applying Schwarz’s inequality and Young’s inequality, we have

|(α + 1)uW (x) · Φ (∇u− uW (x)) |

=
1

E(x)
(α + 1)|uE(x)W (x)||∇u− uW (x)|α

≤ 1
E(x)

(
|uE(x)W (x)|α+1 + α |∇u− uW (x)|α+1

)
.

(3.7)

Combining (3.3) with (3.7) yields the following
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|∇u− uW (x)|α+1 ≤ |∇u|α+1 +
|E(x)W (x)|α+1

E(x)
|u|α+1 +

α

E(x)
|∇u− uW (x)|α+1

and therefore(
1− α

E(x)

)
|∇u− uW (x)|α+1 ≤ |∇u|α+1 +

|E(x)W (x)|α+1

E(x)
|u|α+1,

which is equivalent to (3.6). The proof is complete.

Theorem 3.5. Let K(x) > α. Assume that for any r > 0 there exist a bounded and
piecewise smooth domain G with G ⊂ Ωr and a nontrivial function u ∈ C1(G; R) such
that u = 0 on ∂G and∫

G

[
(K(x))2

K(x)− α
|∇u|α+1 −

{
C(x)− (K(x))α+2 |BA(x)|α+1

K(x)− α

}
|u|α+1

]
dx ≤ 0.

Then every solution v ∈ DPα(Ω) of (3.1) is oscillatory in Ω.

Proof. We see from (3.5) and (3.6) with E(x) = K(x) that∫
G

[
|∇Au− u B(x)|α+1 − C(x)|u|α+1

]
dx

≤
∫

G

[
(K(x))2

K(x)− α
|∇u|α+1

−
{

C(x)− (K(x))α+2 |BA(x)|α+1

K(x)− α

}
|u|α+1

]
dx.

Hence, the conclusion follows from Theorem 3.1. The proof is complete.

Let {Q(x)}S(r) denote the spherical mean of Q(x) over the sphere Sr = {x ∈ Rn :
|x| = r}, that is,

{Q(x)}S(r) =
1

ωnrn−1

∫
Sr

Q(x) dS =
1

ωn

∫
S1

Q(r, θ)dω,

where ωn is the surface area of the unit sphere S1 and (r, θ) is the hyperspherical coordi-
nates on Rn.

Theorem 3.6. Let 0 < α < 1. If the half-linear ordinary differential equation(
rn−1

{
K(x)
1− α

}
S

(r) |y′|α−1y′
)′

+ rn−1

{
C(x)− K(x)|BA(x)|α+1

1− α

}
S

(r) |y|α−1y = 0
(3.8)

is oscillatory, then every solution v ∈ DPα
(Rn) of (3.1) is oscillatory in Rn.

Proof. Let {rk} be the zeros of a nontrivial solution y(r) of (3.8) such that r1 < r2 <
· · · , limk→∞ rk = ∞. Letting

Gk = {x ∈ Rn; rk < |x| < rk+1} (k = 1, 2, ...)
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and uk(x) = y(|x|), we find that

MGk
[uk] ≤

∫
Gk

[
K(x)
1− α

|∇uk|α+1 −
{

C(x)− K(x)|BA(x)|α+1

1− α

}
|uk|α+1

]
dx

= ωn

∫ rk+1

rk

[{
K(x)
1− α

}
S

(r)|y′(r)|α+1

−
{

C(x)− K(x)|BA(x)|α+1

1− α

}
S

(r)|y(r)|α+1

]
rn−1dr

= −ωn

∫ rk+1

rk

[(
rn−1

{
K(x)
1− α

}
S

(r)|y′(r)|α−1y′(r)
)′

+rn−1

{
C(x)− K(x)|BA(x)|α+1

1− α

}
S

(r)|y(r)|α−1y(r)

]
y(r)dr

= 0.

Hence, the conclusion follows from Theorem 3.3.

Theorem 3.7. Let K(x) > α in Rn. If the half-linear ordinary differential equation(
rn−1

{
(K(x))2

K(x)− α

}
S

(r) |y′|α−1y′
)′

+ rn−1

{
C(x)− (K(x))α+2 |BA(x)|α+1

K(x)− α

}
S

(r) |y|α−1y = 0
(3.9)

is oscillatory, then every solution v ∈ DPα
(Rn) of (3.1) is oscillatory in Rn.

Proof. The proof is quite similar to that of Theorem 3.6, and hence will be omitted.

Oscillation results for the half-linear ordinary differential equation(
p(r)|y′|α−1y′

)′
+ q(r)|y|α−1y = 0

have been derived by numerous authors (see, e.g., Kusano and Naito [11] and Kusano,
Naito and Ogata [12]). Various oscillation results for (3.1) can be obtained by combining
Theorems 3.6 and 3.7 with the results of [11, 12].

The following Theorems 3.8 and 3.9 follow by combining Theorems 3.3 and 3.5
with the fact that the half-linear ordinary differential equation(

K0r
n−1|y′|α−1y′

)′
+ C0r

n−1|y|α−1y = 0

is oscillatory for any n ∈ N, α > 0, K0 > 0 and C0 > 0 (see Kusano, Jaroš and Yoshida
[10, Example]).

Theorem 3.8. Let 0 < α < 1. If there are positive constants K0 and C0 satisfying

K(x)
1− α

≤ K0, C(x)− K(x)|BA(x)|α+1

1− α
≥ C0,

then every solution v ∈ DPα
(Rn) of (3.1) is oscillatory in Rn.

Theorem 3.9. Let K(x) > α in Rn. If there are positive constants K0 and C0 satisfying

(K(x))2

K(x)− α
≤ K0, C(x)− (K(x))α+2 |BA(x)|α+1

K(x)− α
≥ C0,
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then every solution v ∈ DPα
(Rn) of (3.1) is oscillatory in Rn.

Example. We consider the half-linear partial differential equation

∂

∂x1

(
|∇Av| ∂v

∂x1

)
+

∂

∂x2

(
4|∇Av| ∂v

∂x2

)
+ 3|∇Av|

(
3

∂v

∂x1
+ 16

∂v

∂x2

)
+
(

4
3
× 403 + 1

)
|v|v = 0

(3.10)

for x = (x1, x2) ∈ R2, where

∇Av =
(

∂v

∂x1
, 2

∂v

∂x2

)
.

Here n = α = 2, A1(x) = 1, A2(x) = 2, K(x) = 8, B(x) = (3, 8), BA(x) = (3, 4),
C(x) = (4/3)× 403 + 1. Since(

K(x)
)2

K(x)− α
=

32
3

, C(x)− (K(x))α+2 |BA(x)|α+1

K(x)− α
= 1,

we can take K0 = 32/3 and C0 = 1. It is easy to see that K(x) > α, and hence
Theorem 3.9 implies that every solution v of (3.10) is oscillatory in R2.
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[8] J. Jaroš, T. Kusano and N. Yoshida, Picone-type inequalities for half-linear elliptic equations and
their applications, Adv. Math. Sci. Appl., 12 (2002), 709–724.
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