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Abstract. Several abstract model problems of elliptic and parabolic type
with inhomogeneous initial and boundary data are discussed. By means of
a variant of the Dore-Venni theorem, real and complex interpolation, and
trace theorems, optimal Lp-regularity is shown. By means of this purely op-
erator theoretic approach classical results on Lp-regularity of the diffusion
equation with inhomogeneous Dirichlet or Neumann or Robin condition
are recovered. An application to a dynamic boundary value problem with
surface diffusion for the diffusion equation is included.
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1 Introduction

The operator-sum method as developed by Da Prato and Grisvard [1], Dore and
Venni [2], and recently by Kalton and Weis [7] has been employed successfully to
solve abstract Cauchy problems of the form

u̇(t) +Au(t) = f(t), t > 0, u(0) = 0,

where A denotes the generator of a bounded analytic C0-semigroup in the Banach
space X . It is the goal of this paper to show how this method can be used to
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obtain maximal Lp-regularity for a variety of abstract elliptic and parabolic prob-
lems with inhomogeneous initial and boundary values. Such problems arise in the
real pde world as model problems. Results on such model problems can be trans-
ferred to elliptic and parabolic boundary value problems on domains with smooth
boundary by well-known techniques like localization, perturbation and coordinate
transformation.

As an example of this strategy let us consider the diffusion equation with
dynamic boundary condition involving surface diffusion. So let Ω ⊂ Rn be an open
bounded domain with boundary Γ = ∂Ω of class C2, such that Γ decomposes into
three disjoint parts Γ = Γ0 ∪ Γn ∪ Γd, where Γj is open and closed in Γ . Consider
the problem

∂tu(t, x)−∆u(t, x) = f(t, x), t > 0, x ∈ Ω,
u(t, x) = φ(t, x), x ∈ Γ0, ∂nu(t, x) = ψ(t, x), x ∈ Γn, t > 0,
∂tu(t, x) + ∂nu(t, x)−∆Γu(t, x) = h(t, x), x ∈ Γd, t > 0,
u(0, x) = u0(x), x ∈ Ω,

(1.1)

where ∂n means the normal derivative at the boundary of Ω, and ∆Γ denotes the
Laplace-Beltrami operator on the manifold Γ . By means of localization, transfor-
mation and perturbation this problem can be reduced to four model problems,
namely the diffusion equation on Rn, and the diffusion equation on the half-
space Rn

+ with Dirichlet or Neumann or dynamic surface diffusion condition on
the boundary of Rn

+. This paper deals with the abstract version of these model
problems. To show the strength of our results we have included surface diffusion,
which plays the role of an unbounded Robin condition.

As an application, let us present the Lp-maximal regularity result for (1.1)
which follows from Theorem 4.3 below.

Theorem. Let 1 < p < ∞, p != 3/2, 3, and let J = [0, a]. Then problem (1.1)
admits a unique solution

u ∈ H1
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω))

such that
u|Γd

∈W 3/2−1/2p
p (J ;Lp(Γd)) ∩ Lp(J ;W 3−1/p

p (Γd)),

if and only if f ∈ Lp(J ×Ω), u0 ∈ W 2−2/p
p (Ω),

φ ∈W 1−1/2p
p (J ;Lp(Γ0)) ∩ Lp(J ;W 2−1/p

p (Γ0)),

ψ ∈W 1/2−1/2p
p (J ;Lp(Γn)) ∩ Lp(J ;W 1−1/p

p (Γn)),

h ∈W 1/2−1/2p
p (J ;Lp(Γd)) ∩ Lp(J ;W 1−1/p

p (Γd)),

and the compatibility conditions

u0|Γ0 = φ|t=0 for p > 3/2,
∂nu0|Γn = ψ|t=0 for p > 3,

u0|Γd
∈ W 3−3/p

p (Γd), for p > 1,
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are satisfied.

Specializing the results proved below, we are able to recover classical results on
parabolic initial-boundary value problems. So e.g. in case Y = Lp(Rn) and B =
−∆, D = 0, Theorems 4.1 and 4.2 reduce to the famous results of Ladyzhenskaya,
Solonnikov and Uraĺtseva [9] on maximal Lp-regularity of second order parabolic
initial-boundary value problems. Many other problems fit into the framework of
our approach. So for example, in (1.1) we can allow for a Robin condition like
∂nu − ∆Γu = ψ instead of the Neumann condition on Γn, and surface diffusion
can be dropped in the dynamic boundary condition on Γd.

In this paper we only employ a theorem of Dore-Venni type, [2], [10], real
and complex interpolation, and trace theorems. We would like to point out that
our techniques have been applied successfully also to the study of free boundary
value problems like the Stefan problem with surface tension, see Escher, Prüss
and Simonett [3] or the one and two phase free boundary value problems for the
Navier-Stokes equation, see Escher, Prüss, and Simonett [4].

Some of our results may be generalized using a more recent theorem of Kalton
and Weis [7]. For example, in Theorems 3.1 and 3.3, the involved operators A and
F , need only to be R-sectorial instead of class BIP , and their power angles can
be replaced by their R-angles. In Theorem 3.4, say D needs only to be R-sectorial
if in addition F is assumed to admit an H∞-calculus and φ∞F +φRD < π. However,
extensions in this direction are not clear for Theorems 4.1 to 4.3.

2 Preliminaries

To introduce some notation used below recall that a Banach space X belongs to
the class HT if the Hilbert transform is bounded on L2(R;X). Recall also that a
closed linear operator A in X is called nonnegative or pseudo-sectorial if (−∞, 0)
is contained in the resolvent set of A and the resolvent estimate

t|(t+A)−1|B(X) ≤M0, t > 0,

holds, for some constant M0 > 0. If in addition the domain D(A) and the range
R(A) of A are dense in X then A is called sectorial. We emphasize that for
(pseudo)-sectorial operators the Dunford functional calculus is available and in
particular the fractional powers Az , z ∈ C are well-defined closed linear operators
in X ; see e.g. Komatsu [8]. We also recall that in case X is reflexive and A is
pseudo-sectorial then the space X decomposes according to X = N (A) ⊕ R(A),
where N (A) designates the kernel of A. Thus in such a situation A is sectorial on
R(A).

We say that an operator A in X belongs to BIP(X) if A is sectorial and the
imaginary powers Ais of A form a bounded C0-group on X . The type θA of this
group will be called the power angle of A. We begin by repeating a variant of the
Dore-Venni theorem; see Dore and Venni [2] and Prüss and Sohr [10].



172 J. Prüss

Theorem 2.1. Suppose X belongs to the class HT , and assume A,B ∈ BIP (X)
commute and satisfy the strong parabolicity condition θA + θB < π, and let
t > 0. Then

(i) A+ tB is closed and sectorial;

(ii) A+ tB ∈ BIP(X) with θA+tB ≤ max{θA, θB};
(iii) there is a constant C > 0, independent of t > 0, such that

|Ax| + t|Bx| ≤ C|Ax + tBx|, x ∈ D(A) ∩D(B). (2.1)

In particular, if A or B is invertible, then A+ tB is invertible as well.

Some consequences of this result concerning complex interpolation are con-
tained in the next corollary. By [X,Z]θ we denote the complex interpolation spaces
between X and Z.

Corollary 2.2. Suppose X is a Banach space of class HT , A,B ∈ BIP (X) are
commuting in the resolvent sense, and their power angles satisfy the parabolicity
condition θA + θB < π. Let A or B be invertible and α ∈ (0, 1). Then

(a) Aα(A+B)−α and Bα(A+B)−α are bounded in X;

(b) D((A+B)α) = [X,D(A+B)]α = [X,D(A)]α ∩ [X,D(B)]α = D(Aα)∩D(Bα).

The proof of this result is not difficult, but due to limations of space we refer
to the forthcoming monograph Hieber and Prüss [6].

The following result is due to Grisvard [5], even in a more general context. We
denote the real interpolation spaces between X and Z by (X,Z)α,p.

Proposition 2.3. Suppose A,B are sectorial linear operators in a Banach space
X, commuting in the resolvent sense and let α ∈ (0, 1), p ∈ [1,∞]. Then

(X,D(A) ∩ D(B))α,p = (X,D(A))α,p ∩ (X,D(B))α,p.

The next result is known as the mixed derivative theorem and is due to Sobolevskii
[11].

Proposition 2.4. Suppose A and B are sectorial linear operators in a Banach
space X with spectral angles φA + φB < π, which commute and are coercively
positive, i.e. A+ tB with natural domain D(A+ tB) = D(A) ∩D(B) is closed for
each t > 0 and there is a constant M > 0 such that

|Ax|X + t|Bx|X ≤M |Ax+ tBx|X , for all x ∈ D(A) ∩ D(B), t > 0.

Then there is constant C > 0 such that

|AαB1−αx|X ≤ C|Ax+Bx|X , for all x ∈ D(A) ∩D(B), α ∈ [0, 1].

In particular, AαB1−α(A+B)−1 is bounded in X, for each α ∈ [0, 1].
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Observe that Proposition 2.4 applies in particular to the situation of the Dore-
Venni theorem, Theorem 2.1. The next result deals with traces of vector-valued
functions, where we employ the standard notation DA(α, p) = (X,XA)α,p, for the
real interpolation spaces, where XA means the Banach space D(A) equipped with
the graph norm of A.

Proposition 2.5. Let Y be a Banach space of class HT , A a sectorial operator
in Y which belongs to BIP (Y ) with power angle θA < π/s, 1 < p < ∞, s > 1/p,
and let J be an interval. Then

Hs
p(J ;Y ) ∩ Lp(J ;D(As)) ↪→ BUCn(J ;DA(s− n− 1/p, p)),

and also

W s
p (J ;Y ) ∩ Lp(J ;DA(s, p)) ↪→ BUCn(J ;DA(s− n− 1/p, p)),

where n means any integer smaller than s− 1/p.

Here as usual, Hs
p(J ;Y ) resp. W s

p (J ;Y ) mean the vector-valued Bessel potential
spaces resp. Sobolev–Slobodecky spaces on an open interval J ⊂ R, where 1 < p <
∞ and s > 0. For the case θA = 0 a proof is given in Escher, Prüss, and Simonett
[3], the general case is proved in Hieber and Prüss [6].

The next result is a direct consequence of the definition of the real interpolation
spaces DA(α, p), which nevertheless is very useful.

Proposition 2.6. Let 1 < p < ∞, 1/p < α < 1, suppose A is an invertible
pseudo-sectorial operator in X with φA < π/2, and set u(t) = e−Atx, x ∈ X.

Then the following statements are equivalent.

(i) x ∈ DA(α− 1/p, p);

(ii) u ∈ Lp(R+;DA(α, p));
(iii) u ∈Wα

p (R+;X).

Observe that u ∈ Wα
p (R+;X) ∩ Lp(R+;DA(α, p)) holds for all x ∈ X , in case

0 ≤ α < 1/p.

3 Abstract Equations on the Halfline

We consider now the following abstract theorem on evolution equations

u̇+Au = f, t > 0, u(0) = u0, (3.1)

in a Banach space Y . The main result on maximal Lp-regularity for (3.1) is a
well-known consequence of Theorem 2.1.
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Theorem 3.1. Suppose Y is a Banach space of class HT , 1 < p < ∞, let
A ∈ BIP (Y ) be invertible with power angle θA < π/2, and let DA denote the
domain D(A) of A equipped with the graph norm of A.

Then (3.1) has precisely one solution in Z := H1
p (R+;Y )∩Lp(R+;DA) if and

only if
f ∈ X := Lp(R+;Y ) and u0 ∈ DA(1− 1/p, p).

A result much easier to obtain—but nevertheless useful—is the following.

Proposition 3.2. Let 1 < p < ∞, 1/p < α < 1, suppose A is an invertible
pseudo-sectorial operator in X with φA < π/2, let f ∈ Lp(R+;X) and u0 ∈ X.

Then the following statements for the solution u of (3.1) are equivalent.

(i) u ∈W 1+α
p (R+;X) ∩Wα

p (R+;D(A));
(ii) f ∈Wα

p (R+;X), u0 ∈ D(A), Ax− f(0) ∈ DA(α− 1/p, p).

Our next theorem concerns the abstract second order problem with Dirichlet con-
dition

− u′′(y) + F 2u(y) = g(y), y > 0,
u(0) = φ,

(3.2)

in Lp(R+;Y ).

Theorem 3.3. Suppose Y is a Banach space of class HT , 1 < p < ∞, let
F ∈ BIP (Y ) be invertible with power angle θF < π/2, and let Dj

F denote the
domain D(F j) of F j equipped with its graph norm, j = 1, 2.

Then (3.2) has precisely one solution u in Z := H2
p (R+;Y ) ∩ Lp(R+;D2

F ) if
and only if

g ∈ X := Lp(R+;Y ) and φ ∈ DF (2− 1/p, p).

If this is the case we have in addition u ∈ H1
p (R+;D1

F ).

Proof. Apply Theorem 2.1 in X = Lp(R+;Y ) to A = F 2 and B = −d2/dy2

with domain D(B) = H2
p (R+;Y ) ∩ 0H

1
p(R+;Y ) to see that (3.2) admits a unique

solution u ∈ Z, for each g ∈ X , φ = 0. It is given explicitly by the formula

u(y) =
1
2
F−1

∫ ∞

0

[e−F |y−s| − e−F (y+s)]g(s) ds, t > 0.

On the other hand, if −u′′ + F 2u = 0, and u is bounded then u′ + Fu = 0. Hence
the unique solution of (3.2) in X with g = 0 is given by

u(y) = e−Fyφ,

which belongs to Z if and only if φ ∈ DF (2 − 1/p, p). In fact, by Theorem 3.1,
Fφ ∈ DF (1−1/p, p) is equivalent to v(y) := e−FyFφ ∈ H1

p (R+;Y )∩Lp(R+;D1
F ),

which by invertibility of F in turn is equivalent to u ∈ Z. The last assertion follows
from the mixed derivative theorem with α = 1/2.
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There is a companion result for the abstract second order problem with abstract
Robin condition which for D = 0 becomes the Neumann condition.

− u′′(y) + F 2u(y) = g(y), y > 0,
− u′(0) +Du(0) = ψ,

(3.3)

For this problem the maximal regularity result in Lp(R+;Y ) reads as follows.

Theorem 3.4. Suppose Y is a Banach space of class HT , 1 < p < ∞, let
F ∈ BIP (Y ) be invertible with power angle θF < π/2, and let Dj

F denote the
domain D(F j) of F j equipped with its graph norm, j = 1, 2. Suppose that D
is pseudo-sectorial, belongs to BIP (R(D)), commutes with F , and is such that
θF + θD < π.

Then (3.3) has precisely one solution in Z := H2
p (R+;Y ) ∩ Lp(R+;D2

F ) with
u(0) ∈ D(D) and Du(0) ∈ DF (1− 1/p, p) if and only if

g ∈ X := Lp(R+;Y ) and ψ ∈ DF (1− 1/p, p).

If this is the case we have in addition u ∈ H1
p (R+;D1

F ).

Proof. Since N (D) ⊕ R(D) = Y by reflexivity of Y , and D and F commute,
Theorem 2.1 implies that F+D with domainD(F+D) = D(F )∩D(D) is invertible.
The solution u of (3.3) can be written explicitly as will be shown below.

u(y) = e−Fy(F +D)−1ψ

+
1
2
F−1

∫ ∞

0

[e−F |y−s| + (F −D)(F +D)−1e−F (y+s)]g(s) ds.

This time we proceed as follows. Apply Theorem 2.1 to A = F 2 and B = −d2/dy2

in X = Lp(R;Y ), i.e. for the problem on the entire line. This way, for each g ∈ X ,
we obtain a unique solution v ∈ H2

p (R;Y ) ∩Lp(R;D2
F ). It is given by the formula

v(y) =
1
2
F−1

∫ ∞

−∞
e−F |y−s|g(s) ds, y ∈ R.

We write v = (A + B)−1g. Now suppose first ψ = 0 and let g ∈ Lp(R+;Y ). Let
E0 : Lp(R+;Y ) → Lp(R;Y ) denote the operator of extension by 0, i.e.

(E0f)(y) = f(y), y > 0, (E0f)(y) = 0, y < 0,

P+ : Lp(R;Y ) → Lp(R+;Y ) the restriction to R+, and R : Lp(R;Y ) → Lp(R;Y )
reflection at 0, i.e.

(Rf)(y) = f(−y), y ∈ R.

these operators are all bounded with norm 1. The solution formula for u may then
be rewritten as

u = P+(A+B)−1E0g + (F −D)(F +D)−1P+R(A+B)−1E0g,
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which shows that the solution u belongs to the maximal regularity space
Z = H2

p (R+;Y ) ∩ Lp(R+;D2
F ). The trace of u at y = 0 exists and equals

u(0) = (F +D)−1

∫ ∞

0

e−Fsg(s) ds.

This shows u(0) ∈ D(D) and

Du(0) = D(F +D)−1

∫ ∞

0

e−Fsg(s) ds ∈ DF (1− 1/p, p),

since F and D commute by assumption, D(F + D)−1 is bounded and is leaving
invariant DF (1− 1/p, p). In case g = 0 the solution u is given by

u(y) = e−Fy(F +D)−1ψ,

hence u(0) = (F +D)−1ψ ∈ D(D), as well as

Du(0) = D(F +D)−1ψ ∈ DF (1 − 1/p, p),

but also u(0) ∈ DF (2− 1/p, p), hence u belongs to Z.
Conversely, if a function u ∈ Z with u(0) ∈ D(D), Du(0) ∈ DF (1 − 1/p, p) is

given then g := −u′′+F 2u ∈ Lp(R+;Y ), hence the condition on g is necessary. Now
solve the problem with right hand side g and homogeneous boundary condition to
obtain v ∈ Z. Then w := u− v satisfies −w′′ + F 2w = 0 on R+, hence is given by
w(y) = e−Fyw(0). This implies w(0) ∈ DF (2 − 1/p, p), w′(0) ∈ DF (1 − 1/p, p) as
well as w(0) ∈ D(D), hence

ψ = −w′(0) +Dw(0) = −u′(0) +Du(0) ∈ DF (1− 1/p, p).

Therefore the condition on ψ is also necessary, and in particular the solutions are
unique. The last statement follows again from the mixed derivative theorem.

It is worthwhile to imagine which kind of operators F and D are covered by
Theorem 3.4. To examine this, we let Y = Lp(Rn) and F = (1+Dn)1/2, where Dn

means the negative Laplacian on Rn. For D we may choose an oblique derivative
operator of the form Du = a · ∇u + bu, where a ∈ Rn and b ≥ 0. This covers the
case of a second order elliptic equation with oblique boundary condition. We even
may more generally put Du = Dnu+ a · ∇u+ bu.

On the other hand, we may consider in Y = Lp(R;Lp(Rn)) an elliptic equation,
e.g. F = (1+Dn)1/2 canonically extended to Y and a dynamic boundary condition
like Du = ∂tu+ bu where b ≥ 0, or more generally Du = ∂tu+Dnu+ a · ∇u+ bu,
where b > 0.

Third, let again Y = Lp(R;Lp(Rn)) but F = (∂t + Dn)1/2 this time, i.e. the
underlying equation is second order parabolic. In virtue of θF = π/4 we may
also choose oblique boundary conditions Du = a · ∇u + bu, as well as Du =
Dnu + a · ∇u + bu, and dynamic boundary conditions like Du = ∂tu + bu and
Du = ∂tu+Dnu+ bu are still allowed.

If we consider Y = Lp(R+;Lp(Rn)) then the above choices are also possible,
but we have to add homogeneous initial conditions at t = 0 for whenever the
operators F or D contain ∂t.
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4 Parabolic Problems on a Half-Space

We now consider the vector-valued problem

∂tu− ∂2
yu+ Bu = f, t, y > 0

u(t, 0) = φ(t), t > 0,
u(0, y) = ψ(y), y > 0.

(4.1)

Here B denotes an invertible sectorial operator in a Banach space Y which belongs
to the class HT , and the data f , φ, and ψ are given. We are interested in solutions
u which belong to the maximal regularity class of type Lp, i.e.

u ∈ H1
p (R+;Lp(R+;Y )) ∩ Lp(R+;H2

p (R+;Y )) ∩ Lp(R+;Lp(R+;DB)),

where DB denotes the space D(B) equipped with the graph norm of B. The main
result reads as follows.

Theorem 4.1. Suppose Y is a Banach space of class HT , let B ∈ BIP (Y ) be
invertible with power-angle θB < π/2, and let p ∈ (1,∞), p != 3/2. Let DB denote
the Banach space D(B) equipped with the graph norm of B. Then the problem (4.1)
has exactly one solution

u ∈ Z := H1
p (R+;Lp(R+;Y )) ∩ Lp(R+;H2

p (R+;Y )) ∩ Lp(R+;Lp(R+;DB))

if and only if the data f , ϕ, ψ satisfy the following conditions.

1. f ∈ X := Lp(R+;Lp(R+;Y ));

2. φ ∈W 1−1/2p
p (R+;Y ) ∩ Lp(R+;DB(1− 1/2p, p));

3. ψ ∈ W 2−2/p
p (R+;Y ) ∩ Lp(R+;DB(1 − 1/p, p));

4. φ|t=0 = ψ|y=0 in case p > 3/2.

If this is the case then φ|t=0 = ψ|y=0 ∈ DB(1 − 3/2p, p) for p > 3/2.

Proof. Suppose u is a solution of (4.1). Then evidently we have f = ∂tu− ∂2
yu+

Bu ∈ X , i.e. the first condition is necessary. Let B denote the natural extension
of B to E := Lp(R+;Y ), with domain D(B) = Lp(R+;DB). Then B is again
invertible, sectorial, and B ∈ BIP (E) with power angle θB < π/2. Let G = −∂2

y

with domain D(G) = H2
p (R+;Y ) ∩ 0H

1
p(R+;Y ); then G is sectorial, belongs to

BIP (E) with power angle θG = 0. Since both operators commute, Theorem 2.1
yields that A := G+B with domain D(A) = D(G)∩D(B) is sectorial, belongs to
BIP (E) with power angle θA < π/2. Then by Theorem 3.1 we obtain the function
u0 := e−At ∗ f ∈ Z, hence v := u− u0 satisfies (4.1) with f = 0 and the traces of
u and v for y = 0 and also for t = 0 coincide. Thus we may assume f = 0 in the
sequel.

Next we extend u and φ for t < 0 by symmetry, i.e. u(t, y) = u(−t, y) and
φ(t) = φ(−t) for t < 0. Then u satisfies a problem of the form

∂tu− ∂2
yu+ Bu = g, y > 0, t ∈ R

u(t, 0) = φ(t), t ∈ R,
(4.2)
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with g ∈ Lp(R;Lp(R+;Y )). Define B in Lp(R;Y ) again by pointwise extension,
and let D = ∂t with domain D(D) = H1

p (R;Y ). Both operators are sectorial, they
commute and belong to BIP (Lp(R;Y )), their power angles satisfy θD+θB ≤ π/2+
θB < π. Therefore, by Theorem 2.1, D+B with domain D(D+B) = D(B)∩D(D)
is invertible, sectorial, belongs to BIP (Lp(R;Y )), with power angle smaller than
π/2. Now we are in position to apply Theorem 3.3 to F :=

√
D +B, to the result

that φ ∈ DF (2− 1/p, p). By means of Corollary 2.2 we have

D(F ) = D((D +B)1/2) = D(D1/2) ∩D(B1/2),

and Proposition 2.3 gives

DF (α, p) = DD1/2(α, p) ∩DB1/2(α, p).

The reiteration theorem yields DB1/2(α, p) = DB(α/2, p), similarly for D, hence
we get

DF (2− 1/p, p) = W 1−1/2p
p (R;Y ) ∩ Lp(R;DB(1− 1/2p, p)).

Therefore by restriction to R+ we see that the second condition in Theorem 4.1 is
necessary.

In a similar way we prove necessity of the third condition. This time we extend
u w.r.t. y to all of R, say e.g. by u(t, y) = 3u(t,−y) − 2u(t,−2y). The resulting
function belongs to

H1
p (R+;Lp(R;Y )) ∩ Lp(R+;H2

p (R;Y )) ∩ Lp(R+;Lp(R;DB)).

This time we let A = B+G in Lp(R;Y ), where D(G) = H2
p (R;Y ), and apply Theo-

rem 2.1 and Theorem 3.1 to the result that u|t=0 ∈ DA(1−1/p, p). Proposition 2.3
yields

DA(1 − 1/p, p) = DG(1− 1/p, p) ∩DB(1− 1/p, p)

= W 2−2/p
p (R;Y ) ∩ Lp(R;DB(1− 1/p, p)),

and so after restriction to y ∈ R+ we obtain necessity of the third condition.
Last but not least, by the mixed derivative theorem, Proposition 2.4, we have

u ∈ Hs
p(R+;H2−2s

p (R+;Y )),

for each s ∈ [0, 1]. This space embeds into BUC(R2
+;Y ) if 1/p < s and

1/p < 2 − 2s, i.e. if 1/p < s < 1 − 1/2p. This shows that the compatibility
condition is necessary for p > 3/2. Taking the trace of φ at t = 0, Proposition 2.5
yields φ(0) ∈ DB(1 − 3/2p, p), the last assertion of Theorem 4.1.

Obviously the solution is unique, since −A generates an analytic C0-semigroup
in Lp(R+;Y ), as was observed before.

Conversely, let the data f , φ, ψ be given such that the compatibilty condition
holds in case p > 3/2. Then with φ0 = φ(0) we write the solution in the following
way.

u = e−At ∗f +e−At[ψ−e−B1/2y/
√

2φ0]+e−Fy[φ−e−Bt/2φ0]+e−Bt/2e−B1/2y/
√

2φ0.
(4.3)
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Here A is defined as above in Lp(R+;Y ) and F as above in Lp(R+;Y ) where now
D(G) = 0H

1
p(R+;Y )∩H2

p (R+;Y ). This formula is written for the case p > 3/2; for
p < 3/2 simply set φ(0) = 0. Observe that the last term v satisfies ∂tv−∂2

yv+Bv =

0 and has traces e−B1/2y/
√

2φ(0) at t = 0 and e−Bt/2φ(0) at y = 0. According to
Theorems 3.1 and 3.3 each term in (4.3) belongs to the space Z, which completes
the proof.

There is an analogous result for the problem

∂tu− ∂2
yu+ Bu = f, t, y > 0

− ∂yu(t, 0) +Du(t, 0) = φ(t), t > 0,
u(0, y) = ψ(y), y > 0.

(4.4)

It reads as follows.

Theorem 4.2. Suppose Y is a Banach space of class HT , p ∈ (1,∞), p != 3, let
B ∈ BIP (Y ) be invertible with power-angle θB < π/2, D pseudo-sectorial in Y ,
D ∈ BIP (R(D)) with θD < 3π/4, and suppose B and D commute in the resolvent
sense. Let DB denote the Banach space D(B) equipped with the graph norm of B.
Then the problem (4.4) has exactly one solution

u ∈ Z := H1
p (R+;Lp(R+;Y )) ∩ Lp(R+;H2

p (R+;Y )) ∩ Lp(R+;Lp(R+;DB))

with

Du(·, 0) ∈W 1/2−1/2p
p (R+;Y ) ∩ Lp(R+;DB(1/2− 1/2p, p)),

if and only if the data f , φ, ψ satisfy the following conditions.

1. f ∈ X := Lp(R+;Lp(R+;Y ));

2. φ ∈W 1/2−1/2p
p (R+;Y ) ∩ Lp(R+;DB(1/2− 1/2p, p));

3. ψ ∈ W 2−2/p
p (R+;Y ) ∩ Lp(R+;DB(1 − 1/p, p));

4. −∂yψ(0) +Dψ(0) = φ(0) ∈ Y in case p > 3.

If this is the case then φ(0) ∈ DB(1/2−3/2p, p) and ψ(0) ∈ D(D)∩DB(1−3/2p, p)
for p > 3/2, Dψ(0) ∈ DB(1/2− 3/2p, p) for p > 3.

Proof. Splitting again the space Y if necessary we may assumeN (D) = 0. Suppose
that u is a solution with the stated properties. Extend u in t to R by symmetry,
i.e. u(t) = u(−t) for t ≤ 0. Then

u ∈ H1
p (R;Lp(R+;Y )) ∩ Lp(R;H2

p (R+;Y )) ∩ Lp(R;Lp(R+;DB)).

Define A in X := Lp(R;Y ) by means of

Av = ∂tv + Bv, D(A) = H1
p (R;Y ) ∩ Lp(R;DB),
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and let F = A1/2. Then (4.4) is equivalent to (3.2). Hence employing Theorem 3.3
we obtain ∂tu + Bu ∈ Lp(R;Lp(R;Y )) as well as ∂yu|y=0 ∈ DF (1 − 1/p, p). Re-
stricting to t > 0 this yields 1. and 2., since by the results of Section 3 we have

DF (1− 1/p, p) = W 1/2−1/2p
p (R;Y ) ∩ Lp(R;DB(1/2− 1/2p, p)).

Similarly extend u w.r.t. y in the same regularity class, and consider A = −∂2
y +B

in X = Lp(R;Y ). By Theorem 2.1, A is sectorial, admits bounded imaginary
powers with power angle θA < π/2, in particular A generates a bounded analytic
C0-semigroup in X . Then appply Theorem 3.1 to obtain ψ ∈ DA(1 − 1/p, p).
Corollary 2.2 and Proposition 2.3 yield

DA(1 − 1/p, p) = W 2−2/p
p (R;Y ) ∩ Lp(R;DB(1− 1/p, p)),

hence we obtain 3. by restriction of y to R+.
The compatibility condition follows from the embedding

W 1/2−1/2p
p (J ;Y ) ∩ Lp(J ;DB(1/2− 1/2p, p)) ↪→ C(J ;DB(1/2− 3/2p, p)),

which is valid for p > 3, by Proposition 2.5.
Conversely, if the data f , φ, ψ are given, then as in the proof of Theorem 3.4,

the solution can be written in the form

u = e−Atψ1 + u1 + e−Fy(F +D)−1φ1+

+
1
2
F−1

∫ ∞

0

[e−F |y−s| + (F −D)(F +D)−1e−F (y+s)]f(s) ds,
(4.5)

where D denotes the canonical extension of D to Lp(R+;Y ). Here F = (∂t+B)1/2

in Lp(R+;Y ), D(F ) = 0H
1/2
p (R+;Y ) ∩ Lp(R+;D(B1/2)), by Theorem 2.1 and

Corollary 2.2 is subject to the assumptions of Theorem 3.4. The function u1 is
defined as

u1(t, y) = e−Bt/2e−B1/2y/
√

2ψ0, ψ0 := ψ|y=0,

and ψ1 by

ψ1 = ψ − e−B1/2y/
√

2ψ0.

Further, A = −∂2
y + B in Lp(R+;Y ) with domain

D(A) = H2
p (R+;Y ) ∩ 0H

1
p(R+;Y ) ∩ Lp(R+;D(B)).

Finally, the function φ1 is given by

φ1 = φ− (D + B1/2/
√

2)e−Bt/2ψ0 + ∂ye−Atψ1|y=0.

Note that the traces of ψ1 and of φ1 at t = 0 are zero, by construction. It is now easy
to check by means of Theorems 3.1 and 3.4 that each term in this decomposition
of u belongs to Z; cp. Theorem 4.1.
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The last result we want to discuss here is for the problem

∂tu− ∂2
yu+ Bu = f, t, y > 0

∂tu|y=0 − ∂yu|y=0 +Du|y=0 = φ, t > 0,
u(0, y) = ψ(y), y ≥ 0.

(4.6)

It reads as follows.

Theorem 4.3. Suppose Y is a Banach space of class HT , p ∈ (1,∞), p != 3,
let B ∈ BIP (Y ) be invertible with power-angle θB < π/2, D pseudo-sectorial,
D ∈ BIP (R(D)) with θD < π/2, and suppose B and D commute in the resolvent
sense. Let DB denote the Banach space D(B) equipped with the graph norm of B,
and let Yα = DB(α, p), α = 1/2− 1/2p.

Then the problem (4.6) has exactly one solution

u ∈ Z := H1
p (R+;Lp(R+;Y )) ∩ Lp(R+;H2

p (R+;Y )) ∩ Lp(R+;Lp(R+;DB))

with
Du|y=0 ∈ W 1/2−1/2p

p (R+;Y ) ∩ Lp(R+;DB(1/2− 1/2p, p)),

and
u|y=0 ∈W 3/2−1/2p

p (R+;Y ) ∩H1
p (R+;DB(1/2− 1/2p, p)),

if and only if the data f , φ, ψ satisfy the following conditions.

1. f ∈ X := Lp(R+;Lp(R+;Y ));

2. φ ∈W 1/2−1/2p
p (R+;Y ) ∩ Lp(R+;DB(1/2− 1/2p, p));

3. ψ ∈ W 2−2/p
p (R+;Y ) ∩ Lp(R+;DB(1 − 1/p, p)),

4. ψ0 := ψ(0) ∈ DB(1− 1/p, p) and ψ0 ∈ (Yα, D(D|Yα))1−1/p,p;

5. Dψ0 ∈ DB(1/2−3/2p, p) and ψ1 := φ(0)+∂yψ(0)−Dψ0 ∈ DD(1/2−3/2p, p)
in case p > 3.

Proof. Suppose u ∈ Z is a solution of (4.6). Then by Theorem 4.2 we have 1. and
3. as well as

∂yu|y=0 ∈ V := W 1/2−1/2p
p (R+;Y ) ∩ Lp(R+;DB(1/2− 1/2p, p)).

The additional properties Du|y=0 ∈ V and ∂tu|y=0 ∈ V yield 2. Since the trace of
u at y = 0 satisfies

u|y=0 ∈ H1
p (R+;DB(1/2− 1/2p, p)) ∩ Lp(R+;DB(1− 1/2p, p)),

we obtain 4. and 5. by taking the traces of u|y=0, ∂tu and Du at t = 0, according
to Proposition 2.5.

Conversely, let the data f , φ, and ψ with properties 1., 2., 3., 4., and 5. be
given. As before we let F denote the operator F = (∂t +B)1/2 in Lp(R+;Y ). Then

D(F ) = 0H
1/2
p (R+;Y ) ∩ Lp(R+;D(B1/2)),
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and

DF (1− 1/p, p) = 0W
1/2−1/2p
p (R+;Y ) ∩ Lp(R+;DB(1/2− 1/2p, p)).

Suppose

w := u|y=0 ∈ W 1−1/2p
p (R+;Y ) ∩ Lp(R+;DB(1− 1/2p, p))

is already known. Then by Theorem 4.1 we obtain a unique solution u of (4.1),
with φ replaced by w, which belongs to Z. Theorem 4.2 then yields ∂yu|y=0 ∈ V .
Denoting the canonical extension of D to Lp(R+;Y ) by D, we may write w = v+z
where v has traces zero and z solves the problem

ż + (D +B1/2)z = e−Bt(ψ1 + (D +B1/2)ψ0), z(0) = ψ0.

Then u is of the form u = u1 + e−Fyv, where u1 is determined by the data. This
then yields

φ+ ∂yu|y=0 = φ+ ∂yu1|y=0 − Fv = φ1 − Fv.
Inserting this identity into the dynamic boundary condition we obtain

∂tv + Fv +Dv = φ1 − [∂t +D]z

= φ1 +B1/2z − e−Bt(ψ1 + (D +B1/2)ψ0 =: φ2,

which means that we have reduced the problem to the integro-differential equation

∂tv + Fv +Dv = φ2, t > 0, v(0) = 0. (4.7)

Here the function φ2 is determined by the data of the problem and has zero trace,
by construction.

Defining G = ∂t in Lp(R+;Y ) with domain D(G) = 0H
1
p(R+;Y ), and applying

Theorem 2.1 twice we see that the operator G + F +D is invertible in DF (α, p),
for each α. Therefore (4.7) admits a unique solution

v ∈ 0W
3/2−1/2p
p (R+;Y ) ∩ 0H

1
p(R+;DB(1/2− 1/2p, p))∩Lp(R+;DB(1− 1/2p, p)),

and Dv ∈ 0W
1/2−1/2p
p (R+;Y ) ∩ Lp(R+;DB(1/2 − 1/2p, p)), once we know

φ2 ∈ DF (1− 1/p, p).
Now, φ ∈ V and, according to Proposition 2.5, by 2. and 3.

ψ2 := ψ1 + (D +B1/2)ψ0 = φ|t=0 + ∂yψ|y=0 + B1/2ψ0 ∈ DB(1/2− 3/2p, p),

hence, by Proposition 2.6, e−Btψ2 ∈ V . Thus we obtain φ2 ∈ DF (1− 1/p, p), pro-
vided z ∈W 1−1/2p

p (R+;Y )∩Lp(R+;DB(1− 1/2p, p)). Therefore we have reduced
to showing that z enjoys the regularity claimed for w = u|y=0.

To prove this regularity of z, we employ once more Propositions 2.6, but also
Proposition 3.2. Using Proposition 2.6, by 4. and 5. we have ψ0 ∈ DD+B1/2(1 −
1/p, p), and De−Btψ2 ∈ V . Therefore Proposition 3.2 yields

z ∈ 0W
3/2−1/2p
p (R+;Y )∩ 0H

1
p(R+;DB(1/2− 1/2p, p))∩Lp(R+;DB(1− 1/2p, p)),
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as well as Dz ∈W 1/2−1/2p
p (R+;Y ) ∩ Lp(R+;DB(1/2− 1/2p, p)).

Since w is unique, the solution u ∈ Z of problem (4.6) is also unique, by
Theorem 4.1.
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