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Abstract. The article presents basic numerical analysis of equations
in the phase-field model which is performed using a FDM semi-discrete
scheme. The compactness technique allows to prove convergence of the
scheme. Simultaneously, existence and uniqueness of weak solution to
the original system is shown. Additionally, the asymptotical behaviour
of the solution with respect to the small parameter £ is studied. Both
temperature and phase fields converge in certain sense if £ — 0. The
phase field gives rise to a step-wise function indicating the presence of
different phases.
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1 Introduction

The paper contains several remarks concerning basic analysis of the standard
form of phase-field model. The system of equations in question reads as follows:

ou o Op
afz—ap =&V + folp) — Bué
8t - p Op )

with initial conditions
ult=0=1uo , Plt=0=po ,
and with boundary conditions of Dirichlet type
uloo=ue, ploo=pao ,

where L, «, (8, £ are positive constants, {2 is a bounded domain in R™ and fj
derivative of a quartic potential. For the sake of simplicity, we will consider rect-
angular form of £2 in 2D, fo(p) = ap(1 —p)(p — 3) with a > 0 and homogeneous
boundary conditions.

This is the final form of the paper.
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Such a system of equations has been studied by many authors throughout
last decade (see, e.g. [5], [5], [1], [8], [16], [13], [10]). In the physical context,
the system (1) is treated as a regularization of the modified Stefan problem
describing microstructure formation in solidification of a pure substance if £ — 0,

see [7], [2]:

ou .
i Vu in 2, and (2, , (2)
ulpo=uo (3)
U lt—o=1uo (4)
o 2 = —Lr (5)
\/7ﬂu— —Kk+avr (6)
|t 0= -Qso ’ (7)

where (2, {2; are solid and liquid phases, respectively, L is latent heat per unit
volume, melting point is 0, v temperature field. Discontinuity of heat flux on
I'(t) is described by the Stefan condition (5), the formula (6) is the Gibbs-
Thompson relation on I'(t). The parameter « is the coefficient of attachment
kinetics. Following [2], the relation of (1) and (2)—(7) is studied using asymp-
totical analysis. The article presents the following results: convergence of the
semi-discrete scheme, existence and uniqueness of the original system of equa-
tions, and convergence towards the sharp-interface state.

2 Interpolation theory for grid functions

The analysis of the system (1) concerning the existence and uniqueness of the
weak solution is performed using a semi-discrete scheme based on finite differ-
ences. The following notations are introduced (see [15]):

Ly Ly

h=(h,h2), 1= ha = 17, x5 = (235, 23], wiy = u(xiy),  (8)
wh:{[ihl,jhg]|i:1,...,N1—1;jzl,...,Ng—l} 5 (9)
@h:{[ihl,jhg]|i:0,...,N1;jZO,...,NQ} , (10)
Th = Wh —Wh (11)
Uj5 — Ui—1,5 WUi4-1,5 — U4y
o i = RPN o = ———— 12
u 1,27 hl u 1,%] hl ( )
Uiy — Ujj—1 Ui, j4+1 — Uiy
Foij = — 7 waij = 13
u 2,7 h2 2 2,%7 h2 ( )
1

Usari) = 33 (Wi, — 2uij + wim1,j) (14)
1
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and

vhu = [uilvu:fz]v vhu = [uajl ’ uwg]a Ahu = u:fla:l + uigwg ’ (15)

IfHy ={f]|f:@n — R} is aset of grid functions, the following notations will
be used (f,g € Hp) :

Ni—1,Nz—1 I
1 llpn = ( > h1h2|fij|p> for p>1, (16)
ij=1
Ni—1,Na—1
(f,9), = Z hihafijoi5  IfIn=(F D s (17)
ij=1
Ni,No—1
(Fhg' )= D mhafiyey o ISP =(1 (18)
i=1,j=1
Ni1—1,N2
("1 = D mbhaflgl o 1P =20 (19)
i=1,j=1
(f.gl = (frg'] +(f29° [P =(£.1] . (20)
where f = [f!, f?] and g = [¢', ¢?].
Referring to [2], we recall the following formulas

— Green formulas
No—1
(fa gil$1)h = _(filvgflJ + Z (fg”fl |N1,j _fngl |0,j)h25 (21)
j=1
and

Ni—1

(f7 gi2$2)h = _(fi2vgf2-| + Z (fngQ |i7N2 =[Gz, |i70)h’17 (22)

i=1

In a natural way, we define the space

bp(wn) = {Hn |- llpn} - (23)
— Poincaré inequality. Let u € I2(wp,) and u |, = 0. Then
lully, < CED] Nz, )P + llus 1 ] (24)

We continue by introducing an extension of grid functions, so that they are
defined almost everywhere on 2. Such extensions are studied by the usual tech-
nique of L, and H* spaces. The approach of [11] is adopted for the equations
in question. The limiting process requires a refinement of the FDM grid @y, if
h — 0. For this purpose, a proper metric should be chosen. If we intent to use
the compactness technique, a mapping converting a grid function f : o, — R
into a function f : {2 — R is needed. Then, the norm of L, spaces will serve as
a metric for convergence of the numerical scheme.
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Definition 1. Be @, an uniform rectangular grid imposed on a domain £2 C R2.
Let h = [hq, ho] is the mesh size. Then, the dual grid is a set

w;:{&jcfﬂﬂijz

h h h h ~
(xll - 717%1_’_71) X (m?—%,m?—i—%) N2 for [z}, 23] ewh}.

The dual simplicial grid is a set

o= (25)
with
(DZQ = {E;‘J cn | Efj = [$¢7j,$¢_17j,$¢7j_1],{ N 2 for [xll,xf] S @h} ,
@;“LD — {EZ C 9] | EZ = [xifl,jflaxifl,jaxi,jfl]n n 2 for [x%,x?] S (Dh} y

where [ ],; denotes the convex hull.

Remark 2. Consequently, UEe@; Y = (2 - the system &} covers the domain 2.

Each (rectangular) set X' € &} has the point [z}, x?] in its center. Similarly, the

system @;* also covers 2.
Definition 3. Let Hj; be a set of grid functions on @j,. Define the following
mappings:
— Qp : Hy, — C(£2) such that for each u € Hy,
(Qnu)(xt,2%) = wi—1 -1 + Vauni-1-1 - [x' — x%_17j_17$2 - x?—l,j—l] ;

if [z1,2%] € Xr, X5 € wps

(Qnu)(z', 2%) = uij + Vi - [2' — xllj, z? — xfj]

)

if [z, 2% € I, TF € @y
— 81, Hp — L1(£2) such that for each u € Hy,

(Spu)(zt, 2?) = Uij

if [331,33‘27] S Eij, Eij S L:J;;; _
— Pr : C(§2) — Hp, such that for each u € C(§2)

(Pru)ij = u(xij)
if Xij € Wh-

Remark 4. The operator Py, is linear and continuous from C(£2) to Hj,, and can
be extended to H!(§2) via density argument. Qju is a continuous piecewise linear
function, V(Qpu) exists a.e. in 2. We proceed by determining basic properties
of the above defined maps as proven in [2]:
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1. If u,v |4, = 0 the scalar product coincides with the scalar product in l>(wp)

/ShuShvdx: (u,v)p . (26)
2

2. Let wy, is a grid on the domain {2 with the mesh h, let u,v € Hy, is such that
U, v |y, = 0. Then

(V(Qru), V(Qnv)) = (Vhu, Viv] . (27)
3. Let wy, is a grid on the domain {2 with the mesh h, let v € Hj. Then
QnullLa(o) < IShullLy0) - (28)

4. Let wy, is a grid on the domain {2 with the mesh h, let u € Hy, u |4, = 0.
Then

[h|”

/ |Qnu — Spuldx < ——||Vhul* (29)
o 6
ifuly,=0.
5. Let p € C%(2), v € (0,1). Then,
Sn(Prp) = p inLg(2), ifh—0 | (30)
for s > 1.
6. Let u € H}(£2) N H?(£2). Then
On(Pru) — u (31)
in H(£2), if h — 0.
7. Let p € C?(2) and p |s= 0. Then
V(Qn(Prp)) — Vp (32)

in Ly(£2), if h — 0.

3 Main result

In this section, we give a proof of existence and uniqueness of the solution to
(1) regardless on values of coefficients. Compared to [5], we get a more general
result. Similar procedure has been presented in [3].

Definition 5. Consider a bounded domain {2 C R?, T > 0. The classical solu-
tion of the system of phase-field equations is a couple of functions

[u,p] : (0,T) x 2 —R? |
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satisfying the equations

ou 2, dp .
a_v +L8 in (0,7)x {2
U|8Q:O 9 (07T) )

Ulg—o =ug in £2
0 .
0T = VPt folp) ~ feu in (0.T)x 2,

p|8Q:O ) tE(O,T) )
pli=o=po in 2

Remark 6. The form of the phase-field equations is referred to [5]. For the sake
of simplicity, we consider a 2-D rectangular domain and homogeneous boundary
condition. Obviously, the extension to higher dimensions, and to other boundary
conditions is possible. Let [u, p] is a classical solution such that u,p € C*((0,T) x
2) and let v, q € D(£2). Multiplying the first one of equations (1) by v and the
second one by ¢ (scalar product in Ly(£2)), and using the Green formula, we get

d :
E( v) + (Vu, Vo) = L ( v) ae.in (0,7) ,
o) =uw (34)
08 (0, 4) + €V, V4) = (fo(p),4) — () aein (O0T)
)

p(0

This leads to the next definition:

Po

Definition 7. Weak solution of the boundary-value problem for the phase-field
equations is a couple of functions [u,p] from (0,7) to [H}(£2)]? such that it
satisfies (34) for each q,v € H{(£2).

The term fo(p) requires that p € L4(£2) for almost all t € (0,T). As 2 C R?,
it suffices to take p € H{(£2) for almost all ¢ € (0,7) due to the continuous
imbedding into L,({2) for each ¢ € (1, +00). If

[, p] € [Loo (0, T3 Hp ()7,

[u, p] is continuous mapping from (0,T) to H~1(£2), as shown in [11]).

Next statement gives an information about the existence and uniqueness
of the solution to (34); the proof by its virtue contains the investigation of
convergence of a semi-discrete scheme based on method of lines.

Theorem 8. Consider the problem (34) in a rectangular domain 2 = (0, L1) x
(0, Ly), where
uo, po € H?(£2) N Hy(£2)
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Then, there is a unique solution of the problem (34) satisfying
u,p € Lo (0, T; HY(2) NHA(2))
Opu, Orp € La(0,T; La(12))
Proof. The proof is constructive. Cover {2 by an uniform grid with the mesh

h = [h1, h2], use the previously introduced notations. Consider the semi-discrete
scheme

= Apu + Lp" on (0,T) x wp
ut |y, =0,
u =0 = Ppuo onwp
" = E A" + fo") - BEu" i (0,T) xwn
Pl =0,
p" li=0o = Prpo on @y

where dot denotes the time derivative. In the proof, the major role is played by
the a priori estimate for both equations in question. Multiply the first one of
equations (35) by ", and the second one by p”; sum over wy,.

HVW 117 =L@"d"n

Q€13+ €5 SITup I = (folo), ") — 5" 5y

Using Schwarz and Young mequalities we get

[ h||h+

SR+ 5 IV ) < SR
2dt 37
2 2 2 d h 2 hy2 ( )
<-Z Dp 4+ =
SR+ €5 SNV <~ (wn(p"), Ui+ 5}

Combining these estimates, we have

2 h 2 2 2
Lo + S+ O LT + L+

d
T RV W RS

L2 dt

Using the discrete Poincaré inequality (24)
lu™l7 < VA",

and adding non-negative terms on the right-hand side,

prnh+4Lg|ﬂu+ LIt +

4L2 dt

d

2 2 h

a1 v/ <
f 2dt” hD ]| dt( O(p )al)h =

L () ST + € LTI+ (o) D) (39)

< —_—
= 22
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Integrating over (0,t), we have

a? 1 =
{2319 + €25 19up 1% + (w0 ("), i } (1) <
a 2 1 _ 2 2L2
{5 I9a P + € 519" + (wa). D }0) exp{ 250
which implies ~ -
Viu", Vip" € Lo (0, T3 12 (wn))
P" € Loo(0, T3 1a(wn))

Integrating the preceding result over (0,7) again, we get
Trag o m2 o e2lie h2 h
{ T 9nu" ]2 + €198 + (wo ("), D } ()t <
0
af? o h1)2 2l hyp2
<15 —
< { S IVm I + 25V +

exp(2§;é20(Q)T)—1} L (41)

+ (wo(P"), 1) }0) o
0 h} fszz C(Q){

which implies ~ -
Vau", Vip" € Ly(0,T; la(wn))

p" € Ly(0, T; Lu(wp))

Extending these results into the continuum of 2, we see that VQp,(Pnpo) and
VOn(Prug) are bounded in Ly (£2) (by (31)), and Sy, (Prpo) is bounded in Ly (£2)
(by (30)). Therefore

VOu, VOp" € Loo(0,T;Lo(2))
Shph S Loo(07T7L4(‘Q)) 3

from which,
VOuu", VOup" € La(0,T;La(12))

Spp" € Lo(0,T5L4(£2))
are bounded independently on h. Moreover, we obtain that
S, Spp” € La(0,T; La(92))
are bounded independently on h as follows from (39). We conclude that
Qnu”, Qpp" € Lo (0, T H(2))
Qnu”, Qnp” € Lo (0, T Hy(£2))
are bounded independently on h. According to (28),
Qpi, Qnp™ € Lo (0, T; Lo (2))

(
(

Passing to a subsequence, we have
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- thu n thp n =%, pin Lo (0, T H(2));

— thu ", O, p n — qu,pin Ly(0, T,H%)(Q));

- Sh, p o " fn — Qyu, Byp in Lo (0, T; HT1(12));
— Sp, un, Qp uln — Opu, Oyp in La(0, T; HL(02));
— Sp,ul Sy pt — u,p in Lo(0, T; La(£2)).

The non-linear terms in the equation (1) require stronger convergence result.
Using the lemma on the compact imbedding, we conclude that Qj, p/» converges
strongly in Lg(0,T;La(£2)). Relation (29) implies the same result for Sy, p"»

Denote their common limit as p and the weak limit of Sy, p"" in L (0, T; L2(£2))
as q1. The estimate

1 fo(Snp™ )L, 5 (02) <
1 3
= a[§||8hph||L4/3(Q) + §||(Shph)2”L4/3(Q) + ||(Shph)3HL4/3(Q)} -
1 3
- a[§||8hph||L4/3(Q) + §||Shph|‘is/3(9) + ”Shph”i‘l(n)} » (42)

justifies the existence of weak limit of fo(Sp,pn,) in L2(0,T;Ly/3(£2)) denoted
by g2 (dual space).

These limits exist as a consequence of the a priori estimate and of (29), (28).
We prove that g1 = 9;p, g2 = fo(p). First relation is implied by the uniqueness
of the limit in D’(0,T), as

T T
/ (Sn, 5" — Qn, 5™ qy(t)dt = / (S — Q. p ()t
0 0

where ¢ € D(£2), v € D(0,T). The remaining equality is proven in the following
lemma.

Lemma 9. If p denotes the weak limit of Sy, p"» in La(0,T;Ly(£2)), then
fo(Sn,p") — fo(p) weakly in L%(O,T;Lé (2))

Proof. According to the compact imbedding, we have that S, p» converges
strongly in Ly (0, T; Lo(£2)) and it can be considered to converge a.e. in this space
(see [9]). Furthermore, we observe that as S, p"» was bounded in L, (0,7;L4(£2))
(see (42), fo(Sn,p") is bounded in Lo (0, T} Li(82)). These two facts together

with the Aubin lemma [2] give the final result. O
Before proceeding in the proof, we show more about regularity of p.

Lemma 10. Under the assumptions of the theorem, the function p belongs to
H{(2) NH2(02).

Proof. Multiply the equation of phase by a function Py, q, where ¢ € D(12).

a2 (", Pr,@)n + (Vi ", Vi, Ph.a] =
= (fo(p""), Pr,a)n — BEW ™, Pr,q)r . (43)
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In terms of Ly (£2), this means that

ag®(Sp,p"", Sh, (Pn,q)) + & (V(Qn,p""), VOn, (Pn,q)) =
= (fo(Sn,2"), Sh,, (Ph,.q)) — BE(Sh, v, Sp, Proq) . (44)

According to (32), we realize that Qp, (Pn,q) "— q in H}(£2), and similarly
Sh,, (Pr,q) "= q in Ly(£2) (see (30)). We can pass to the limit in the sense of
D'(0,T) obtaining

ag®(0p,q) + E(Vp,Va) = (q2,q) — BE(u,q) (45)

Consequently, the function p is continuous from (0,7) into Lo (£2). We rewrite
the previous equality in the sense of D’({2),

ag?dp = EAp +go — Bu . (46)
Note that g2 = fo(p) and p € Loo(0,T,Ls(£2)) for any s > 1. Consequently,

f
g2 € Lo(0,T,Lo(£2)). As Oip, g2 belong to La(£2), this means that Ap € La(£2)
for each t € (0,T). Consequently, we find that p must be in the domain of A —

see [11], [2]:
p(t) € D(A) = H?(2) NH($2) for t € (0,T)

Next statement investigates the convergence of gradient.
Lemma 11. The sequence VQy,, p" converges strongly to Vp in La((0,T)x £2).

Proof. Following the technique of [12], the statement of the lemma is shown.
Multiply the equation of phase in (35) by p"» — P, p and sum over wy,.

ag® (" p" = Pr,p)n + E(Va, " Vi, 0" — Pr,p)] =
= (fo(p"),p" = Pn,p)n — BEW ™ " — Ppp)n . (47)

Rewrite this equality in terms of Lo (£2), and integrate over (0, 7).

T
0 [ (81,88, (0" = Prp))dt +
0
T
+ 52/ (V(Qn,p"), VOn, (" = Pp,p))dt =
0
T
= / (fo(Sn,p"™), Sh, (P — Pr,p))dt —
0

T
e / (W, S, (P — Pap))dt.  (48)
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As we have shown that p € L2 (0, T; H?(£2)) satisfies (45), it means that p(t) €
Co(2), t € (0,T), and consequently, Sy, (Pn,p) — p, and VQu, (Ppn,p) — Vp
in L2(0,T;La(£2)) (see (30), (31)). We add and subtract a term

T
e / (V(Q, (Ph, ), VO, (0" — Prp)dt
0

to the equality (48) knowing that it tends to 0 as
VO, (" = Pn,p) =0
weakly in Ly (0,7 La(2)), if n — oo. Then, we have

e / (Qnp"™ — Ph,p),VOh, (b — Ph.p))dt =
T
o / (Sn, 5", Sp (9 — Po,p))dt +
0
T
4 / (Fo(Sn, "), Sn, (5" — P, p))dt +
0
T
B¢ / (W, S, (p"" — Po,p))dt +

+ &2 / (Qh,, (Pr,p)), VOh, (p"" — Pp,p))dt . (49)

As all terms in the right hand side tend to 0 if n — oo, we see that V(Qy,, (p» —
Pr,p)) — 0in Ly (0, T; La(£2)), which together with (32) gives the desired result.
O

Passage to the limit. Take the system of (35) into the consideration, mul-
tiply by test functions Pp, w, Pp, q where w,q € D(£2). Integrate it over wy,.
Then, we have, in terms of Lo(£2),

(Sn, "™, Sh,, Ph,w) + (VQn,u", VQp, Ph,w) = L(Sh, 5", S, Pr,w)
a€*(Sh, ", Shy Phnq) + E2(VQh, 0",V Qp, Phoq) =
= (fo(Sh,0""), Sh, Ph,a) — BE(Sh, u"" Sh, Pr,a) - (50)
Knowing that

1. S, ph, Sp, i converge weakly in L (0, T;La(£2)) to Oip, Oyu;
2. VQu, phn, VQy,, uln converge strongly in La(0,T; La(£2)) to Vp, Vu;
3. Sh,, Ph, po, Sh, Pn,uo converges strongly to pg, ug in H}(£2),

multiply (50) by a scalar function ¥(t) € C(0,T), for which ¢(T) = 0. We
integrate by parts. Taking into account all previous results, the fact that

Sh, P (0) = S, Pr,pos  Sn,u"(0) = S, Ph, o
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and the Lebesgue theorem, we are able to pass to the limit.
T ) T
(o~ Lo, w)(0) — [ (u— Lpewpidae + [ 0V V) <0 .
0 0

T . T
a0, 0) ~ [ alp.aybii+ [l (Vp. Vo) -
0 0
If » € D(0,T), we have
d
d (52)
062%(19, q) + & (Vp,Vq) = (fo(p). q) — BE(u,q)

It remains to show that the weak solution satisfies the initial condition. Mul-
tiplying (51) by a scalar function v (t) € C'{(0,T), for which ¥(T) = 0, and
integrating by parts, we obtain

T T
(u(0) — Lp(0), w)h(0) — / (u— Lp, wyidt + / P(Ve, V) =0,
0 0
T
a2 (p(0), )(0) — / a€2(p, gt +
0

T
4 /0 VIE(VD. V) — (folp).a) + FE(u At =0 . (53)

Subtracting this equation from (51), we get

)
(uo — Lpo — u(0) + Lp(0), w)(0) =0,  (po — p(0),¢)¥(0) =0

From this we see that «(0) = ug, p(0) = po in Ly(£2). To prove uniqueness, con-
sider two solutions of the problem (34), denoted as [u, p] and [v, ¢]. Subtracting
two systems of equations and denoting [w,r] = [u — v,p — ¢], multiplying the
first equation by w and the second equation by 7 via the semi-discrete scheme,
we have

2dtH w|]? + (Vw, Vw) = (+,w) in (0,T) , (54)
w(0) =0
oI + €22 L (9r. ) = (fo) - fol).#) - Be(w) i (0.T)
r(0) = (55)

Denote ¥ (p, q) = —%a—i— %a(p—i—q) —a(p?*+pg+q?). The existence proof guarantees
that there is a constant C' such that

||W(p, q)||L4(Q) < é ;
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(as implied by the continuous imbedding H}(£2) Cs Ly(£2) for ¢ €< 0,+00)).

Therefore, we have

(@ (0, ), )] < 1120, @)l 17 La) 1Fl]La () < Cllrlli, o) 1 Lo

Using the Poincaré and Schwarz inequalities, we get
Ld, @),
e < 2\
ol < 2
22 4 21 d 2 A .
Q€777 + &5 IVrll® < Clirlley @ 17l )+
ﬁ

+ a£2|\7“||2 IIwH2

or, considering the fact, that there is a constant Cy > 0 such that

7,2y < Cal[ V|,

we obtain
CU2), 12
< —7
2l < S
. 1 o C
€Il + €397 < T + Sy CEIvP
5
+ aé 2[I71* + IIWH2
Combining these inequalities, we have
1d C ﬁ
2 2 4 g2 2 2, 2
= Vr —CiIV
e g vl + €5 ZIrP < SOIVHE + Ll

Such inequality implies, together with the 1n1t1al conditions, that

r(t) =w(t) =0 Vte (0,T) in Lo(R2)

4 Convergence towards the sharp interface model

)

(56)

(57)

This paragraph deals with the relation of the phase-field model to a sharp-
interface formulation of the Stefan problem. It uses estimates derived above to
show certain compactness statements leading to the existence of a step function
defining the position of solid domain in time. Consider the weak formulation of

the standard phase-field model.

d d )
dt( v) + (Vu, Vv) = Ld—( v) in (0,7) |,
u(0) =up
ag? dt(p q) +&(Vp,Va) = (fo(p),a) — B&(u,q) in (0,7)
)

p(0

Po

(58)
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Main purpose of next investigation will be the dependence on £. Consider the
solution of the semidiscrete scheme (35). We multiply the first equation by u”
and the second one by p".

1d
2 dtn WA IV = LG (60)
d
ag[lp"I7 + € 2dt||vhp I = = (wo@"), )n = BE", 5" - (61)

Combining previous equalities, we get

ag?||p" ||h+€22dt||vhp I? =

d
= 2 o), O~ Z LR+ 19} L (62)
or
d 1d
a5 + €75 ST + 5 (oo, Ui+ 22 S 7 = 0.

We integrate over (0,t), which gives

1, = 1
{22197 + (o), D+ 22 23 } 1) <
Bl

< {219 + o), D+ 512 H0) - (6

Passing to the limit, if h — 0, which is justified by the proof of the Theorem 8§,
we get

22 et + Belpel) < 3 2 uc(O)I> + Belp(0) 1€ (0.7) . (64
where we denoted (p” A0, D),

Belpel(t) = [ [651Vneli + gunlpe)ldx

Additionally, there is an estimate for the time derivative, if we integrate (62)
over (0,7T) and pass to the limit for h — 0.

g g
aé“/o 10upel|*dt + Eelpe] (T) — Ee[pe](0) + o7 ([u(T)[I* = [u(0)]]*) = 0 (65)

Consequently, there is a constant C; such that

1 T
3¢ [ 10wl + Epd(T) < Eelpel(0)+ 1 (66)
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These estimates allow to use the method proposed by [1] and used in [2]. Define
the following monotone function

G(s) = /0 1= (1—2r)2)dr . (67)

We prove next lemma

Lemma 12. Be p¢ the solution of (34) where E¢[p¢](0) < My independently on
&. Then there are constants M > 0 and My > 0 such that

sup{ [ IVGlpe)ldo | 1€ (0.7)) < M (68)

and, for 0 < t1 < tg,

to
/ / 10,G(pe)|dadt < My (ts — )% | (69)
t1 2

Proof. We have shown that
Eelpe](t) < Mo+ Cy1

on (0,T). We write

Belpl(t) = [ [€5190l% + guolplde >

> [ VaIVkelfutve)ds = V2 [ [WGGe)leds . (70)

which shows (68) by setting M = %(Mo + (). Furthermore, if

to to
/ dr / 02(0 G pe)| = / dt / dzlpe|| G (pe)| <
t1 2 t1 2

to % to %
s( [af dx|pg|2) (/ it [ dx|G’<pg>|2) <
t1 0 t1 2?2

< (%(@ LMk — t)E

[SIE
—
3
~
=

then (69) is shown, if setting My = \/2(Cy + Mo). 0
The previous statement leads to the existence of a step function as expected.

Theorem 13. Let ug, pe is the solution of the problem (34) with the initial data
satisfying Ee[pe](0) < Mo and ug, pe € H2(£2) NHY(£2), and let

/Q 1Pe(0,%) — vo()ldx — 0, [fue(0)laey < Co



32 Michal Benes

as & — 0, for a function vy € L1(§2). Then for any sequence tending to O there
s a subsequence &,/ such that

ghmopfnl (t7 X) = U(t7 X)a Ugr, (t7 X) - U’(ta X) n LQ((Oa T) X “Q)v

n

and u, v are defined a.e. in (0,T) x 2. The function v reaches values 0 and 1,
and satisfies

[u(t1,x) — v(ta,x)|dz < Clta — t1]7
(]

where C' > 0 is a constant, and
sup / |[Volgdx < C;
te(0,T) J 2

in the sense of BV ((2), where C1 > 0 is a constant. The initial condition is

lirr(l) v(t,x) =vp(x)

t—

a.e.

Proof. The proof follows steps presented in [4]. We find that

4
G(s) = 2s* — 353 for s€0,1) ,

4 4
G(s) = 533 — 257 + 3 for se(1,400)

Consequently, a direct computation justifies that

G < 5+ 1 - (1 - 267

Then, we are able to obtain the upper bounds for the function G and its spa-
tiotemporal gradient. According to (64), we have

T
/ / wo(p)dxdt < Ma& . (72)
0o Jo

Putting (72), (68) and (69) together, we conclude, that G(p¢) is in BV ((0,T") x £2)
regardless the value £ > 0. Following [0],

BV((0,T) x 2) CCs L1((0,T) x £2)

Consequently, there is a sequence G(pe, ) converging to an element G* in the
space L1((0,T) x £2). According to [9], there is a further subsequence G(pg,,)
converging to G* almost everywhere in (0,7") x {2.

The function G :< 0, +00) —< 0, 4+00) is monotone, which implies existence
of the unique function v such that

G*=G(v) |
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and

pe,, — v a.e. in (0,T) x 2
According to (72) and by the Fatou lemma, we obtain

/0 ! /Q wo(v)dxdt =0 (73)

from which follows that the function p takes only the values 0, 1.
Now, we prove that G is Holder-continuous in the time variable. The function
pe,, satisfies

Glpe,, (t1,%)) — Glpe,, (t2,%))] < / " |0G e, (£, x))dE

for 0 < ¢ <ty <T. Integrating over {2,
[ 16, (1,%) = Gl (12 3)dx < Mo = taf* . (74
according to the Lemma 12. Passing to the limit for n’ — oo, we find
/Q |G*(t1,%x) — G*(t2,x)|dx < Mylt; — t2|%5 |

for almost all t1,t2 € (0,7). The statement of theorem is obtained by the fact
that
(G (t1,%) — G (t2,%)| = (G(1) = G(O)[o(tr,%) — v{ta, )|

The a.e. argument makes from the function v a continuous map from (0,7 to
L1 (£2). Taking t; = 0 in (74) and according to the assumption

/ Ipe(0,x) — vo(x)|dx — 0
17

as & — 0, (similarly for G-valued function) we have
/ Go(x)) — G(ulta, x))ldx < MytdS
Q

from which M
vo(x) — v(ta,x dx < ——1 495
_Q| 0( ) (2 )| = G(l)—G(O) 2
This concludes the proof. It remains to show the boundedness of the total varia-
tion of v ([6]). The lower semicontinuity of the total variation in L;-space together

with the Lemma 12 yields

ess sup / IVG*ldx < M,
0<t<T J2x{t}
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and by the continuity of v in time, we have

My
su Vuldx < —————
o<t£’T/m{t}' = Gm-co)

It remains to show the convergence of ug. The relation (64) implies that wue is
bounded in Ly((0,77) x £2). Then, using the subsequence argument, u¢ , converges
weakly to an element u € Ly((0,7") x §2). This completes the proof. O

5 Conclusion

The purpose of the paper was to show the convergence property of the semi-
discrete scheme based on the method of lines. The compactness technique al-
lowed to prove existence and uniqueness of the original weak solution. The phase
function depending on the small parameter £ is bounded in the BV sense. Con-
sequently, it converges to a step-wise function indicating different phases. The
technique of the recovery of the sharp-interface relation can also be applied to
the presented problem. The presented approach is applicable even in case of
different modifications of the model.
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