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QUALITATIVE PROPERTIES 
OF THE SOLUTIONS 
TO THE NAVIER-STOKES EQUATIONS 
FOR COMPRESSIBLE FLUIDS 
A. VALLI 
Dipartimento di Matematica, Universita di Trento 
38050 Povo (Trento), Italy 

1 . Introduction. 

We want to present a new method for showing the existence of a statio­

nary solution to the equations which describe the motion of a viscous 

compressible barotropic fluid. 

At first it is useful to recall some known results concerning the non-

stationary case. The equations of motion are 

P [r^ +(v*V)v - f] = - V[p(p)] + JJAV + (C + y/3) Vdiv v in ]0,T[xft 
a t 

--- + d i v ( p v ) = 0 i n ] 0 , T [ x f t , 
o t 

(NS) 
v , d n = 0 on ] 0 , T [ x 3ft, 

/ p = p|ft | > 0 ( | f t |=meas ( f t ) ) , 
ft 
v | t = o = v o i n n ' 

[ p | t = o = po ' i n " ' 

3 

where ft c R is a bounded domain, with smooth boundary 8ft; v and p are 

the velocity and the density of the fluid; p is the pressure, which is 

assumed to be a known function of p; f is the (assigned) external force 

field; the constants u > 0 and r, ^ 0 are the viscosity coefficients; 

p > 0 is the mean density of the fluid, i.e. the total mass of fluid 

divided by |ft|; v and p are the initial velocity and density. 
In the last years it has been proved that: 

if v and p - p are small enough and f = 
o o 

a unique global (in time) solution (Matsumura-Nishida [1]) 

(i) if v and p - p are small enough and f = 0, then problem (NS) has 
o o 
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(ii) the preceeding result also holds for a sufficiently small f f 0; 

moreover, two small solutions are asymptotically equivalent as 

t —• +00, and consequently if f is periodic (independent of t) then 

there exists a periodic (stationary) solution (Valli [3]). 

It must be underlined that no other method is known for showing the 

existence of a stationary solution, excepting when the viscosity coef­

ficients satisfy c >>y. In this case Padula [2] proved that, if f is 

small enough, then there exists a stationary solution. Remark, however, 

that in general the shear viscosity coefficient y is larger than the 

bulk viscosity coefficient r,. Moreover, from the mathematical point of 

view it would seem only necessary to require that y is positive, with­

out assumptions on the largeness of C-

The method that we want to present here is based on a "natural" linea­

rization of the problem, followed by a fixed point argument. The visco­

sity coefficients are only required to satisfy the thermodynamic re­

strictions y > 0, r; > 0. 

2. The linear problem (L). 

Since we are searching for a solution in a neighbourhood of the equi­

librium solution p = p, v = 0, it is useful to introduce the new unknown 

a = p - p . 

The equations of motion in the stationary case thus become 

- y Av - (c+y/3) Vdiv v + p Va = (a+p) [f - *(vV)v] + 

+ -P., " p'(a + p)]Va in ft, 

(S) «̂  p div v + div(vcr) = 0 in ft, 

V|9ft = ° on ™' 
Ja = 0 

ft 

where it is assumed that p =. p* (p)> 0. 

It is easily verified that a solution of (S) exists if we find a fixed 

point of the map 
0 : (v,a) • (w,n) / 

defined by means of the solutions of the following linear problem 
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- u Aw - (l; + u/3)Vdiv w + p Vn = (a+p) [ f- (v V) v] + 

+ - P ^ P 1 (cr+p) ]Va = F in ft, 

(L) ̂  p div w + div(vn) = 0 in fi, 

w, = 0 on 3ft, 
| O ft 

/n = o 
ft 

3. A-priori estimates for the solution of (L). 

We want to obtain a-priori estimates in Sobolev spaces of sufficiently 

large order, in such a way that we can control the behaviour of the non­

linear terms which appear in F. We shall prove that a solution (w,n) of 

(L) satisfies 

(3-D l|w||3+ || n || 2 £ cjl F ||. 

for v. = 0 and || v || ^ A small enough. Here || * || is the norm in 
| d oZ J K 

the Sobolev space H (ft) , and c depends fin a continuous way on u, r, and 

A (but it is independent of v ) . 

(a) At first, from well-known results on Stokes problem we get 

(3 .2 ) || w | | 3 + || n | | 2 = c C || F II,.*. || d i v w|| 2 ) . 

Hence our aim is to estimate || div w || . 

(b) Multiplying (L) by w and (L) by (p /p)n and integrating in ft one 

has 

(3-3) ||w|| 1 + || div w ||Q S c(||F ||_1+ || v|| 3
/ 2 | | n | l 0 ) . 

The same argument can be used for estimating all the successive de­

rivatives in the interior of Q, and the tangential derivative 

D div w near the boundary 3ft, obtaining in this way (in local coor­

dinates near 3ft) 

(3-4) | | D T W | | 1 + ||DTdiv w|| 0 S c(||F || Q + || v ||3
/2|| n II.). 

(c) The estimate for the normal derivative D div w is obtained by ob-
n 

serving that on 3ft 

A w n = Vdiv w • n , 

2 
in the sense that their difference does not contain D w. 

n 



262 

Hence by taking the normal d e r i v a t i v e of (L) , multiplied by (p) 

(C + 4y/3) . and adding it to the normal component of (L) we get (in 

local coordinates near dil) 

(3.5) p D n + (C+4u/3)/p D d i v ( v n ) = F-n . 
in n 

From this equation one easily gets 

( 3 - 6 ) l l D n n | l 0
£ C ( I | F H 0

+ I' V H 1 3 / 2 | | n H ^ -

Moreover , go ing back t o (L) , one h a s 

p D n = U Aw*n + U + u / 3 ) V d i v w*n + F-n = (l~ + 4u/3)D d i v w + 

+ F-n , 

hence from (3 .6) 

(3-7) | | D n d i v w | | 0 < o ( | | F | | 0+ | | v | | 1
3

/ 2 | | n | | n ) . 

By repeating the same argument for the second order d e r i v a t i v e s one 

gets 

(3-8) ||div w ||2 < c(||F ||.+ || v |l3
/2||n || 2 ) , 

hence (3.1) holds if || v || < A small enough. 

4. Existence of the solution of (L). 

Though problem (L) is linear, and we know that the a-priori estimate 
3 2 

(3.1) holds, the existence of a solution wGH (ft), n£H (ft) is not ob­
vious. 

In fact, the usual elliptic approximation cannot work in this case. 

More precisely, if we add - e An to (L) , we must also require a 

boundary condition (say, Dirichlet or Neumann) on r\ . But the limit 

function n is free on 8ft. Hence the sequence n can only c o n v e r g e in 
2 1 G 

L (ft) (Dirichlet condition), or in H (ft) (Neumann condition), and can-
2 

not c o n v e r g e in H (ft)! 

M o r e o v e r , .if v ^ 0 (L) is not an elliptic system in the sense of Ag-

mon-Douglis-Nirenberg (if v = 0 (L) is the Stokes system). Hence the 

usual regularization procedures do not work. 

One can proceed in the following way. By adapting the method of Pa-
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dula [2] to problem (L), one defines 

(4.1) 

and (L) is transformed into 

тт = (P . ./У)П - (C/U + 1 / 3 ) d i v w 

( Ľ ) 

- Лw + VÏÏ = F / u i n fì, 

- 1 
d i v w = ( ç / u + 1 /3 ) (p n / u - тт) i n ӣ, 

W |Әfi = ° 
OП дfì , 

(L") 
p ( C / u + 1 /3) 1 p ^ / u + d i v ( v n ) = p U / u + 1 /3) 1TT i n ft, 

/n - 0 
ft 

These equations can be solved via a fixed point argument if r, >> u. 

Hence the a-priori estimates (3.1) and the continuity method give the 

result for any pair of viscosity coefficients satisfying u > 0 and 

C -= 0. 

5. Existence of a solution of (S) 

We prove at last the existence of a fixed point for the map 

$ : (v,a) • (w,n) . 

Taking 

K = {(v,a)GH3(ft)x H2(ft)| v, = 0, fo = 0, || v N + " 

•|3fi n 3 

by using (3.1) one sees that 

a II - - A } , 

w | | 3 + II n | | 2 S c j l F Ц^ S c [ ( | | a || 2 + 1) ( | | f | | 1 + 

+ | | a | | 2 ] < c ( A + 1 ) ( | | f || + A 2 ) 

C h o o s i n g A f I << 1 , o n e h а s 

II w ||3 + II П Ц 2 S A , 

2 1 

hence $ (K) C K . The set K is convex and compact in X = H (ft)x H (ft) , and 

it is easily seen that the map $ is continuous in X. The existence of a 

fixed point is now a consequence of Schauder's theorem. 
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