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THE CONVERGENCE OF A NEW METHOD 
FOR CALCULATING LOWER BOUNDS 
TO EIGENVALUES 
F. GOERISCH and J. ALBRECHT 
Institut für Mathematik, Technische Universität Clausthal 
Erzstraße 1, D 3392 Clausthal-Zeil erfeld, West Germany 

The relationship between an inclusion theorem due to N. J. Lehmann [3l 

and one recently proposed [2] is investigated here. The theorem due to 

N. J. Lehmann yields better bounds to the eigenvalues, whereas the new 

theorem is in general considerably easier to apply. It is shown that 

sequences of bounds to eigenvalues can be obtained with the use of the 

new theorem, and that these sequences converge to the bounds provided 

by Lehmann's theorem. This fact is illustrated by means of numerical 

results for the following eigenvalue problem: 

A2(j) = -AA(J> in fir (J) = |^ = 0 on 3fl, fi: = {(x,y) el
2: |x|<̂ -, |y|<|}, 

which occurs in the calculation of buckling stresses of clamped plates 

under compression. 

§1 The two inclusion theorems are first stated, in a version which 

deviates somewhat from that presented in the original papers [2], [3], 

but which is especially well suited for practical applications. The 

following assumptions and definitions are required for this purpose: 

Assumptions 

A1 D is a real vector space. M and N are symmetric bilinear forms 

on D; M(f,f) > 0 for all feD, f | 0. 

A2 There exist sequences (X.) . _, and (6. ) . _7 such that ^ I i e W ri l e ]N 

AielR, 4>i e Dr M((|>i,(t)k) = 6ik for i , k e . N , 

M(f,(f>.) = A.N(f,<J>.) for all feD, i € UN, 
00 

N(f,f) = I A. (N(f ,cb.) ) 2 for all feD. 
i=1 x x 

A3 X is a real vector space; T: D ->- X is a linear operator; b is a 

symmetric bilinear form on X. b(f,f) >̂  0 for all f eX and 

b(Tf,Tg) = M(f,g) for all f,geD. 

A4 pe3R, p > 0; nelN, v.eD for i=1,...,n. 

Definitions 

D1 Matrices AQ and A- are defined by 
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A : = (M(v. ,v. ) ) . . , , A, : = (N(v. ,v, ) ) . . , o 1 k i,k=1,...,n 1 i' k i,k=1,...,n 

D2 If A is a symmetric matrix of order n, with the property that 
2 

A -2pA,.+p A is positive definite, ^(A) denotes the i-th smallest 

eigenvalue of the eigenvalue problem (A -pA^z = u (A -2pA^p A)z. 

The two inclusion theorems, whose relationship is to be investigated, 

yield inclusion intervals for the eigenvalues of the eigenvalue problem 

M(f,4>) = AN(f,<J>) for all f € D. (1) 

The theorems are as follows: 

Theorem 1 (N. J. Lehmann [3]) 

Let u.eDbe such that M(f,u.) = N(f,v.) for all f e D, i=1,...,n; let 

the matrix A0 be defined by A9: = (M(u.,u, )) . ,_1 , and let z z 1 K l, K — I , . * . , n 
2 

A -2pA..+p A9 be positive definite. Moreover, suppose that qelSI, q <_ n, 

U (A9) < O. 
q -1 1) The interval [p-p(1-n (A9)) ,p) then contains at least q eigenvalues q z 

of the eigenvalue problem (1). 

Theorem 2 ([2] ) 

Let w. eX be such that b(Tf,w±) = N(f,v.) for all feD, i=1,...,n; let 

the matrix A0 be defined by A9:=(b(w.,w, )) . ,_1 , and let z z 1 K 1 , K — i,...,n 
2~ A -2pA..+p A9 be positive definite. Moreover, suppose that qe3N, q <_ n, 

U (A9) < O. 

The interval [p —p(1 —n (A9)) ,p) then contains at least q eigenvalues 

of the eigenvalue problem (1). 

If the assumptions of theorem 1 are satisfied, and if w. is defined by 

w. := Tu. for i=1,...,n, the assumptions of theorem 2 are also ful­

filled because of A9 = A9. Thus, theorem 1 is an immediate consequence 

of theorem 2. 

The importance of these theorems is due to the fact that they provide 

a means of calculating accurate lower bounds to the eigenvalues of 

problem (1). If the eigenvalues of (1) are arranged in a non-decreasing 

order, 

X1 1 X
2 - X3 ' 

if p is a lower bound to the eigenvalue A (p,qelN) and if, for 

example, the assumptions of theorem 2 are satisfied, then 
-1 p-p(1-u (A9) ) is a lower bound to A . For an appropriate choice of q z p 

the quantities involved, this bound to A is very accurate, even if p 

is only a comparatively rough lower bound to A 
ir Si 

1 ) 
Eigenvalues are always counted according to their multiplicity. 
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It is often difficult, or even impossible, to explicitly give the 

elements u. required in theorem 1; by means of theorem 2, in contrast, 

inclusion intervals for the eigenvalues can be determined with compar­

ative ease - provided that X, b and T have been appropriately chosen 

(compare §3). However, the results thus obtained cannot be better than 

those which would be provided by theorem 1, as is now shown: 

Lemma 1 

Let the assumptions of theorem 1 and 2 be fulfilled. 

Then p-p (1 -ji (A2 ) ) "
1 < p-p (1 -u (A.,) ) "1 . 

Proof: Since b (Tu . ,w, ) = N (u . , v, ) = M(u . ,u, ) for i,k=1,...,n, it 
I k I k l k 

follows that b (w.-Tu . ,w, -Tu, ) = b(w.,w, ) - M(u.,u, ); hence, the matrix ___ l l K K I K I K 
Ap-A? is positive semidefinite. With the use of the comparison theorem, 

one obtains u (A?) <_ |i (A~). The assertion can now be immediately 

deduced. 

§2 On the basis of theorem 2, a sequence of inclusion intervals [T ,p) 

will now be constructed in such a manner that (T ) T̂ converges, and 
m m eUN ^ 

the interval [lim T ,p) coincides with the corresponding inclusion m 
m-^oo 

interval from theorem 1. For this purpose, the following additional 

assumptions and definitions are required. 

Assumptions 

A5 w. e X for i= 1 , . . . , n and w* e X for i e IN, 
I I 

b(Tf,w.) = N(f,v.) for all feD, i=1,...,n, 

b(Tf,w*) = 0 for all f e D, ieE. 

The matrix (b(w*,w*)) . , _1 is regular for all m e IN. I K i,K—i,...,m 

A6 X := {geX: b(Tf,g) = O for all f eD}; for all g e X Q and all e e l 

with e > O there exist numbers melN, c.,...,c elR such that 1 m m m 
b(g- T c.w*,g- T c.w*) < e. 

i=1 1 ^ i=1 1 x " 

Remark^ If b(f,f) > O holds for all f eX with f f O, that is, if 

(X,b(.,.)) is a pre-Hilbert space, the assumption A6 states precisely 

that the subspace spanned by {w*: ieU} is dense in X . 

Definitions 

D3 £ 2 = = (b(w i,w k)). k = 1 n ; 

Fm '-(-IXw^w*))^. n ; k = 1 m , Gm = = (b(w*,wk))i/k=1 m , 

A0 :=A^-F G_1F' for all meU. 2,m 2 m m m 

The inclusion intervals [T ,p) can now be given: 
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Theorem 3 
2 

Let m,q€3N with q < n; let the matrix A -2pA.+p A~ be positive defi-n ^ — o 1 2 . m r 

nite, and let \i (A~ ) < O. 
q 2 ,m _1 

If T is defined by T := p —p (1 —p. (A„ )) , the interval [T , p) 
contains at least q eigenvalues of the eigenvalue problem (1). 
Proof: Let F G =(d., ) . . . - . The assertion follows imme-

m m ik i=1,...,n;k=1,... ,m 

diately from theorem 2, if the w. occurring there are defined by 

m 
i.+ T d.,w,* for i=1,...,n. 
I , \ ik k 

w_. 
k=1 

The following result concerning the convergence of the sequence 

(T ) „ is now obtained: m m € 3N 

Theorem 4 

Let the assumotions of theorem 1 be satisfied. If T is defined by 
-1 m -1 

T := p-p(1-u (A~ )) for me3N, then lim T = p-p (1 -u (A0) ) m q z,m m^oo m q z 

Proof: Let F G~1 = (dfm)). , , , for me3N. Then 
m m ik i=1,...,n;k=1 , . ..,m 

m / v 

b(Tu.-w.-Jid^'w*,w*j) = 0 (2) 

for i=1 , . . . ,n, j = 1 , . . . ,m, me3N. Let e e 3R with e > O. Since Tu.-w. eX 

for i=1,...,n, there exist numbers le3N, and c., e3R for i=1,...,n, 

k= 1 , . . . , 1 such that 

1 1 
b(Tu.-w.-^cikw* , Tu.-w.-J^c^w*) < e 

for i=1,...,n. With the use of (2), it can be shown that 

m . . m . . 

for i=1,...,n and all me3N with m ̂  1. By means of the Cauchy-Schwarz 

inequality, it follows that 

m . x m , . 
Ib.T^-Vj^'w*, Tu.-w^d^'w*)! < £ 

f o r i , j = 1 , . . . ,n and a l l me3N w i t h m >̂ 1 . Hence , 

m , x m / » 
l im b ( T u . - w - I d<m)w* , Tu -w - J d<m)w*J = O 
m+co 1 1 k=1 1 K K 3 3 k=1 3K K 

for i,j=1,...,n. From the equation 

^ - i - V J ^ - Tu3-rj1
dS,^»i.J-i n - -2,m-2 

it follows that A~ -A0 is positive semidefinite for me3N, and that 2 ,m 2 c 

lim A0 = A0. This gives lim H (A~ ) = \i {A0) , from which the asser-
z, m —. CJ z, m cf z 

m->°° m->«> ^ 
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tion follows immediately. 

Remark: The sequence (T ) _. is non-decreasing. 

§3 The practical application of the results presented is now illus­

trated with the use of an example . - The quantities D, M, N, X, T, b 

occurring in the assumptions A1 and A3 are defined in the following 
0(2) 

manner (W* (ft) denotes the Sobo lev space defined in [4]): 

D := (f € W2
(2) (ft) : f (x,y) = f (y,x) - f (-x,y) for (x,y) c ft] , 

M(f,g) := / AfAgdxdy, N(f,g) := /( | | |S + || |^)dxdy for f,g e D, 

X := {f eL2(S]): f(x,y) - f(y,x) = f(-x,y) for (x,y) eft), 

Tf := -Af for f eD, b(f,g) := /fgdxdy for f,geX, 

ft 
where fl := {(x,y)e3R2: |x|<~, ! y | < J ) . 

In this case, the e i g e n v a l u e problem (1) is the weak form of the 

e i g e n v a l u e problem 

A24) = -AAcj) in ft, (J> = |-- = 0 o n 8ft, } 
r (3) 

<J)(x,y) = c{)(y,x) = <J>(-x,y) for (x,y)eft.J 
For specifying the quantities occurring in A4 and A5, a number r e 1N is 
first chosen; p, n, v., w., w* are then defined as follows: K ' l I I 

p := 10, n := lr(r+1), 

/ . S + 1 / V t + 1 , v S + 1 , . t + 1 , V _ . -

v.(x,y) := cos (x)cos (y) + cos (y)cos (x) for i=1,...,n, 
where s,te2SI a r e d e t e r m i n e d by r > s > t , i=-ls ( s -1 ) + t , 

w. := v. f o r i = 1 , . . . , n , I I ' ' ' 

w.(x,y) := cosh (ix) cos (iy) + cosh ( iy) cos (ix) for ieH. 

The assumptions A1, A3, A4 and A5 are o b v i o u s l y fulfilled, and the 

proofs of A2 and A6 proceed in analogy with the corresponding proofs 

in [4], p. 4 72 and [1], r e s p e c t i v e l y . 

By means of the Cauchy-Schwarz inequality, it follows from the compar­

ison theorem that the e i g e n v a l u e s of the problem 

-A(J> = A<J) in ft, <J> = 0 on 9ft, 

<Mx,y) = <My,x) = (|>(-x,y) for (x,y) eft, 

are lower bounds to the corresponding e i g e n v a l u e s of (1); henoe p=10 
is a lower bound for the second e i g e n v a l u e of (1). 

The first six terms of the sequence (T ) _., calculated for q=1 with 
^ m meJSI ^ 

the use of theorem 3 are compiled in the first six rows of table 1 for 

various values of n. Since at least one e i g e n v a l u e of (1) is contained 

in each of the i n t e r v a l s [T ,p), the numbers T are lower bounds to 
m m 

the lowest e i g e n v a l u e of (1). An upper bound A to this e i g e n v a l u e , 
,vn by 
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means of the Rayleigh-Ritz method, is given in the last row of table 1, 

for the respective value of n. 

By virtue of theorem 4, the sequences (T ) _
T
 converge to the corre-2

 ^ m m e _N ^ 

sponding bounds which would result from theorem 1. In order to apply 

theorem 1, however, it would be necessary to determine the exact 

solution u. of the boundary value problem 

2
 X d u i 

A u. = -Av. in ft, u. = -- = 0 on dQ, 
l i l 9n which is not an easy task. 

n = 1 n = 1C ) n = 21 I 

т 1 5. .049 5.057 5.057 

т ? 
5. .2 50 o 5.265 8 5.265 9 

т
з 5. .283 52 5.302 42 5.302 46 

т
4 

5. .284 556 5.303 564 5.303 602 

T
S 5. .284 582 o 5.303 587 3 5.303 625 3 

T
6 

5. .284 582 21 5.303 587 37 5.303 625 40 

л 5. .333 333 34 5.303 662 26 5.303 626 22 

Tabl e l Bounds to the lowest eigenvalue of (3) 

The method based on theorem 3 has also been applied with great success 

to many other eigenvalue problems involving partial differential 

equations. 

The authors gratefully acknowledge the support of this work by the 

Deutsche Forschungsgemeinschaft. 
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