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NONLINEAR DYNAMICS SYSTEMS -
BIFURCATIONS, CONTINUATION 
METHODS, PERIODIC SOLUTIONS 
M. KUBICEK and M. HOLODNIOK 
Department of Mathematics and Computer Centre, Prague Institute of Chemical 
Technology 
166 28 Praha 6, Czechoslovakia 

1. INTRODUCTION 

Let us consider a system of autonomous nonlinear ordinary differential equations 

(nonlinear dynamic system) 

y'= f(y,p) , (i) 

where '= d/dt , y e Rn , p e Rm are parameters, f : Rn x Rm — Rn , f e C1 . 

Steady state solutions of (1) are defined by 

f(y,p) = o . (2) 

A set S(f) ^ Rn x Rm , S(f) : (y,p) , f(y,p) = 0 , is called "solution diagram" [l9], 

sometimes also "bifurcation diagram" [lO]. Solution diagram is mostly considered for 

one parameter, i.e. p, only, while values of remaining parameters p?,..., p are fixed. 

Continuation algorithms have been developed in the last ten years for an automatic 

computation of such solution diagrams [e.g.,14, 24, 9, 10, ll] . Stability of steady 

state solutions can be determined on the basis of eigenvalues A of the Jacobian matrix 

J =[3f/^y] . If an eigenvalue A crosses the imaginary axis in complex plane (by va­

rying some parameter, e.g., p, ) a bifurcation occurs in generic cases. Several review 

papers surveying numerical methods for location of bifurcation points appeared recently 

[22, 20, 19, 9]. Four iterative algorithms for the evaluation of Hopf bifurcation points 

have been published in [5] . 

Main purpose of this paper is to discuss periodic behaviour observed in two typical 

mathematical models of chemical and engineering systems, review computational methods 

for continuation and bifurcation of periodic solutions. 

The first model is well known Lorenz model [21] of the flow in the layer of liquid 

heated from below (the Rayleigh - Benard problem). The system 

y[ = -6y x + 6y2 , y2 = - yxy3 + ryx - y2 , y3 = yxy2 - by3 (3) 

is obtained by a reduction of the system of Navier Stokes equations and the equation 

describing heat transfer. The dimensionless parameters p = (r,<5,b) correspond to : 

6 - Prandtl number, r - reduced Rayleigh number, b is related to a wave-number of 

the convective structure . A detailed description of behaviour of the model can be 

found in the Sparrow's book [27] , a structure of periodic solutions was discussed 

in [7]. 
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The second model describes behaviour of two well mixed reaction cells with linear 

diffusion coupling and the "'Brusselator" reaction kinetic scheme. The model is used 

as a standard model system for the discussion of dissipative structures in nonlinear 

chemical systems [23] . It can be written in the form 

2 
yl -•• A - (B + l)yx + y ^ 2 + D(y3 - y ^ 

y2 = BYl - y\y2 + D(y4 - y2)/f> ^ 

y 3 = A - (B + l ) y 3 + y 3 y 4 + D (y x - y 3 ) 

y4 = % - y3yA
 + D ( y 2 - V4 ) /P 

Here p = (D,B,A,p) , A and B are constant concentrations, D and D/fO define the 

intensity of mass exchange between the cells, y, , y? and y3 , y. are dimensionless 

concentrations of reaction intermediates in the first and second cell, respectively. 

2. CONTINUATION OF PERIODIC SOLUTIONS 

We shall present here a short description of an algorithm for the continuation 

(and computation) of periodic solutions based on the shooting method together with 

a continuation along the arclength of the solution locus. Detailed description of the 

algorithm is presented in [4] . 

A periodic solution with the period T fulfils 

y(T) - y(0) = 0 (5) 

Considering shooting method we choose initial conditions 

y(0) = x (6) 

x e R , and the value of the period T . Then the system (1) can be numerically in­

tegrated for fixed p from t = 0 to t = T , the results of integration 

y(T) = T(x,T,p) (7) 

are dependent on the choice of x , T and p . Inserting (7) into (5) we obtain a sys­

tem of n nonlinear equations 

F(x,T,p) = T(x,T,p) - x = 0 (8) 

with n + 1 unknowns x , T and m parameters p . We have to fix one variable 

except T (or add some "normalization" equation). Let us fix x, for some k , in 

such a way that x, actually exists on the trajectory of the k-th component of the 

wanted periodic solution yk(t) , t 6 [0,T] . To continue periodic solutions in depen­

dence on one parameter, say p, , we can use standard continuation algorithm DERPAR 

[14, 19] for continuation of solutions of n equations (8) for n unknowns x,,..., 

x, _, , x, -,,..., x , T and one parameter p, . This continuation algorithm requires 

an evaluation of the functions F in (8) and of the Jacobi matrix 9F/9x, 9F/3T, 

9F/9p, . Elements of the Jacobi matrix can be determined on the basis of variational 

differential equations for variational variables 

V(t) = 9y/9x , q(t) = 3y/9p_ , (9) 

V is n by n matrix and q is n by 1 , i.e., 
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V = JV , V(0) = 1 , q ' = Jq + 8 f / 9 P ] L , q(0) = 0 . (10) 

The elements of the Jacobi matrix of the system (8) are.then defined as 

9 F / 3 x = V(T) - I , 9 F / 9T = f ( y (T ) , p ) , a F / B p - . - q O ) . (11) 

The continuation routine can proceed until the fixed value of x, "disappears" from 

the course of the periodic solution. To avoid this disappearance, the algorithm ex­

changes x, adaptively. 

Several solution diagrams obtained by the continuation algorithm are presented 

in Figs 1 - 3 . 

The stability of the computed periodic solution can be determined on the basis 

of characteristic multipliers, i.e., of eigenvalues JL* of the monodromy matrix 

M = 3 T / 3 x = V(T) . (12) 

One multiplier is always equal to 1 because (1) is autonomous. If all remaining multi­

pliers lie inside the unit circle, the periodic solution is stable, if at least one 

of them lies outside, then the periodic solution is unstable. 

The use of the above described continuation algorithm is limited by the applica­

bility of the shooting method. If the initial value problems are unstable, i.e., there 

are multipliers of the order 10 or higher, the integration and thus the simple shoot­

ing method usually fails. In such cases the multiple shooting method can be success­

fully used as, e.g., for the Hodgkin - Huxley model of the conduction of the nervous 

impulse, where M~10 [6 ] . 

3. BIFURCATIONS OF PERIODIC SOLUTIONS 

Bifurcation of periodic solutions occurs when a multiplier crosses the unit circle 

when varying a parameter. It can happen in three qualitatively different ways, i.e., 

when ^ = 1 ; ^ = - 1 ; |/A| = 1 , ̂  / 1, s = 1, 2, 3, 4. The cases ^ = 1 

and ^ = 1 are of special interest [e.g., 8] . 

3.1 LIMIT POINTS AND SYMMETRY BREAKING BIFURCATION POINTS (<**=!) 

The monodromy matrix M has ^ = 1 as an eigenvalue (of multiplicity two) and, 

therefore, the Jacobi matrix d F/ 9 x has two zero eigenvalues. It means that no 

unique dependence of the periodic solutions on a parameter exists in the neighbourhood 

of this point. The bifurcation point can be either limit (turning) point (cf., e.g., 

point denoted L.P. in the Fig. 1) or symmetry breaking bifurcation point when there 

exists an inherent symmetry in the system (cf. point denoted SB in the fig. 1). Both 

bifurcation points can be determined by using shooting (or multiple shooting) method 

and methods for steady-state bifurcations. Either methods which use evaluation of the 

determinant of a matrix [13, 18, 19] or method without evaluation of the determinant 

[e.g., 1, 26] can be used. 

3.2 PERIOD - DOUBLING BIFURCATIONS 

When the monodromy matrix has M = - 1 as an eigenvalue, then the so called 



FIG. 1 : Solution diagram of periodic solutions of (4), A = 2, B = 5.9, p = 0.1 [25]. 
A, - amplitude of y, . • - period-doubling bifurcation point, o - symmetry 
breaking bifurcation point. stable, unstable. 
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FIG. 2 Solution diagram of periodic so­
lutions of (4), A = 2, B = 5.5, 
p = 0.1 [25]. T - tori bifurca­
tion point, H.B.P. - two mutually 
symmetric Hopf bifurcation points. 
Further see legende to Fig. 1. 
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4 : Bifurcation diagram of periodic 
solutions of (4), tori bifurcation 
p o i n t s . A = 2, (0 = 0.1. 
o - point of higher degeneration. 

period-doubling bifurcation occurs, i.e., a branch of periodic solutions with appro­

ximately double period (asymptotically) branches off the original branch of periodic 

solutions (cf. points denoted • in the Figs 1 - 3 ) . 

DETERMINATION OF PERIOD - DOUBLING BIFURCATION POINTS ( <^ = -1). Four itera­

tion algorithms for computation of period-doubling bifurcation points have been publi-
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3 : Solution diagram of periodic solutions of (3), 6 

amplitude of period doubling bifurcation [joint, 

ry breaking bifurcation point, stable, uпstaЫn 

shed and are compared in [3]. We shall summarize very briefly two of them. 

Let the characteristic polynomial of the monodromy matrix M be 

P(^) = (-D
П
 det(M - ^ I ) = <uP + a

1(
/A 
n-1 

a ЛM + a 
n-K n 

Liymmet-

(13) 

The coefficients a. can be computed by using standard software. ^ - - 1 is the root 

of (13) if 

F
п+1
(x,T,p) 1 + 

i = l 

(-1)4 0 (14) 

As a result we obtain n + 1 nonlinear equations (8) (14) for n + 1 unknowns 

x, , . . . , x, _, , x. , , . . . , x , T, p, . Newton method is used to solve this system. 

?(M) must have one root equal to unity, therefore, it can be decomposed into 

the form 

P(^) = (^ + D ( ^ - 1 X ^
П _ 2
 + ь

1(
^

п
"

3 
(15) , + b

R
_

2
) + C ^ + D 

The coefficients b,, ..., b
 0

, C, D can be evaluated recurrently. If we determine 
1' ' n-z' '

 J 

the periodic solution where C = 0 and D = 0 , we have a period doubling bifurcation 

point. We can use 

F
n+1
(x,T,p) = D = 0 (16) 

instead of (14) and solve the system (8) (16) again by Newton method (C = 0 automati­

cally for the solution). 

A number of period-doubling bifurcation points has been successfully computed in 

this way. Some of them are reported in Figs 1 - 3 . 

CASCADE OF PERIOD - DOUBLING BIFURCATIONS. FEIGENBAUM SEQUENCE. High accu­

racy of computed period-doubling bifurcation points enables to test the validity of 

Feigenbaum's results also for more complicated and continuous dynamic systems. Several 

period-doubling bifurcation points of the Lorenz model (3) are presented in the Table 1. 

Results in the Table correspond to a cascade of period-doubling bifurcations, cf. 

Fig. 3. The values of the parameter r ( = p,) at the individual bifurcation points 

form a Feigenbaum sequence jr.j [ 2 ] . The values 
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ГABLБ 1 : A cascade of peгiod-doubling bifuгcation points in thє Loгenz model (3), 
б -- 16, b = 4, k = 1, x, = 3.82038. 

j x
2 

x
3 

T. 
.1 

г. 
.1 - Ì 

1 20.90946 273.34849 0.30618 356.93391 
2 16.85987 246.64055 0.63009 338.06197 4.9740 
3 21.19530 259.36006 1.26750 334.26789 4.7313 
4 17.29002 244.99724 2.53818 333.46599 4.6824 
5 17.24223 244.70901 5.07771 333.29472 4.6707 
6 17.25889 244.74356 10.15599 333.25806 

J 
( Г

J + 1 - Г J ) / ( Г J 
rм> (17) 

are presented in the Table, too. We can observe a very good convergence to a limit, 

which is approximately 6* ~ 4.6692 [2] . 

DIRECTION OF EMANATING BRANCHES. Let us have a period-doubling bifurcation 

point (x ,T ,p ) , determined, e.g., by the algorithms described above. Let us seek 

periodic solutions with the period approximately egual to 2T in the neighbourhood 

(18) 0 C(x,T,p) = y [r(xj,p), T, p] -
for the unknowns x,,..., x. , , x. ,..., x , T

(
and the parameters p . The system (18) 

has a bifurcation (crossection) point at (x ,T ,p ) . There are two branches which 

intersect at this point. One branch is a branch of "composed" periodic solutions 

obtained by a composition of two original periodic solutions on a known branch. The 

second branch is the bifurcated branch of solutions with a double period. Directions 

of the branches can be evaluated by the algorithm described in [.17] . Let us note that 

we need second derivatives of G (computed,e.g., by finite differences). Directions 

of branches resulting for the first period-doubling bifurcation point from the Table 1 

are presented in the Table 2 together with starting points used for the continuation 

of the bifurcated branch. More detailed description will be presented in [16 ] . 

TABLE 2 : Directions of branches emanating from the first bifurcation point in the 

Table 1. 

Direction on 
original branch | bifurcated branch 

dx
9 

dг 

dx-, 

dг 

dT 

dг 

= 0.1262 

1.0042 

0.43E-3 

dx̂  

dx^ 

dT 

dx
? 

dг 

dx~ 

2. 9431 

0.56E-7 

0.17E-3 

Starting point 

( Л x
0 

0.1) 

x
?
 = 21.0095 (+) 

X3 = 273.643 (+) 

T = 0.30617 (+) 
(period = 2T) 

г = 356. 93 (-) 

-X- sign of the change of individual variables for starting 

continuation (direction parameters). 
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3.3 TORI BIFURCATIONS 

The monodromy matrix M has the eigenvalues 

2 2 s 
a + ib , a + b --- 1 , c^1 7 * 1 A,2 

Decomposition of the characteristic polynomial (15) gives 

2 

(19) 

( ^ - ou^ + i ) ( ^ n ~ 2 + b 1 ( r ^
n " 5 + ... • b n_ ?) • v<o> • n , {?{)) 

2a and (/̂ 2 - cup + 1) = (^ - ̂ X ^ - / V . Ihe coefflcients 

b, , . . . , b 0, C, D can be aqain evaluated recurrently similarly as above?, lwo ad-1' ' n - 2' ' a 

ditional equations 

P(^) 

where 6u 

F n + 1 ( x , T , p , o j ) C = 0 F 0 ( x , T , p , o j ) = D - 0 n+2 ' 'r 

have to be fulfilled at the tori bifurcation point. As a result we have 

(21.) 

2 equa­

tions (7) (21) for n + 2 unknowns x 
!'• k-ľ k+ľ 

method can be used to solve this nonlinear system. 

A modified method makes use of the fact that M 

i.e., the decomposition of P ( M ) is in the form 

T , p, 6U . The Newton 

1 is an eigenvalue of M 

PC^u) = (^3 - (2a + l ) ^ 2 + (2a + 1 ) ^ - І X ^ " " 5
 + Ь^'2 

Ь
n-3> 

+ C ^
Z
 + D ^ + E (22) 

Coefficients b,,...,b -,, C, D, E can be evaluated recurrently and the Newton 
I' ' n-3' ' ' ' 

method is used for the solution of the n + 2 by n + 2 nonlinear system (8) (21). 

E = 0 automatically at the resulting tori bifurcation point. 

Resulting tori bifurcation points for the model (4) are shown in the Table 3, 

cf. Fig. 2 for B = 5.5 . The parameter D ( = p,) has been considered as a bifur­

cation parameter. If we continue tori bifurcation points in dependence on another 

parameter of the problem,, here, e.g., B ( = p
?
) , we obtain so called bifurcation 

diagram [19] . Results of one such continuation are presented in Fig. 4 . The points 

3 4 

where M = 1 or u = 1 are denoted 3T or 41 , respectively. The curve ends 

at the point where JU, = >u
9
 = U-, = 1 . 

4. DISCUSSION AND REMARKS 

The algorithm for the continuation of periodic solutions can be used also for 

parabolic partial differential equations when these are transformed into a set of or­

dinary differential equations by using a semidiscretization (method of lines) [ 12 ] . 

TABLE 3 : Resulting tori bifurcation points for (4), A = 2, p = 0.1, 

B x
2 

x
3 

x
4 

T a D 

5.3 
5.4 
5.5 
5.6 

2.43727 
2.45219 
2.47887 
2.51478 

1.90236 
1.92098 
1.92659 
1.92259 

2.49646 
2.50011 
2.52457 
2.56374 

7.15820 
7.62984 
8.32408 
9.19639 

- 0.01694 
- 0.36244 
- 0.54139 
- 0.12304 

0.048626 
0.051152 
0.052495 
0.053030 
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