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Mathematical Publications 

NONLINEAR SYSTEMS OF PARABOLIC 
PDE'S FOR PHASE CHANGE PROBLEMS 

NOBUYUKI KENMOCHI 

ABSTRACT. This paper is concerned with non-isothermal models for phase tran­
sitions. The models are described as a system of nonlinear parabolic PDEs with 
constraints. We discuss them from the viewpoint of abstract theory on time-
dependent subdifferential operators in Hilbert spaces. 

Introduction 

We study the following two models for diffusive phase transitions, which are 

coupled systems of nonlinear parabolic PDEs. 

Phase-Field System with Constraint (PFC): 

(p(u) + w)t-Au = / ( t , x) in Q := (0, T j x f l , 

vwt — KAW + (3(w) + g(w) — u ^ 0 in Q, 

-^+au = h0(t,x), - ^ = 0 on E := (0,T) x T, 
on on 

u(0, •) = tin, w(0, •) = tun in !Q. 

Phase-Separation System with Constraint (PSC): 

(p(u) + w)t - Au = / (* , x) in Q, 

vwt — A{—KAW + fi(w) + g(w) — u}^0 in Q, 

9u . . N dw _ 
—- + au = Ai0(*,#), - ^ - = 0 o n S , 
on on 

— {-KAW + P(w) + g(w) -u} ̂ 0 on S , 
an 

tx(0, •) = i*o, w(0, -) = WQ in lQ. 

AMS Subject C las s i f ica t ion (1991): 35B40, 35K55, 35K60. 
Key words: phase transition process, variational inequality, monotone perturbation. 
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Here, Q, is a bounded domain in M.N (1 < IV < 3) with smooth boundary 
T :== #£2, 0 < T < +oo , and we suppose the following conditions (p), (/3) and 

(5): 
(p) p: R —* R is an increasing bi-Lipschitz continuous function; we denote 

by C(p) a common Lipschitz constant of p and p _ 1 and by p _ 1 a 
non-negative primitive of p~l. 

(/?) /? is a maximal monotone graph in R x R such that for some numbers 
CT*,CJ* with — oo < a* < cr* < +oo 

£>(/?) = [a., a*}; 

under this condition, there is a non-negative proper l.s.c. convex func­
tion $ on R such that d$ = /? in R. 

(#) g: R —• R is a Lipschitz continuous function with compact support 
supp(g) in R; under this condition, there is a primitive g of g such 
that g is non-negative on [cr^jCr*]. 

Moreover, we suppose that K, > 0, v > 0 and a > 0 are constants and 

(/) feLlc{R+;L*(n)), 
(h0) ftoeHt^ii^)). 
This work is concerned with the abstract treatment of systems (PFC) and 

(PSC); in fact, we show that in an adequate Hilbert space H the above systems 
can be reformulated in an evolution equation of the form 

(AU)'(t) + dtp* (U(t)) + p(U(t)) 3 £(t) in if, 0 < t < T, 

U(0) = Uo, 

where dip1 is the subdifferential of a time-dependent convex function (pl on 
H and p is a Lipschitz continuous operator, with bounded range, in H and 
£ and E/n are given data; further _4 i s a linear, monotone, positive, selfadjoint 
and continuous operator in H. The basic idea for the reformulation as above is 
found in [5, 6, 12, 24]. For papers treating the related topics, see the references. 

We shall mainly discuss system (PSC), since the abstract treatment of (PFC) 
is quite similar. 

1. Evolution operators associated with (PSC) 

Let V = Hx(n) with norm 

\z\v:=\Vz\l2{Q)+a\z\l2{r)\ 
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V* be the dual space of V, F be the duality mapping from V onto V* and 
(•, •) :V* xV —»JR be the duality pairing. Further let 

Vo'^izeH1^)] Jzdx = 0} 
Q 

be the Hilbert space with norm 

\z\v0 := |V^ |L2(Q) ; 

denote by (•, *)o the duality pairing between V0 and V0, and by F0 the duality 
mapping from V0 onto V0 . Note that 

V0 C L2(fi)0 := {z e L2(Q) ;Jzdx = 0}cV0* 
Q 

with compact injections. We denote by TT0 the projection from L2(£l) onto 
L2n0. 

For the initial data u0,w0 we suppose that 

u0 € L2(il), w0 e L°°(tt) with cr* < w0 < a* a.e. in tQ, J w0dx = c, (1) 

where c is a constant with 

For the boundary function h0 we consider a function h : R+ —> V such that for 
each £ > 0 

a(h(t), z) + (ah(t) - h0(t), * ) r = 0 for all z G V; 

by assumption (/i0) we see that /i € W^*(R+;V), where 

a(*ь*2) : = / 

and 

(•, -)r denotes the inner product in L2(T), 

(•, •) denotes the inner product in L2(Q). 
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DEFINITION 1. (Weak formulation for (PSC)). Let 0 < T < +00. Then a 
couple of functions u and w is called a weak solution of (PSC) on [0, T), if the 
following conditions (wl)~-(w3) are fulfilled: 

(wl) p(u) e C({0,T];V*)r)W^((0,T];V*)nL2(0,T;L2(n)), 
UELIC((0,T];V), 

w~M eO([o,T]; L2n0))nL2(o,T;V0), toeL2
oc((o,T];H2(n)), 

ti;' G Lfoc((0,T]; V0*), £(«;) € /^(O.TLHO)), 

(w2) p(u)(0) = p(u0) and 

(p(u)'(i) + iz/(j.), z) + o(u(«) - ft(-).z) + a(u(t) - /i(t), z)r = (/(*),«) 

for all z G V and a.e. < G [0, T], /g-j 

(w3) w(0) = w0 , ^ ^ = 0 a.e. on T for a.e. t G [0, T], 

and there is «* G L2
oc((0,T];L2(O)) such that 

£(*.) G /3(w(t)) a.e. in fi for a.e. < G [0,T], 

*><u>'(<), r/)0 + K(Aw(t), AT?) - (£(t) + g(w(t)) - u(t), Arj) = 0 (4) 

for all 77 G H2(fi)nL2£20 with §2 = 0 a.e. on T and for a.e. t G [0,T]. 

For an abstract setting of (PSC), we consider a Hilbert space 

X0 := V* x L2n0 

with inner product (• ,-)x0 given by 

([ei,t»i], [e2,V2])XQ := (euF~xe2) + v(vuv2) for any [a,-»<] G xo, * = 1,2. 

Now, for each t > 0 we define a function ¥>0(-) on JCo by 

C J p - - ( e - v - ^)dx + f |Vt;|22(n) + Jj(v + ^ d z - (h(t),e) 

if [e,t»] G L2(Q) x Vo and 0(t> + -^ ) G Xx(n), 

(5) 
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THEOREM 1. (a) For each t > 0, (p0 is proper, l.s.c. and convex on X0. 

(b) The subdifferential d(p0 of ip0 in X0 is characterized as follows: [e*,v*] G 
d<p0 ([e, v]) if and only if 

e- _ F ( , - ( « - . - ±) -Ht)), 

and there is £ G L2(Q) with £ e 0(v + m\) a.e. in fi such that 

vv* = KFQV + -KQ £ - p - 1 (e - v - - - ) ] in V0* , 

(6) 

(7) 

J.Є. 

Г* 

v(v*, )o = ка(v,rj) + (£ - p _ 1 (e - v - yщ),тӯ) for aiJ rç Є Vo • 

(c) íf [e | ,<] Є 0<p0([ei,t>i]) , i = 1,2, then 

([e*,vl] - [e;,ü5],[ei,«i] - [ъM)Xo = 

= (^"Ҷei - «l - щ) - P"1 (e3 - «2 - щ ) , (Єi - V!) - (Є2 " V2Ýj + 

+ к\ V(üi - Ua)|Ła ( n ) + (£1 - 6 , vi - v2) > 

2 
L2(П) - 7~7~l(Єl ~ V l ^ ~ (Є2 ~ U 2)li 2(n) + к l V ( V l ~ "*)!? ^T^yiv^i - ^11-v--- --IiL2(n) ' "-ivv-i ^1lL2(n)' 

where &, z = 1,2, are the function £ as in (7). 

Next, let A- be an operator in X0 defined by 

-4o([e,v]) :== [ - ^ - V 1 ^ le>v] e -*o, 

and (?o defined by 

G o ( M ) : = ° > - ^ ( w + p ) ] , M e - X o . 

Then it is easy to see that .An is linear, continuous, selfadjoint in X0 and 

(Ao([e,t;]),[e,^])Xo = | e | ^ + H ^ for all [e,t;]eXo-

Hence An is positive in Xo - Further Go is clearly Lipschitz continuous in X0. 
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COROLLARY to Theorem 1. Let {u,w} be a weak solution of (PSC) on 
[0,T]. Then the function U(t) := [p(u(t)) + w(t),w(t) - -§j] satisfies that 

UeC([0,T);Xo), U'eLlc((0,T};V*xV*), <p*0(U) 6 L\0,T), (8) 

and 

( ftA0U(t) + d<p0(U(t)) + G0(U(T)) 3 f(t) in X0for a.e. t € [0,T], 
г i ( 9 ) 

U(0) = U0 := [p(щ) + w0,w0 - щ\, 

where f(t) := [f(t),Q] for a.e. t E [0,T]. Conversely, if U(t) := [e(t),v(t)] 

satisfies (8) and (9), then the couple {u,w} with u = p~x(e — v — T^T) and 
w = v + W\ I S a wea,k solution of (PSC) on [0, T ]. 

The idea for the proof of Theorem 1 is found in V i s i n t i n [24], the theorem 
can be proved by applying it extensively (see [12; Part II] for a detail proof). 

2. Abstract evolution equations in Hilbert spaces 

Throughout this section, let H be a (real) Hilbert space with inner product 
(•, -)H and norm | • |H, and V>*(') be a proper l.s.c. convex function on H for 
each t G R+ . Now, let us consider the abstract Cauchy problem 

CP(£ v0) I ^y^ + WW) + P«t)) 3 '(*) in --", t > 0, 
1 v(0) = v0 , 

where A is a linear operator in H, p is a nonlinear operator in H, I € 

-£cC 
* H ( t 

W 
convex 

' I V . 1 XO C* XXXXV/WIX V.»^_»V^X C4/IIVSX XXX JLJL , J£S l O U XXVSXXXXXXV/CJIiX. VS£.rVsXCJl>UVSX XXX JLJL , \ , v _ 

.(IR+ ]H) and v0 G D(xp°)m This problem is discussed for a family {i/>*} in 
, (a; Ko), specified below by a function a G Wj0'c (IR+) and a constant ]_~o > 0. 

We denote by ^H(<*>\KO) the class of all families {ipf}t>o of proper l.s.c. 
lvex functions on H which satisfy the following conditions (\I/l)-(\_/3): 

(*1) ^(z) >Ko\z\2
H for all zeH and * > 0 . 

(#2) D^) = D(il>°) for all t > 0, and 

| ^ ( z ) - *p3(z)\ < \a(t) - a(s)\(l + i/>s(z)) for all s,t > 0 and z G -D(</>°). 

(*3) For each r > 0, the set (J {z G H\ij;t(z) < r} is relatively compact 
in # . **° 
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Further we suppose that p is a Lipschitz continuous operator in H, the range 
R(p) of p is bounded in H and there is a non-negative potential P : H —» R 
such that V P = p ; in this case, if v G Wh2(0/T;H), then P(w) G VV14(0,T) 
and 

| P ( » ( - ) ) = (VP(»( t ) ) , v'(t))„ for a.e. i <E [0 ,T] . 

Also, we suppose that A is a linear, continuous, positive (i.e., (AZ,Z)H > 0 if 
z / 0) and selfadjoint operator in H; in this case, the fractional power | of 

A, denoted by A * , is defined as a linear, continuous, positive and selfadjoint 

operator in H again, and A is the subdifferential of the continuous convex 

function JA(Z) '= ^ l - ^^ IH f° r z ^ H -

For uniqueness of a solution to CP(£,VQ) we require the following condi­
tion (*): 

(*) For each e > 0 there is a number C(e) > 0 such that 

|*i ~ z2\
2
H < e(zl - z*, zi - z2)H + C(e)\A*(zi - z2)\*H 

for all Zi G D(tf)% z\ G ^*(*t), i = 1,2, and t > 0 . 

DEFINITION 2. Let 0 < T < +oo , I G L2(0,T\H) and u0 G -D(V>0). Then 

a function v: [0,T] —• if is a solution of CP(£,VQ) on [0 ,T] , if .42^ e 

O([0,r];ff)nW1i'c
2((0,T];ff), ^*(t;)eL1(0,r), (-4-i>)(0) = A-«o and 

£(t)-p(v(t)) - (Av)'(t) E d^(v(t)) for a.e. t E [0 ,T] . 

R e m a r k 1. In Definition 2, note that (Aw)'(t) = A* [(A2v)'(t)] E H for a.e. 

t E [0 ,T] , since (A?v)'(t) E H for a.e. t E [0 ,T] . 

Now the solvability of CP(£, v0) is mentioned in the following theorem. 

THEOREM 2 . Assume that {ip*} € # # (a, Ko) and p is as above. Let 0 < T < 
+oo , I 6 W 1 > 2 (0 ,T;£0 and w0 e D(^°) • Then CP(£,v0) admits one and only 
one solution v on [0, T ] such that 

t - ( A H ) ' € L2(0, T; F ) , *-**(«) € L°°(0, T ) . 

In particuiar, if vo E D(ij>0), then 

A*vE W^2(0, T; H), t**(t>) E L°°(0, T). 
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A solution of CP(£,v0) is constructed as the limit of the solutions vx of 
approximate problems with parameter A > 0 as A —> 0: 

J [Avx + \vx]'(t) + d^(vx(t))+p(vx(t))=t(t), 0<t<T, 

\ vx(0) = v 0 , 

where xj/x is the Yosida-approximation of ipf'. See [12] for a detail proof of 
Theorem 2. 

3. Asymptotic behaviour as t —> 0 

Let p be as in the previous section and {I/J*} G ^//(ajA'n) and further 
suppose that 

t GL 1 (R+; /J r ) ; £°° := lim £(t) in PI, (10) 
t—++oo 

a / G L 1 ( R + ) , (11) 

?/)* —-> i/;°° (in the sense of Mosco) as t —> +oo , (12) 

where V*00 is a non-negative proper l.s.c. convex function, with D(^°°) = D(ip°), 
on H. Here, by "^* ~~> V*00 (-n the sense of Mosco) as t —• +oo" we mean that 
the following two conditions (Ml) and (M2) are fulfilled: 

(Ml) if tn —> +oo and zn —> z weakly in FT, then 

liminfV>Wzn) >^°°(z). 
n—>-+oo 

(M2) For any z G D(X/J°°) there is a function u> : R+ —> i i such that 

w(t)->z i n i i , ^(w(t)) -*il>°°(z) a s t - ^ + o o . 

From the definition of the convergence in the sense of Mosco we immediately 
see that 

V>°°(z) > K0\z\2
H for all z G H, 

that is, if)00 -s coercive on if, and for each r > 0 the set {z G H\il)°°(z) < r} 
is compact in i i . Therefore, the stationary problem 

d^00(v00)+p(v00)3£00 i n t f (13) 

has at least one solution t ^ and the set of all solutions is compact in if; a 
solution of (13) is not unique in general, since p is not monotone in H. 
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THEOREM 3. Let p be as in Section 2 and {ib1} E tyH(a\I<o), and sup­

pose that vo E Dfy0) and (10)-(12) hold. Then, for the global solution v of 

CP(^vo), 

(i) (A*v)' E L2(t0, +oo; H) for each finite t0 > 0. 

Moreover, the tu-limit set 

u(v) :-= [z E H\ v(tn) —> z in H for some tn with tn —> +00} 

satisfies that 

(ii) u)(v) is non-empty, connected and compact in H, 

(hi) any point VQO E U(V) is a solution of (13), 

(iv) for any VQQ € u(v), 

t\imJ^(v(t)) + P(v(t)) - (l(t),v(t))H) = 1r*°>oo) + P(voo) - (^°°^oo)H • 

Applying a modified technic in [19], we can prove Theorem 3. See [12] in 
details. 

4. Application to (PSC) 

Applying Theorems 2, 3 to system (PSC), we obtain not only an existence-
uniqueness result, but also an asymptotic stability result for it. 

THEOREM 4. Assume that (p), (f3), (g), (f), (h0), (1), (2) hold and 

/ ' E L ^ R + j L 2 ^ ) ) ; f™ := ̂ f W in L2(Q); 

aлd 

Л & Є L Ҷ R + Î L Ҷ Г ) ) ; Лg° := Иm V 0 i n L 2 ( Г ) Î 

let h°° be the function in V such that 

a(h00,z) + (ah00 -h^,z)r = 0 for all zeV. 

Then (PSC) admits one and only one global (in time) weak solution {u, w}. 
Moreover, the following statements hold. 
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(a) For every finite T > 0, 

t*p(u) G L°°(0,T;L2(n)) , th(u)t e L2(0,T; V*), 

t*(w - p ) G L°°(0,T; V0), t*ii7t G L2(0,T; V0*), 

t*£ G L2(0,T;L2(ft)) , t±0(w) G L°°(0,r; L 1 ^ ) ) , 

where £ is the function as in (w3) of Definition 1. 

(b) For every finite T > 0, 

p(u) G L°°(T, +oo; L2(ft)) , w - - ^ G L°°(T, oo; V0), 

p(u)t G L2(T, +oo; V*), wt G L2(T, +oo; V*) 

(c) ?x(t) —> Uoo in L2(fJ) as t —> +oo , where UQO G V is the solution of 

a(uoo-h™,V)+a(uoo-h00,ri)r = (f00,<n) for all <q£V. 

(d) The oj-limit set u(w) of w as t —» +oo, i.e., 

^ ( IU) ~ {z G L2(f i) ; w(tn) —* z in L2(fi) for some t n with t n —> +00} , 

is non-empty, connected, and compact in L2(f i) , and furthermore any 
Woo G a;(w) satisfies the system 

f Ka(woo,v) + (£00 + 3(^00) ~ Uoo, rj) = 0 for aii 77 G Vb, 

, £00 G L2(f t) , £00 € /3(woo) a.e. in ft. 

For a complete proof of Theorem 4, see [12]. 

In the one-dimensional case, we see further results on the a;-limit set LJ(W) 
with the structure of the corresponding stationary problem for the isothermal 
phase separation model (Cahn-Hilliard model with constraints) (see [3]). 
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