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On a Class of Orthogonal Series

In [2], Skvorcov introduced a generalization of the
Perron integral for the purpose of calculation of the
coefficients of a Haar series. I would like to mention
some results of J, C. Georgiou and myself which extend
Skvorcov's theorems to a wider class of orthogonal series,

Some related questions have been studied, e.g., in [4] and

[5]1.

l. Let V be a real vector space and let S be a
subspace of V. Suppose that o .is a function on S x V
such that (s,.) is linear on_V for each s ¢ S,
v(.,v) is linear on S for each Vv € V, w(s,s) > 0 for
each s € S\ {0} and that o(s,v) = o(v,s), whenever
S, V € 8. The restriction of ¢ to 8 x 8 is, obviously,
an inner product so that we may speak about orthogonality
in 8. |

Let T DTe a finite-dimensional subspace of S and
let v ¢ V. It is easy to see that there is é unigque
Pp € T such that @(t,v) = p(t,p) for each t ¢ T; write
P = 0.p.(v,T) (orthogonal projection of v to T)., 1If
TO’Tl"" are pairwise orthogonal finite-dimensional sub-

. -~}
spaces of S and if v ¢V, then X2 0.p. (v,T ) will be
n=0
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called the Fourier series of v with respect to the

sequence < Tn> . l
|

2, Let D.,D be finite subsets of [0,1] such

l,‘oc
c Dl C ... and that DO U Dl U eee 1s

OJ

that {0,1} < Dy

dense in [0,1]. If we partition [O0,1] by D , we get

a system of closed intervals which will be denoted by p; S
Let S, be the system of all functions £ on [0,1] such
that £ is constant on int J for each J ¢ By, 5

£(0o+) = £(0), £(1-) = £(1) and >f(x) = %-(f(x+) + £(x~))

for each x € (0,1). Obviously Sy < S; C «es & Define |

o

S =8 U‘Sl U ... and introduce in S an inner product

0

in the usual way, Let TO = SO and let T, ke the

orthogonal complement of Sn-l in sn for n=1,2,... &

For each x ¢ [0,1)[x ¢ (0,1]] 1let Jn(x)[Jé(x)] be the
element [a,b] of p,  for which x ¢ [a,b)[x ¢ (a,b]];

further set Jn(l) = {131, Jé(o) = {0}(n = 0,1,...) .

3, Let V be a vector space whose elements are '
functions on {o,l] and let L be a linear functional on
Vv with the following properties: If £ is a finite
Lebesgue integrable function on [0,1], then £ ¢ V and

Lf is its integral; if s ¢ 8 and v ¢ V, then sv ¢ V,

It is obvious thét all the assumptions of 1 are fulfilled,
if we take o(s,v) = L(sv}). It is easy to prove the fol-
lowing assertion:

Let n be a nonnegative integer, Let £ ¢ V, J ¢ jh’

X € int J and let ¢ e the characteristic function of J,




n

Set s = QZ o.p.(f,Tk). Then s, = o.p.(f,sn) and
=0
s, (%) = |3|7L(fe) (if J = [a,b], then |J| =b - a).

4. In [2], Skvorcov constructed an integral that

integrates the sum of each everywhere convergent Haar series

> anxn for whic_':h
(1) 2, /% (%) =0 (a4 =X (x) #0) .

It is possikle to generalize Skvorcov's result in various
ways, To illustrate the matter suppose that the set

Dn+1 N int J has at most one point for each J ¢ ‘Bn and
that there is a number g > O such that K| > alJ],
whenever J ¢ bys K€ by, and Kcd(n=0,1,...). Then
there are V and L fulfilling the assumptions of 3 such
that the following theorem holds:

n
Let £ € T» Sy = 2 fro Let

k=0
(2) fJn(x)sn—-)o, IJI’I(x)sn—) 0 (R 4 =)
for each x € [0,1] and let the set {x ;sup ‘Sn(x)\ = o]
. n

be countable, Then there is an £ ¢ V such that

(-~ -]
> fn (x) = £(x) almost everywhere and that fn is
n=0 n=Q0

the Fourier series of £ with respect to <T,>.
In the proof we apply methods developed in [2] and [3]

and a theorem proved in [1].
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5, Now suppose that D, has exactly n + 2 points,

Then T, has dimension 1; let = generate Tn and let

12
Ogn

n>»0, pedND, _, and peJ= [2,0] € &,_;- Then we

=1l(n =0,l5ee.) o« We may choose g4 = 1, Now let

may choose g, in such a way that g, > O on (a,P)e.

1 1 1 1 1 3
if Dl= {O:E: 11, D2= {O:Z:'z': 11, D3= {O’Z:EQZ: 11,

1 1 1 3
D4={O,-8-,Z,-§-,Z,l},..., then gn=Xn (the Haar

function) for each n, It is not difficult to prove thaf,

in this case, (1) is equivalent to (2).

6. Finally, let D_ = ko277 k = 0,1,...2"}, let
IRIEETE be the Walsh functions and let £ ke a Perron

integrable function on' [0,1]. Let T a %, and Z big

" be the Haar - and Walsh - Fourier series of £, respectively.

- Let n be a nonnegative integer and let m = 2%,  Aas

XO,...,Xh_l is an orthonormal basis of Sn and as the
same is true for {Ygseeeslpys we have

m-1 m=-1
ﬁgb ay X = o.p. (£,8,) = gzo By by (see [4]).
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