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EXERCISES

The exercises are grouped, as a rule, by sections; however, there are sections for
which no exercises are given, and in some cases one group is formed of exercises per-
taining to two or more consequent closely related sections.

In each group, the arrangement of the exercises is not by the degree of difficulty
but mainly according to the sequence (in the main text) of the concepts involved;
however, this is by no means a strict rule.

The formulation of the exercises is often concise, and abbreviated expressions are
sometimes used which would not be admissible in the main text.

(Section 1)

1. If ¢ is a fibering relation, then ¢[X] = Eg implies X = Dg. If o[X] = Eg
implies X > Dyg, then there exists a fibering relation ¢ = ¢ such that Do = Dg.

2, If A is a class and ¢ is a relation, then there exists a class B < A such that
o[(x)] = B for no x € A.

3. If o is a relation, @ = o + ), then there exists a ¢ with 6 o 0 =+ ¢ - 0.

4. If o is transitive, then ¢~ ! is transitive. If ¢ and ¢ are transitive, then ¢ - o

need not be transitive (give an example).

5. A relation ¢ is an equivalence if and only if it is reflexive and g 0~ ! < g.

6. If g is a reflexive relation and any two fibres o[(x)], ¢[(y)] either coincide or have
no elements in common, then g is an equivalence.

7. A relation g is single-valued if and only if g o ™!

0~ ' o ¢ is an equivalence but not conversely.

<

< J. If g is single-valued, then

'clelooc )

8. A relation g is one-to-one if and only if g o 0~
9. The class of all sets is non-comprisable.

10. Let ¢ be a single-valued relation such that D¢ consists of all sets and every ¢ X
is a set. Then E{pX | @X ¢ X} is non-comprisable.
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(Section 3)

1. If & is a monotone class of bijective relations, then JZ is bijective.

2. Let ¢ be a relation and let # be a class of sets; consider the class .#* =
= o[[#]] of all o[ M], M € .#.If A is the largest set in .#, then g[ 4] is the largest set
in .#*(but not conversely, even if Dg > U.///). If B is a maximal set in #, D¢ > Y4,
then o[ B] need not be maximal in .#*. If g is a fibering relation, then o[ B] is maximal
in .#* whenever B = Dp and B is maximal in .#.

3. If ¢ is a relation and .# is a monotone class of sets, then g[[#]] is monotone.

4. Let {X, | a € A} be an indexed class of sets. Let & be a monotone class of sub-
sets of 4. Then E{U{X, | a € B} | B € 8} is monotone.

5. Let A be a class and let ¢ be a single-valued relation on A x A into A. There
exists exactly one single-valued relation @ on A into AN such that the following holds:
if ae A and ®a = {a,|ne N}, then a, = a, a,,, = ¢{a,, a) for every ne N.

6. If A is a class and Z is the class of all multiplets of elements from 4 (see 3 F.9),
thenZ xZ<cZ,Z—(Z x Z) c A.

7. An n-multiplet (n eN, n=> 1) of elements of a class A is defined as follows.
Consider the class M of all finite relations ¢ with Dg = N —(0). such that
xeg[(1)] implies xe A, and if xeg [(n)], n > 1, then there exist p, q,u and
v such that ueg[(p)], vee[(q)], P+ g=nand x=Cu, ). If neN, n 21,
then an element x is called an n-multiplet of elements from A4 if x € ¢ [(n)] for
some g€ M.

Prove that an element x is a multiplet of elements of 4 (cf. 3F.9) if and only if
it is an n-multiplet (as just introduced) for some n. [Hint: It follows by induction
that each n-multiplet is a multiplet. On the other hand, if e M, €M, {(m, a) €g,
{n, By € o, then g U g U ({m + n, (&, BY>)e M; hence {a, B is an (m + n) multi-
plet if o is an m-multiplet and § is an n-multiplet. Thus T x T < T where T'is
the class of all k-multiplets, ke N, n = 1.]

(Section 4)

1. Every monotone class is additive and multiplicative. The class of all N, ke N,
is monotone and completely multiplicative but is not monotonically additive.

2. The class of all single-valued relations is completely multiplicative and mono-
tonically additive but is not additive.

3. Let o be a non-void completely additive and completely multiplicative class
of sets such that X e o/, Ye of = X — Ye &/. Then there exists a class B and
a fibering relation g such that & consists of all sets of the form ¢[X], X < B.
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4. Let o/ be a class of sets. Then there exists a (uniquely determined) smallest ad-
ditive class of sets 4 containing «/; if o/ is comprisable, then 4 is comprisable. The
assertion remains valid if “additive” is replaced by “multiplicative” or ‘“additive
and multiplicative” or * completely additive’ and so on.

5. Prove, on the base of axioms from Section 1, that
(a) Theorem 4B.2 and the Axiom of Choice are equivalent.

(b) The proposition obtained from Theorem 4 B.2 by inserting “comprisable rela-
tion” instead of “relation” is equivalent with Theorem 4 C.1 as well as with the as-
sertion that every non-empty collection of sets which is of finite character (see 4 C.5)
contains a maximal set. [Hints: If 4 C.1 holds and ¢ is comprisable, consider the
collection of all single-valued ¢ < g; if ¢ is maximal, then Dy = Dg. If the assertion
on classes of finite character holds, let .# satisfy the suppositions of 4 C.1. Con-
sider the collection B of all monotone & < . such that X € & = X > A. Then B
is of finite character. Let &/ € B be maximal. Then {J« is maximal in .#.]

6. Let X be a minimally non-comprisable class. If ¢ is a single-valued relation,
then ¢[X] is either a set or a minimally non-comprisable class; in particular, every
subclass of X is either a set or a minimally non-comprisable class.

7. If A is a minimally non-comprisable class, then exp A is also a minimally non-
comprisable class. [Hint: if 4 = UZ, & monotone, then exp 4 = U{exp X | X e Z}.]

8. Any two minimally non-comprisable classes are equipollent. [See 9 A.5.]

9. If X, Y are minimally non-comprisable classes, then both X U Yand X x Y
are minimally non-comprisable.

10. A relation g is minimally non-comprisable if and only if either both Dg and Eg
are minimally non-comprisable or one of them is minimally non-comprisable and
the other is a set.

11. We shall say that a class of sets o/ is closed with respect to accessibility if (1)
if Xes and Y is a set equipollent with a subset of X, then Ye o, (2) if% e,
Z c A, then UX € o, (3) if X € o/, then exp X € &/. Prove that if a class of sets
<« + 0 is closed with respect to accessibility and is monotonically additive, then &/
consists of all sets. [Hint: using 4 A.7 with a suitable ¢ prove that there exists a non-
comprisable monotone # = «; apply 4 D.5.] Show that a monotonically additive
non-void class of sets s/ satisfying (1) either contains all sets or is of the form
E {X|card X < n} withneN.

12. Let &/ be a class of sets. A set X will be called accessible from .« if it is contained
in every class of sets # o & which is closed with respect to accessibility. If & is
a singleton (A) we shall also say that X is accessible from the set 4; a set accessible
from a countable set will be called simply ‘‘accessible”.

Prove that the class of all sets accessible from a given class is closed with respect
to accessibility.
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13. Let A be the class of all accessible sets. Let A* be the class of all multiplets of
elements of 4 (see 3 F.9). Clearly, (1)if x € A*, y € A*,then (x, y) € A* and, conversely,
if {x, y) € A*, then x € A*, y € A*. Prove that (2) every singleton belongs to A*;if o is
is a relation and every g[(x)] belongs to 4*, then g[X] € A* whenever X is a class
and X € A*; if X € A* and X is a class, then the class of all Y = X such that Ye 4*
is equal to exp X and belongs to 4*. [Hint: prove that a set belongs to A* if and
only if it belongs to A.]

Remark. The above assertions show that, roughly speaking, the property “x € A*”
may serve as an “interpretation” of the property “x is an element” giving rise to an
“internal model” (in the sense of mathematical logic) of the axiomatic system pre-
sented in this book.

(Section 6)

1. Let ¢ be a composition on a class X. If a € X, then the least stable class Y =« X
containing g is countable. If o is associative and Yis infinite, then <Y, ¢ is isomorphic
with (N — (0), +). If <X, o) is a group and Y is finite, then (Y, ) is a group.

2. Let X, o, a, Y be as above. Give an example where Y is infinite and (Y, o) is
not isomorphic with (N — (0), +), and an example where ¢ is associative and Y
is finite without being a group.

3. Let & consist of all finite sequences; let o denote the composition on & de-
scribed in 6 B.2. For any non-empty X « & let H(X) be the smallest stable class
containing X. Every sub-semi-group G + 9 of (¥, 0> with xe G,xoyeG = yeG
is isomorphic with some H(X) where X consits of one-clement sequences (and the
void sequence).

4. With the above notation, no a € & (except ) is invertible; however, every
o € & is virtually invertible,

5. If A is a class, let #(A) denote the class of all finite sequences of elements from
A; let £(A) be endowed with the composition described in 6 B.2. If G is a semi-group
and X = G generates G, then there exists a homomorphism-relation ¢ on .S’(B)
onto G where B is a class equipollent with X.

6. Let 4 = {G, u> be a semi-group; we shall write xy instead of xuy. Let # =
= (R, +,.) bearing. Let & = 91’(?) denote the set of all ¢ € R® such that ¢g = 0
for all g € G with finitely many exceptions. Consider the following compositions on
Y :if ped, yed, then ¢ + ¥ = {pg + Yg|geG} and 9.y = {xg| g€ G}
where yg is equal to the sum of all ph. Wk with he G, ke G,hk = g, ph + 0 =+ k.
Prove that @ endowed with these compositions is a ring.

Remark: This ring, denoted e.g. by %(%), is called the #-ring over 4. An element
Qe %(g) which assigns ¢;to g;, i = 1, ..., n, and 0 to each g € G distinct from all g,,
is often denoted by ¢,g9, + ... + 0,9, and called a ““formal combination” of elements
gy, ---» g, of G with coefficients «,, ..., o, from R.
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7. If G, o), {H, p) are semi-groups and, for any xe€ G, ye G, there exists
a (o, p)-homomorphism-relation ¢ such that gx # @y, then, for some set B, there
exists a one-to-one (o, u®)-homomorphism-relation on G into H?. An analogous
proposition is valid for groups, semi-rings, rings and modules.

(Section 8)

1. Let S denote the class of all comprisable algebraic structs of a given type f.
If {Z,} is a family of structs from §, put & = I1Z, (see 8 B.8) and denote by m, the
projection of % onto %,. If # € § and ¢,€ Hom (%, & ,), then there is exactly one
¥ € Hom (%, &) with ¢, = m, - . This condition characterizes I1%, up to natural
isomorphism. — Give an exact formulation and prove.

2. With S as above, let S, = S. If Z, € S (usually we have Z, € S,), then Z € S,
is called a “free So-product” (or a “free product in §,>) of {&,} if there are homo-
morphisms 1, € Hom (%,, %) such that, for any % € §, and ¢, € Hom (Z,, %), there
exists exactly one y € Hom (%, %) with ¢, = Y o 4,. Prove that any two “free
So-products” of {Z,} are isomorphic. (Remark: the term “free sum” seems more
appropriate.)

3. Every family of groups (semi-groups, abelian groups, commutative semi-groups)
has a free product (in the corresponding class). Every family of (commutative) semi-
groups has a “free (commutative) product with unit”, i.e. a free S,-product, S, being
the class of all semi-groups (or commutative semi-groups, as the case may be) con-
taining a neutral element. [Hint (for semi-groups): given (G,, 6,), {G,} disjoint,
consider the semi-group H of all non-void finite sequences of elements of {JG,; let
A, consist of all pairs {g, h) where g = {x, y}, xe G,, y € G,, for some a, and h is
the one-element sequence {xa,y}; consider the smallest congruence on H containing
(as subsets) all 4,.]

4. No non-trivial family of fields has a free product (in the class of fields).

5. With S and S, as in exercise 2, a struct & € S, is called S,-free if, for any
% €S, and any surjective ¢ € Hom (%, &), there exists a € Hom (&, %) such that
Qo =):%& > Z. — A semi-group is free if and only if it is a free product of a
family of semi-groups isomorphic to {N — (0), +).

6. Let X,, ae A, be disjoint semi-groups isomorphic to (N — (0), +); let X,
consist of elements x,, xZ, ... Let R be a commutative ring. Denote by R({x,}) the
R-ring over the commutative free product with unit of the {X,}; every pe R({x,}) is
called a “polynomial in x,, a € 4, with coefficients in R”. — If ¢, e R for each ae A4,
then there is exactly one homomorphism @ of R({x,}) into R such that O(r. x,) =
= r¢, for each ae 4, re R. If p is a polynomial as described above, then @p is
called the value of p for x, = &,, a € A.
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7. Prove that, for a given {£,} and an ideal T < R, the set of those polynomials p
the value of which for x, = £, lies in T, is an ideal of R({x,}).

8. Let Z = (R, 0,u,0a, > be a module over & = (Dy, a, f>; let ¥ = (G, )
be a semi-group. For g€ G, he G, xe R put x,h = x(gth); let ¢ consist of all
g, %, x,), g € G, x € R% Then <R, 6% {u, a, B>% o, ) is a module-like struct of
the type ({1, 2>, &, ¥).

9. Let A be a set, and let & be a proper ideal (8 D.4, 8 D.9, convention) under
Mexpa (in other words, a proper filter of sets on A4, see Section 12). For every a € 4,
let &, be an algebraic struct of a given type t and let A, be a congruence on %,.
For elements x = {x,}, y = {y,} of & = I1Z,, put x4y if and only if there is an
Se# withae S = x,4,9, Then 1 is a congruence on Z.

10. Maximal ideals in Z“ where & is a field are precisely the sets T of the fol-
lowing form: & is an ultrafilter (see 12 C.1) on A; T consists of all x = {x,} € 2“4 such
that E{a | x, = 0} belongs to £.

(Section 9)

1. For any infinite cardinal b, there exist arbitrarily large cardinals x with x® > x
and arbitrarily large cardinals y with y* = y.

2. For any infinite cardinal x denote by log x the least y such that x < exp y.
There exist arbitrarily large cardinals x with log x = x. If log x = x, then there is
no greatest element in the set of all z < x.

3. For any infinite cardinals x, y, we have log(xy) = log x + log y, log x” =
= ylog x.

4. Let X be an infinite set, card X = x. Let b(x) be the least cardinality of a set
B < N* such that, for any f € N, there is a g € B with fz < gz for all ze X. Then
x < b(x) < exp x (it is not known whether e.g. b(No) = exp N,).

(Section 10)

1. Every comprisable order is an intersection of monotone orders.

2. The product of two quasi-ordered classes (A4, ) x (B, t) cannot be monotoni-
cally quasi-ordered unless 0 = A x Aort =B x B.

3. Let (4, <) be an ordered set. For every a € 4, let &, = (X,, 6,> be a quasi-
ordered set. If <{a, x) € £X,, (b, y) € £X,, put {a, x) o{b, y) if and only if either
a <bora=b, xo,y. Then {(£X,, o) will be denoted by Z({.%”,, | ae A}, <) or
simply X%, and will be called the sum of {%,} under the order <. If < is equal to
) > then we shall speak of the discrete sum (or simply sum) of {Z,}.
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Prove: if &, = & for all a, then X%, is isomorphic with (4, =) x ., %, and
the discrete sum X%, is isomorphic with (A4, }> x &; X% ,, with all Z, non-void, is
monotone if and only if {4, <) and also all &, are monotone.

4. An ordered class o/ = {A, ¢) is monotone if and only if, for any ordered
% = (B, 1) and any surjective order-preserving f : o/ — % there exists an order-
preservingg : B — A withfog=):%8 - 4.

5. Let f be surjective for a quasi-ordered set o/ = (A, ¢)> and a set B. Let ¢ be the
intersection of all quasi-orders ¢ on B such that f : & — (B, ) is order-preserving.
Then o is a quasi-order and f : & — (B, ¢) is order-preserving. We denote ¢ by g/f
and call it the quotient of g under f; B, o/f) will be denoted by {4, ¢>/f and will
be called the quotient of (A4, ¢> under f. A mapping of the form f:{4,¢) —
— {4, ¢)/f will be called a quotient mapping (for quasi-ordered sets).

6. Every quotient of a monotonically quasi-ordered set is monotonically quasi-
ordered. A quotient of an ordered set need not be ordered.

7. Every ordered set is a quotient of some D x (0, 1) with D discrete, i.e. endowed
with Jp.

8. If xe NN, y e NN, put xoy if and only if there exists a number p € N such that
nelN, n > p=-xn < yn. Then ¢ is a reflexive quasi-order on NN, In (NN, ¢),
every countable set is bounded.

9. The collection of all left-saturated left-cofinal subsets of a quasi-ordered class
is multiplicative.

10. Let < be a monotone order on a set A; for every ae A, let Z,= (X,,6,> be an
ordered set. If x e I1X,, y € I1X,, let xay if and only if either x = y or there exists
an element a e A such that (1) be 4, b < a = (xb) 6,(yb), (2) for some ce 4,
¢ £ a, xc + yc. Then ¢ is an order on IIX,; it will be denoted by H,ex{a,,} or
({0, | a € 4}, £). The ordered set <I1X,, ¢> will be denoted by IT,.,Z, or
0,,{{%, | a € 4}, <) and called the lexicographical product of {Z,}. It is mono-
tone whenever A4 is well-ordered (11 A.1) and all %, are monotone; conversely,
if {IIX,, o) is monotone, all X, are non-void and contain, with finitely many
exceptions, more than one element, then A is well-ordered and all &, are monotone.

11. Let {4, £) be a monotone ordered set; let Z,, a € A, be complete ordered
sets containing more than one point. Then IT,,{Z, | a € A} is complete if and only if
A is well-ordered.

12. Let A be an infinite set. If & < exp A, % < exp A4, put Zo% if and only if
% majorizes & in {exp A, =). Then o is a quasi-order on exp exp A. Put U =
= E{% | % < exp A, UZ = A}. The cardinality of the collection of all left filters
in U is exp exp exp a where a = card A. [Hint: if © is a set of free ultrafilters in 4,
let Vg comsist of all those Z < exp A which intersect every & € @. Then V, is a filter;
if @ & 0, then V, + V.. Apply 12C.7.]
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13. The following collections of sets are lattices (under inclusion): the collection
of all subgroups of a given group; of all subrings of a given ring; of all finite subsets
of a given set; of all congruences (see 8 C.10)on a given algebraic struct; of all equi-
valences on a given set. Each of these collections, with one exception, is also complete.

14. The ordered set ¢(R, <>® is boundedly complete. Let Y consist of those
f € R? = X which satisfy the following condition: '

(%) f(Axy + 22%3) = A4(fx;) + Ay(fx,) whenever 4, 20, 2, 20, 4, + 1, = 1.

Let fix = —|x|, fx = —|x — 1|. Then supy (f1, f2) #* supy (f1, f2)-

15. Let S be a class; put A = expexp S, B = E{exp X |X c S}. Then <4, =)
is complete, B is meet-complete, completely meet-stable, completely meet-preserving,

and monotonically join-complete, but it is neither finitely join-complete nor join-
stable.

16. Let & = (A, 6) be a quasi-ordered class; suppose that no finite non-void
X < Ahas more than one join. If a class B = A is finitely join-complete and join-pre-
serving, then it is join-stable.

17. Let a quasi-ordered class {A, ) be finitely join-complete. If B = A is join-
stable, then it is join-preserving.

18. Let 4 = Ny (o) U (o), a;none N, o, # o,. For xe 4, ye 4, put xay if
eitherxe N, ye N,x < y,orx = yorelse y = a;, xe N.Put B = (0) U (o)) U (o),
B, = (A — N,) U (0). Then the B, are meet-preserving; B = (\B, is meet-stable,
but is not meet-preserving.

19. Let o = (A, o) be a quasi-ordered class. The union of a monotone collection
of join-preserving subsets is join-preserving, and similarly for meet- and lattice-
preserving sets.

20. A quasi-ordered class {4, o) is called (countably) join-complete if every non-
void (countable) set X < A has a join, monotonically join-complete if every non-
void X = A which is monotonically ordered (under a) has a join.

A second definition is obtained if “join” is replaced by “meet”. Finally, (4, ¢) is
called countably (monotonically) complete if it is both countably (monotonically)
join-complete and countably (monotonically) meet-complete.

Let A be an uncountable set. Let B,, B,, B, consist, respectively, of all finite
X < A; all countable X < A and all X c A of cardinality > exp N,; all countable
X c A and all their complements. Then B, is meet-complete and finitely join-
complete, but neither countably nor monotonically join-complete, B, is countably
join-complete, but there is a countable monotone 4 < B, with no meet (provided
card A > exp N,); B, is countably complete, but neither monotonically join-
complete nor monotonically meet-complete.

21. Let A4 be a class. In {exp 4, =), a class # < exp A is completely join- (meet-)
stable if and only if it is completely additive (completely multiplicative).
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22. A monotonically complete and finitely complete (10 F.5) quasi-ordered class
is complete.

23. Let & = {A, g) be a quasi-ordered class; let B = A be finitely stable. If, for
any monotone non-void X < B, every join (in &) of X belongs to B, then B is com-
pletely join-stable.

(Section 11)

1. Every ordered set (A, <) such that
(*) all E{x | x < a} are finite

can be embedded into (B, o> where B is the collection of all finite subsets of a given
set. Every infinite monotonically ordered set with property (#)is isomorphicto (N, <.

2. Let A and %,, a € A, be ordered sets; let &, contain more than one point.
The lexicographical product IT,, %, (see 10 ex. 10) is well-ordered if and only if

B acA
A and all &, are well-ordered.

3. Give an example of a monotonically ordered set which possesses the property
indicated in 11 A.5, but is not well-ordered.

‘4. Let A be a well-ordered class such that every A4, is a set; let a be the first element
of A. Let M be a class; let be M. Let S = U M*= be such that (1) (<a, b)) € S, (2) if

xed
xeA, xFa, A, = U{Ay|y < x},feMA’andf|AyeSforeveryy < x,then feS.
Let ¢ be a single-valued relation such that Dp o S, Ep <« M and if fe S, xe€ A,
x % a, fe M*s, then f U ({x, @f)) € S.
Then there exists exactly one g € M* such that (1) ga = b, (2) if x€ 4, x * a,
then the restriction g(x) of g to A, belongs to S, and gx = @g(x).

5. If (A, £) as wellas &, = (X, 0,), a € A, are well-ordered sets, then the sum
&} = Z{%,| a€ A}, £) (defined as the set X, endowed by the order con-
sisting of all pairs {{a, x>, {a, y>) with xo,y, a € A, and all pairs {{a, x>, {b, y>>
with @ < b)is well-ordered. If ord X, = £,, we put X ¢, = ord X {X,}. Show that this

acd
definition is correct and that the composition € + 7 obtained in this way is associative,

but is not commutative.

6. If {4, <) is a finite monotonically ordered set and if X,, a € A, are well-ordered
sets, then the lexicographical product IT,,,{X,} (see 10 ex. 10) is well-ordered. If ord

X, = ¢, put IT&, = ord TI{X,}. Show that this definition is correct and that the
aeA

composition & .7 obtained in this way is associative, but is not commutative. (Re-
mark: most authors denote by 5 . ¢ the number denoted here by & . n.)

7. If A is well-ordered, ord 4 = o, £ is an ordinal and &, = £ for every a € A, then

Ye =a.t

acA
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(Section 12)

1. Let A be an infinite set, card A = a. Let F be the set of all finite covers (collec—
tions) of A. Then card F = exp a. Consider sets M < F such that {(x) | x € A} is
a meet of M (under the quasi-order described in 12 A.4). Then the least power of such
a set M is equal to log a (see 9 ex. 2).

2. For any cover Z, St & refines St (%, ), St (%, %) refines St (St Z).

3. If St Z refines &, then Z is refined by a disjoint cover of JZ'. The converse
does not hold.

4. Put A =(0,1,2),Z = ((0,1),(0,2), % = ((0, 1), (1, 2)). Then & = ((0),(1),(2))
is a meet of 2 and %, but no meet of St & and St # refines St Z.

5. Let M = {xV}, 2@ = {X{P} be covers; put X = YZD. Let n; denote
the projection of X = X x X® onto X, If & is a cover, Z = UZ, f,: Z - XV
are mappings, and the f,-image of & refines Z?, then there existsa h : Z —» X such
that the h-image of & refines {X{" x X{?} and f; = m;o h. — This property of
{xX x Y{P} is characteristic for every cover of X which both refines and is refined by
{X" x X{»}. Give an exact formulation and prove.

6. Let Z =((0,1,2), (2,3)), # =((0, 1),(1, 2, 3)). Then there is no meet of &
and % under the quasi-order defined in 12 A.13.

7. If both covers {X,} and {Y,} are point-finite (or star-finite), then {X, x Y}
is point-finite (star-finite).

8. If & is a point-finite cover and f is a mapping of (JZ onto a set Y such that all
inverse fibres f ~![(y)] are finite, then the f-image of % is point-finite.

9. The union of a directed (under <) set of centred collections of sets is centred.

10. Let A be a set; let & < exp 4 and let 7 be the smallest additive and completely
multiplicative collection containing &. If N4 + @ for every centred & < &, then
also NZ =+ O for every centred & < 7.

11. Let & be a collection of sets such that (x) N% =+ @ for every centered sub-
collection %. Then, for every domain-full fibering correspondence f : UZ — Z, the
collection f[[Z 1] also possesses property (x).

12. For any mapping f : A — B, the f ~!-transform of any free filter on B is free.

(Section 13)

1. Let {®, o) be the categoroid of homomorphisms of groups described in 13 A1,
example (D) Let Z be the class of those homomorphisms ¢ = ¢ : 9 —» # from ¢
for which ¢[%] contains only the neutral element (of #’). Then <Z, ;) is a catego-
roid but is not a subcategoroid of (@, o).
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2. Consider the category .# of all sets. — (a) If f : X - Y is a morphism of .#,
put Ff=fxf:X x X —> Y x Y. Then F: .# — # is a covariant functor; the
associated relation assigns X x X to X. — (b) For any morphism f: X —» Y
let Ff be the mapping of exp X into exp Yassigning f[Z]to Z = X. Then F : A4 —.M#
is a covariant functor; the associated relation (13 B.7) assigns exp X to X. — (c) For
any morphism f : X — Y let Ff be the mapping of exp Y into exp X which assigns
f7'[Z]to Z = Y. Then F : 4 — 4 is a contravariant functor.

3. Let A be the product of categoroids o '; = (P;,0,), i = 1,2. Then {¢,, ¢,> €
€@, x @, is a monomorphism (epimorphism, strong monomorphism, etc.; cf.
13 B.9, remark) if and only if both ¢, and ¢, possess the property in question.

4. Let A, =<(P;,06,), i =1,2, be categoroids. Put S = A", x A,. If ¢ =
= (@, P2 € Dy X ®,, put F;0 = @;. Then F;: A — A, are covariant functors.
If & is a categoroid and G, : ¥ — X ; are covariant, then there exists exactly one
covariant functor H : ¥ — X such that G; = F; . H.

5. Let A be a category. Let a,, a, be objects of . Suppose that a is an object,
¢; € Hom (a, a;), and for any y; € Hom (x, a;) there exists exactly one ¢ € Hom (x, a)
with ; = ¢; o . Then a will be called a product of objects u;, a, in A". — Prove
that any two products of a,, a, are isomorphic. Prove that in the category .# of all
sets, X; x X, is a product of objects (i.e. sets) X, X,. Consider products of two
objects in various categories introduced in Section 13. Show that, in the category
of all monotonically ordered sets containing more than one point, no two objects
possess a product.

6. Let o4 be a category. Let ay, a, be objects of 2#". Suppose that a is an object,
¢; € Hom (a;, a), and for any y; e Hom (a,, x) there exists exactly one Y € Hom (a, x)
with ¥; = ¥ » ¢;. Then the object a will be called a sum of objects a;, a, in . Prove
that any two sums of a,, a, (in a given category) are isomorphic. Prove that, in the
category ., ((1) x X,) v ((2) x X,) is a sum of sets X, X,. Consider sums of two
objects in various categories introduced in Section 13.

7. Extend the above definitions from the case of two objects to that of a family of
objects. '

8. Let ,, A ,, & be categoroids. A mapping F = F: 4, x A, = £ will be
called (1) “covariant relative to both factors” if it is a covariant functor in the sense
of 13A.10, (2) “covariant relative to the first and contravariant relative to the second
factor” if F : #'| x A, - £ is covariant (o ; denotes the category contragredient to
A';), etc. — Consider the underlying categoroid (P, ¢ of the category of all sets. If
fe®, ge P, denote by #(f, g) the mapping of Hom (Ef, Dg) into Hom (Df, Eg)
assigning g - ¢ o f to @. Then {{f, g> — #(f, g)} determines a functor contravariant
in the first and covariant in the second factor.

9. Let A be a non-void class. Let & consist of all non-void finite sequences of
elements of 4. If ¢ = {a,, ..., a,} €®, ¥ = {by, ..., b,} € ® and b, = a,, let pry be
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equal to {by, ..., b,, a;, ..., a,}; otherwise, ry is not defined. If ac 4, be 4, € P,
¢ = {co, .- ¢}, then (a, b) k¢ if and only if a = ¢y, b = ¢,. — The quadruple
(P, r, A, k) satisfies conditions (1)—(4) from 13 B.3; it satisfies condition (5) if and
only if A4 is comprisable.

10. In the category of all rings, ) : Z — Qs an epimorphism.

11. Let H be a group, G a subgroup of H. If J : G — H is an epimorphism (in the
category of all groups), then G = H. [Hint: If G + H, consider two replicas H,, H,
of H and their “free product” (see 8 ex. 2) S; let ¢, be an isomorphism of H onto H;
(considered as a subgroup of S). Let A be the least congruence on S containing all
{919, ¢2g) With g € G. Let ¢ be the mapping of S onto S/4 assigning A[(x)] to x.
Then @o;: H—> S/l, i = 1, 2, are distinct but coincide on G.]

Remark: The above assertion easily implies that, in the category of all groups,
every bimorphism is an isomorphism.

12. Let & be the class of all separated uniformizable topological spaces (see
27 A.1,24 A1); let & be the class of all continuous mappings f : X —» Ywhere & € &,
Y e «. Consider the category (@, o, &, k) with x defined in the obvious way. Prove
that, in this category, epimorphisms coincide with continuous mappings onto dense
(see 22 A.1) subsets, monomorphisms coincide with injective continuous f: X — ¥,
strong epimorphisms coincide with quotient mappings (relative to .z’) of X onto Y,
strong monomorphisms coincide with embeddings f:X — Y such that f[X] is closed
in Y. Consider these and other kinds of monomorphisms, epimorphisms, etc.,
for various categories of spaces (topological, proximal, uniform).

(Section 14)

1. If P is a set and if int is a single-valued relation on exp P ranging in exp P and
satisfying conditions (int i), i = 1,2, 3of 14 A1, thenu = {X » P — int (P — X) |
| X = P} is a closure operation for P and int = int,.

2. Let P be a set and let ¢ be a single-valued relation on exp P ranging in exp P
and satisfying the following two conditions: ¢f = @, o(X U Y) = oX U Y for each
XcP,YcP.Thenu={X—>XugX |X < P} is a closure operation for P and
the derivative of X is contained in ¢X for each X < P. If x ¢ g(x) for each x € P, then
oX is the derivative of X in (P, u) for each X < P. [Hint: if x € ¢X, then x e
€ o(X — (x)) v o(x) and by the last condition this implies that x € o(X — (x)).]
If x € o(x), then o(x) is not the derivative of (x) in (P, u).

3. A family {X, | a € A} is said to be hereditarily closure-preserving in a closure
space 2 if each family {Y,|a e B}, where B = 4, Y, c X,, is closure-preserving
in 2. Every locally finite family is hereditarily closure-preserving, and in an accrete
space each family is hereditarily closure-preserving; thus a hereditarily closure-
preserving family need not be locally finite.
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4. Let {X, | a € A} be a family of subsets of a space, {4, l ceC} be a family in
exp A and Y, = Y{X, | ae A}.If {A.} is point-finite and {X,} is locally finite then
{Y,} is locally finite. If Y{A.} = 4, {Y.} is locally finite and each {X, | acAd}is
locally finite, then {X, | a € 4} is locally finite.

5. In a generalized ordered space (P, <, u) the order-closed intervals which are
neighborhoods of a given point x form a local base at x.

6. If (P, <) is order-dense (i.e., x < y = ] x, y [ # 0), no point of the ordered
space (P, <, u) is isolated. No point of R is isolated.

(Section 15)

1. A subset X of a T-space is the intersection of- a closed set with an open set if and
only if X — X is a closed set. [Hint: . X = X n(P — (X - X)). —IL.LIX =FnG,
F closed, G open, then X = FANGn Fand hence X - X =Fn(Fn G — G).]

2. Let (P, u) be a topological space. For each X < P let o/ be the smallest col-
lection of subsets of Psuchthat X € &/, and Ye & yimplies that uYe oy, P — Ye ..
Then each collection &/, has at most 14 elements. Find a subset X of the space R of
reals such that /5 has 14 elements.

3. If (P, <, u) is an order-complete discrete ordered space (i.e. (P, <) is order-
complete, u is the order closure for {(P, <> and u is a discrete closure), then P is
finite. [Hint: if x, is an increasing (decreasing) sequence in {P, u), then sup {x,}
(inf {x,}) is a limit point of {x,}.] If (P, <, u) is a boundedly order-complete dis-
crete ordered space, then (P, <, u) is countable (each interval [ x, y ] is finite). On
the other hand, for each cardinal m there exists a discrete ordered space (P, <, u) such
that the cardinal of P is m (if I is the ordered set of integers and T'is a segment of
ordinals, then the order closure for the lexicographic product of T and I is discrete).

4. Let % be a local sub-base at a point x in a space . If a net A" ranging in £ is
eventually in each U € %, then 4" converges to x. A similar result for accumulation
points is not true; e.g. consider a point x in a space such that two sets X and Y form
a local sub-base and X n Y = (x).

5. (a)If (P,u)is a closure space, xeuX and % is a local base at x in (P, u),then >
directs % and there exists a net {{xy | U € %}, o) which ranges in X and converges
to x in (P, u) (choose xy € X N U). Thus any space £ can be described by means of
convergence of nets, the ordered domains of which are local bases of points of 2.

(b) If {U, | ne N} is a local base at x and a sequence S = {S;| ie N} converges
to x, then there exists a subsequence {S; } of S with S; e U, for each n.

(c) If a space is of a countable local character at x and a sequence {S,} converges
to x, then there exists a monotone local base {U,} at x with S, e U, for each n; in
addition, if the space is topological then the sets U, may be taken open.

53—Topological Spaces



834 EXERCISES

6. Ultranets. A net 4 is said to be an ultranet if the following condition is
fulfilled: if A4 ranges in the union of two sets X and Y, then 4" is eventually either
in X or in Y. It is almost self-evident that:

(a) If x is an accumulation point of a ultranet .4" in a space £, then x is a limit point
of A in 2.

(b) Every directed net has a generalized directed subnet which is an ultranet. [ Hint:
Let &7 = (N, £) be a directed net and let ¥~ be the collection consisting of all subsets
Y of EN such that N™'[Y] is residual in (DN, <), and let us choose an ultrafilter
% on EN containing ¥". The generalized subnet .# of .4 constructed in the proof
of 15 B.22 is an ultranet; indeed, .# is eventually in each element of % and therefore,
if # rangesin X U Y, then X n ENe % or Y EN € % because % is an ultrafilter
and hence ./ is eventually in X or in Y.]

(c) If x € uX, where (P, u) is a closure space, then there exists an ultranet ranging
in X which converges to x in {P, u).

(d) A directed net 4" converges to x in a space 2 if and only if each generalized
directed subnet of 2, which is an ultranet, converges to x in 2.

7. Convergence of filters. A proper filter base & on a space £ is said to be
convergent to a point x if each neighborhood of x contains an element of 2. Thus
a proper filter & on £ converges to x if and only if 4 contains the neighborhood
system of x in 2. A point x is said to be a cluster point of a proper filter base Z" in
a space 2 if each neighborhood of x intersects each element of &, or equivalently,
if xe N{X | X e%}. xis a limit point of & if & convergzs to x.

Prove: (a) Each limit point is a cluster point, and a cluster point of an ultrafilter
is a limit point.

(b) If Z and % are proper filter bases on a space 2 and & < %, then each limit
point of & is limit point of %, and each cluster point of % is a cluster point of Z.

(c) Let 4 be a directed net ranging in a space & and let & be the set of all subsets
X of 2 such that A4 is eventuallyin X. Then Z is a proper filter of sets on £, and x is
a limit (accumulation) point of " if and only if x is a limit (cluster) point of &
in 2.

(d) Let & be a proper filter on a space . If Z converges to a point x and a net A~
ranging in £ is eventually in each element of &, then .#" converges to x, in particular,
if {xx ] X € '} is a family such that xy € X for each X in &, then the net ({xy | Xe
€ ¥}, o) converges to x.If & does not converge to x, then some net A =
= ({xx [ X € X}, o), where xx € X, does not converge to x, and moreover, x is not
an accumulation point of 4",

(¢) If x is a cluster point of a proper filter Z on a space 2, then x is a limit point
of an ultrafilter # o &, and x is a limit point of a net 4" which is eventually in each
XeZ.

8. All nets are assumed to be directed. Let & = (N, <) beanetin {exp X, =)
where X is a set and let & be the collection of all residual subsets of (DN, <).
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Then
limsup /' = N{U{N,|aec A} | de =}

liminf 4 = U{N{N,|acAd}|dea}.

9. Let & = (N, <) be a net in an ordered set (P, <). If .# is a generalized
subnet of A", then

lim inf & < lim inf # < lim sup 4 < lim sup A&

provided the elements in question exist; if lim 4" exists then lim .# exists and lim A" =
= lim A.

10. Let & = (N, <) be a net ranging in exp lg)| where 2 is a closure space. The
‘topological upper (lower) limit of 4" in 2, denoted by T}, lim sup A" (T, lim inf A4"),
is the set of all points x of 2 such that, for each neighborhood U of x in £, the set
of all a € DN such that U N N, + 0 is cofinal (residual) in (DN, <). We have
Tz lim sup & o T, liminf A7, If the topological upper limit and lower limit co-
incide, then the set T, lim sup 4" is cailed the topological limit of A" in £ and is
denoted by T, lim A", Prove:

(a) If A is a generalized subnet of .4, then
Telim sup & o Tylimsup & > Ty liminf A > Ty lim inf A7,

in particular, T, lim .4 = Ty lim . provided that T, lim A" exists.

(b) If 4" is decreasing (under inclusion), then T,lim 4 = N{N,
If 4" is increasing then T lim A" is the closure of J{N, | a € DN}.

(¢) Tplimsup # = N{U{N, | « < a} |xe DN}.

(d) If 2 is topological then the sets T lim sup 4" and Ty lim inf 4" are closed and
T, lim sup & = T, lim sup A, T, lim inf A& = T, lim inf A, where & =
= ({N,|ae DN}, <).

(e) If (M, <>isanetin® and A4 = {{(M,) | a e DM}, <), then' T, lim sup .#
is the set of all accumulation points of (M, <).

,_‘%[f {M,}, £>and {{N,}, £) are nets in exp ||, then
Ty lim sup {M, U N,} = Tplim sup {M,} U T, lim sup {N,},
Tsliminf {M, U N,} o Tzliminf {M,} U T, liminf {N,},
and hence

aéDN}

Telim {M, U N,} = Tplim {M,} U T, lim {4}
provided both limits on the right side exist.

11. A monotone ordered set is boundedly order-complete if and only if each
interval-like set is an interval. [Hint: For “if*’, given X, consider the interval-like
sets <[X] and <7'[X]. For “only if”” consider separately the case when inf X or
sup X exists. ]

12. BX is topological and the sets Y, Y = X, form an open base for fX.

53
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(Section 16)

1. A mapping f of a closure space (P, u) into a closure space {Q, v) is continuous
if and only if int, f "'[X] < f~'[int, X] for each X < Q.

2. Describe continuity by means of cluster points of sets.

3. Let f be 2 mapping of a closure space £ into another one 2, x € lg‘] and let %
be a local sub-base at fx in 2. Then f is continuous at x if and only if f~![U] is
a neighborhood of x for each U in %. [Hint: f~'[N{U}] = N{f "' [U.]}.]

4. Let f be a mapping of a space £ into a topological space 2 and let # be an
open sub-base of 2. Then f is continuous if and only if f ~'[ B] is open in £ for each B
in 4.

5. A mapping f of a space £ into a space 2 is continuous at x € |9| if and only if
the filter base E{f[U] | U e %} converges to fx, where % is the neighborhood system
of x in 2.

6. Let (N, <) be a net ranging in a closure space £ and let x € |9| Let 7 be the
collection of all residual sets in (DN, <). Then & is a proper filter on DN. Let
Q=DNu (.sa(), and let v be the closure for Q such that each point of DN is isolated
and () U [#] (= E{(#)u 4| Ae}) is the neighborhood system at o in
{Q, v). Let us consider the mapping f of (Q, v> into £ such that N is a restriction
of grf and fof = x. Then f is continuous if and only if the net (N, £) converges
toxin 2.

7. Let u be a closure for a set Pand let {u, | ais an ordinal} be a family of single-
valued relations on exp P ranging in exp P such that uy = u, u,. X = uu,X for
each o and u, X = U{u,X | B < o} if ais a limit ordinal. Then each u, is a closure
operation, and there exists an « such that u, = u, for all § > «, whereupon u, is
the topological modification of u.

8. Let f be an order-preserving mapping of an ordered space (P, <, u) into
another one {(Q, <, v)>. The mapping f need not be continuous, but if f is com-
pletely lattice-preserving then f is continuous.

9. Let f be a continuous mapping of a space £ into a space 2. If {X,} is a locally
finite family in 2 then {f ~![X,]} is a locally finite family in £; on the other hand,
if {X,} is closure-preserving or hereditarily closure-preserving, then {f~'[X,]} need
not have the corresponding property. [Hint: for 2 take an accrete space.]

(Sections 17—18)

1. Let 2, and 2, be subspaces of 2, the closure of |.@1| in # be contained in l.@zl
and Z be a family in exp l.@ll. If & is locally finite in £ then % is locally finite in 2,.
If & is locally finite in 2, then % is locally finite in 2.
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2. Box-product. Let m be an infinite cardinal. If {2, |aeA} is a family of
spaces and P = H{I.@ |} then the m-box-product of {2,} is the space (P, u) such that,
for each x € P, the sets of the form (\{r, '[U,] | b € B} form a local base at x, where
m, = pr, 1 (P x |24|), U, is a neighborhood of m,x in 2, B = A and card B < m.
If card A < m then (P, u) is termed the box-product of {#,}. The box-product clo-
sure operation is the finest closure for P such that the embeddings f,, : 2, = <P, u)
are continuous and the boxes (i.e. sets of the form II{X,}) form local bases, where
TofyeX = X, Mpf,,x = myy for b # a. The projections of m-box-products are continu-
ous and carry all neighborhoods into neighborhoods. ¥N4-box-products coincide
with products. The closures of finite sets with respect to the product closure and the
box-product closure coincide.

3. Local characters. (a) Let 2 be a subspace of a space £. The local character
at x € 21in 2 is at most the local character at x in . The local character of 2 is at
most the local character of 2. The total character of 2 is at most the total character
of 2 (# is assumed to be topological).

(b) The local character of a sum is the supremum of the local characters. The total
character of a sum is the sum of the total characters.

( . The local character at x is less than
or equal to the supremum of card 4 and all the local characters at pr, x, a € 4, in
P,; if 2, 1s the only neighborhood of pr, x for no a then equality holds. If the local
character of each 2, at pr, x is 1, then the local character of 2 at x is card A.
Discuss total characters similarly.

(d) If 2 is a discrete space, card || > 1and card A 2 R, then the local character
of 24 is card A and the total character is card |.@| card A.

4, Domain-extensions of continuous mappings. Let f be a mapping of a dense
subspace (P, u) of (@, v)into (R, w). Let g be an extension of f to a mapping F of
P u (x) into {R, w). Each of the following two conditions is necessary and sufficient
for F to be continuous at x : (a) If a net N ranges in P and converges to x in (@, v>
then f o N converges to Fx; (b) If % is a local base at x in {Q, u) then the filter base
f[[U] n P] converges to Fx. If f is continuous and F is continuous at x, then F
need not be continuous; if, in addition, (x) is closed or the closure of (x) is disjoint
with P, then F is continuous.

5. A space is said to be compact (countably compact) if each directed net (sequence)
has an accumulation point. An ordered space is compact if and only if it is order-
complete. In particular, each closed interval of reals and each finite space are compact.
The ordered space T,,, of countable ordinals is not compact (it is not order-complete),
but it is countably compact (each sequence is bounded in T, ) Each of the following
conditions is necessary and sufficient for a space £ to be compact (countably com-
pact):

(a) Each proper filter (with a countable base) has a cluster point (see 15 ex. 7).

(b) Each interior cover (countable interior cover) contains a finite cover.
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[Hint: Equivalence of (a) and (b) follows from de Morgan formula; for necessity
and sufficiency of (a) see 15 ex. 7.]

A space 2 is countably compact if and only if each locally finite family of non-void
sets if finite.

Any closed subspace of a compact (countably compact) space is compact (count-
ably compact). The sum of a family {2, I a € A} of non-void compact spaces is com-
pact if and only if A is finite. In 29 B.5 and 41 A.12 we shall prove that the product
of compact spaces is compact. For finite families the proof is quite elementary. Let
2 =T{2, | a € A} with A finite and 2, compact and let .4 be a net in £; we may
assume A = (0, 1, ..., n). Since 2, is compact there exists a generalized subnet .4,
of & such that prye A7, converges to a point X, in P, and, by induction, a gene-
ralized subnet A", , of 47, k + 1 £ n, such that pr, ., o A", converges to a point
Xp4q 1IN Pyyy. Clearly 47, is a generalized subnet of A" and .47, converges to
{x,| a €4} ‘

If F is closed and bounded (i.c. coordinates are bounded) in R” then F is compact.
Any bounded net in R” has an accumulation point.

If f is a surjective continuous mapping and D*f is compact then E*f is a com-
pact space. ’

Any BX is compact. [Prove: Any interior cover of BX can be refined by an open
cover & consisting of sets of the form ¥, Y = X. The fact that & is cover is equivalent
to the statement that each ultrafilter contains a set Y with Yin Z. Assuming that the
set & of all Y with Yin & contains no finite cover of X we can find a ultrafilter which
contains no Ye %; consider a ultrafilter containing complements (in X) of all finite
unions of elements of %.]

6. A pseudometric space is a metric space if and only if each net (sequence) has
at most one limit point. In a semi-metric space a sequence may have many limit
points.

7. If d is a semi-pseudometric for a set P such that d{x, z) < 2 max (d{x, y),
d{y, z)), then d{xo, x,» <4y d{x;_y, x;> — 2d{xg, x;) — 2d{x,_y, X,», and hence
i=1

4D{x, y> = d{x, y> where D is the greatest pseudometric which is smaller than d.
Consequently, d is Lipschitz equivalent with a pseudometric.

8. Let u be the closure induced by a semi-pseudometric d for a set P. The function

f=d:ind ((P,u) x (P,u)) >R

is continuous (i.e., d is inductively continuous or ‘‘separately continuous” on
(P, u) x {P,u)) if and only if each open sphere is an open set and each closed
sphere is a closed set. This follows from the following two statements: f is lower (or
upper) semi-continuous if and only if each closed (open, respectively) sphere is a
closed set (an open set, respectively).
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9. (a) A closure space (P, u) is semi-pscudometrizable if and only if there exists
a family {X,, | x € P, n e N} such that {X, ,|ne N} is a local base at x for each
xeP,andif ye X, ,forne N,then {x,} converges to y.

(b) Let P = R x R and let u be a closure for P such that the neighborhoods of
points {x, y> with y & 0 or x € Q coincide with those in the product space R x R,
and that the sets S(z, ¢) = E{w | d(z, w) + a{z, w) < ¢}, ¢ > 0, form a local base
atz = {x,0), x e R — Q, where d is the usual metric for R x R and a{z, w) is the
smallest non-negative angle (in radians) formed by the line R x (0) and the line
containing z and w. The space (P, u) is topological and semi-metrizable. It will
be shown in 22 ex. 7 that {P, u) cannot be semi-metrized in such a manner that each
open sphere be open.*)

10. If an interval I = [a, b] in R does not contain 0, then the mapping {x — x ™'} :
:I — R is Lipschitz continuous; hence {x —» x!} : R — (0) —» R is continuous.

11. Let d, and d, be topologically equivalent metrics for a set P and let d be the
greatest pseudometric smaller than both d; and d,. It is an interesting problem to
find (necessary, sufficient or both) conditions on the closure operation u induced by
d, for d to induce u.

(a) Let P = [0, 1], 4, and A, be disjoint subsets of P such that the pseudometrics
di = {<x p> = w4 o ([x y] v [y, x])}

where u is the Lebesgue measure, induce the closure structure of the space [0, 1]
(i.e., d<x, y) > Oforeach x #+ y). Using the fact that the density of A4; is 0 at almost
all xe P — A, one finds without difficulty that d = 0.

(b) Another construction of d; for [0, 1]. Let Q be the set of all k2" < 1, ke N,
neN. Let d<0,1) =1, and by induction, let o = d(k[2",(k + 1)[2") with
0 < k < 2", n > 0, be defined as follows: (1) if k is even, then a is

di(3k[2"71, 3(k + 2)[2"" 1)

multiplied by } or  accordingas i is 1 or 2; (2) if k is odd then o is d<3(k — 1)[2""1,
1(k + 1)/2"~'> multiplied by % or } according as i is 1 or 2. Clearly, the numbers a
are well-defined. If 0 £ k < | £ 2", then put

k 1 i i+l
d{=,=V=Yd, (L, 1=V,
‘<2" 2"> Z, <2" 2n >

These numbers are also well-defined. Finally, putting di<x, y> = dy, x),
d;{x, x) = 0, we obtain a metric for the set Q. It is easily seen that

x 2y <z implies dZx,y) + d{y,z) =d<{x, z>,

* This example is due to R. HEATH, Proc. Amer. Math. Soc. 12 (1961), 810—811.
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and
k k+1
n S di —, é t4 R
sy 5=
and hence both metrics d; induce the closure structure of the subspace Q of [0, 1].
Let d be the greatest pseudometric for Q smaller than both d, and d,. Prove that
d{x, y» = 0 for each {(x, y). Use the estimate

. k k+1 1
min d; ( —, < (3. =
{ > >} @2

i=1,2

which implies
<0, 1y < 2". (%)"’2% = ().

It can be shown easily that both metrics d, and d, admit extensions to metrics for
[0, 1], inducing the closure of [0, 1]. Of course the resulting d for the extended d;
is also a zero-relation.

(c) Remark. If (P, d,> is a compact metric space of Hausdorff measure zero
and d, is any metric topologically equivalent to d,, then d is a metric; since the space
is compact and d is a continuous metric, d is topologically equivalent to d, by
Theorem 41 C.5. The assumption that the HausdorfT measure is zero can be replaced
by the assumption that the space is totally disconnected.

12. Subsequences in pseudometric spaces. Let 2 = (P, d) be a pseudo-
metric space. A sequence {x,} in & is defined to be metrically discrete if there exists
an r > 0 such that d{x,, x,,> > r for each n %+ m. A sequence {x,} in £ is said to be
a Cauchy sequence if for each r > 0 there exists an »n in N with d{x,, x,,> < r for
each m = n.

(«) No Cauchy sequence is metrically discrete.

(B) If a sequence S has a limit point, then S is a Cauchy sequence; the converse
is true in complete spaces, see 22 ex. 6.

(y) Each metrically discrete sequence is locally finite.

(8) Each sequence in 2 has a subsequence which is either metrically discrete or
a Cauchy sequence.

[Hint to (8): Assuming that no subsequence of {x,} is metrically discrete, contsruct
a subsequence {x,,} together with a monotone sequence {X,} of infinite subsets of N
such that the distance from x,,_to each point x;, i € X),is (n + 1)~! at most; {x, } is
a Cauchy sequence. ]

13. Let # be the collection of all bounded subsets (i.e. with finite diameter, in
particular @ ¢ %) of a pseudometric space (P, d). For each B; and B, in # let
D{B;, B,) be the supremum of all the numbers dist (x, B,), x € B; and dist (y, B;),
y € B,. Prove that D is a pseudometric for #; the space (&4, D) is called the Haus-
dorff hyperspace of (P, d) (occasionally this term is used for the subspace of (%, D)
consisting of all the closed sets).
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(Section 19)

1. Let % be the collection of all subsets of R containing a set of the form Q n
n] —=r,r[,r > 0. Itis easy to verify that % is the neighborhood system at O relative
to a closure compatible with the additive group structure for R. This group will be

denoted by R;. Prove that f = ] : Ry — R is continuous and f[ U] is a neighborhood
of fx provided that U is a neighborhood of x. Each x € R, has a neighborhood U
such that the interior in R of f[ U] is empty.

2. Let L be a finite dimensional linear space over 4 where 7 = R or J = C,
and let X be a base. The relation ¢ = {Zr.x | x € X} - max {|r,|}} isa norm and the
closure operation u induced by ¢ is the unique admissible closure for L such that
each singleton (equivalently, some singleton) is closed. Unicity will be proved in
a sequence of auxiliary propositions.

(@) u is the finest closure among all closures admissible for L. [Let v be any closure
admissible for L; {r —» rx} : J — (L, v) is a continuous mapping and {r — rx}:
: J = (L, u) is an embedding. Consequently, if L, is spanned over (x) and u, or v,
are relativizations of u or v, respectively, to L,, then v, is coarser than u,. The map-
ping f = {{rox| xe X} > Z{r.x}} : I{(L,, u,>} — (L, u) is a homeomorphism and
the mapping f : TI{<{L,, v,>} — <L, v) is continuous, because the addition is continu-
ous; hence ] : (L, u) — <L, v) is continuous. ]

(b) If a singleton is closed in a topological linear space then each net has at most
one limit point. [Clearly, each singleton is closed. If x % y then x¢ y + U + U for
some symmetric neighborhood U of 0 and hence (x + U) n(y + U) = 0.]

(c) If a net & converges to y in (L, v}, if the singletons are closed in (L, v) and
if @ o & is bounded, then y is the only accumulation point of A in {L, u). [Since
¢ o & is bounded, 4 has an accumulation point in (L, u). If z is an accumulation
point of A in (L, u) then z is an accumulation point of .4 in (L, v) and hence
z=y.]

(d) Assume that (L, v) is a topological linear space and v is a strictly coarser than u.
There exists a u-neighborhood U of 0 which is not a v-neighborhood of 0. Conse-
‘quently, there exists a net #” in L — U which converges to 0 in (L, v); hence 0 is not
an accumulation point of 4 in {L, u). If ¢ - . is bounded for some subnet .# of A",
then the singletons are not closed in (L, v) (by (c)). If no ¢ o .# is bounded, then the
net {1/@N,}, where A" = {{N,}, <), convergss to 0 in J, and hence {(1/¢pN,)N,}
convergss to zero in (L, v); on the other hand ¢((1/¢N,) N,) = 1 for each a, and
hence the singletons are not closed in (L, v (again by (c)).

3. If Zis a topological linear space over 7 = R or 4 = C such that the single-
tons are closed, then {r —» rx} : 7 — & is an embedding for each x & 0in Z.

4. Neighborhoods in topologized linear spaces. Let L be a linear space
over J where I = Ror 7 = C.
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(a) A set X < Lis said to be absorbing if for each x in L there exists an r 2 0
such that r > r, implies x € r . X (or equivalently, 0 < r < r, implies rx € X).

(@) Letu beaclosure for L such that the underlying topologized group is inductively
continuous. In order that the external multiplication be inductively continuous it is
necessary and sufficient that each neighborhood of 0 be absorbing, and if U is a
neighborhood of 0 then r . U be a neighborhood of 0 for each » > 0.

(B) Let % be a filter on Lsuch that

(1) each U e % is absorbing (in particular, 0 € U);

(2)ifr>0and Ue# thenr.Ue% and —U e .

There exists a unique closure structure u for L such that % is the neighborhood
system at 0, the underlying topologized group is inductively continuous and the
topologized external multiplication is inductively continuous. [Hint: the neighbor-
hood system at x is x + %.]

(b) A set X = Lis said to be balanced if x € X, |r| < 1 = rx € X. Let 0 be the set
of all r, |r| < 1. For each X + 0 the set 0.X is the smallest balanced set containing
X; it is termed the balanced hull of X,

(o) If <L, u) is a topological linear space, then the collection % of all balanced
neighborhoods of 0 is a local base at 0. % consists of balanced huils of neighborhoods
of 0, each element of % is absorbing (see (a)), Ue %, r > 0= r. U e %, for each U
in % there existsa Vin # with V+ V< U.

(B) Let % be a filter base on Lsuch that

(1) each element of % is balanced and absorbing.

(2) If Ue % then V + V < U for some Vin %.

Then there exists a unique closure operation admissible for Lsuch that % is a local
base at 0.

(c) A subset X of Lis said to be convex if x, ye X, r +s=1,r>0,s> 0=
= rx + sy € X. If X and Yare convex then rX + sYis convex for any r, s € . Next,
if X is convex, then rX + sX = (r + s) Xforeachr>0,5s>0.If 9 = Rthena
convex set X is balanced if and only if X is symmetric (ie. xe X = — xe X). If X is

n
convex then X r;x; € X provided that r; = 0, Z{r;} = 1 (such a linear combination

1=1
is said to be convex).

(o) Let X be a convex and absorbing set (X contains 0). For each x € L let A, =
= E{r|r >0, xerX}. Clearly 4, # §. Let p = {x - inf A, | xe L} (p is said to
be the Minkowski functional of X). Prove

p0 =0, p(rx) =rpx if r >0, p(x + y) < px+ py.

If X is balanced then
p(rx) = |r| px
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for all x € 77, and hence p is a norm. Next
xeX=>px=<1l, px<l=xeX.
If u 1s a closure admissible for L then

p is continuous <> X is a neighborhood of 0.

(B) Let ¢ be a norm and U = E{x | ¢x < 1}. Then U is a convex, absorbing and
balanced set and ¢ is the Minkowski functional of U. (Hence, if u is an admissible
closure for L then ¢ is continuous if and only if U is open.)

(Y) A space L is said to be locally convex if the convex neighborhoods of 0 form
a local base at 0. A space L is locally convex if and only if, for any neighborhood U
of 0, there exists a continuous norm ¢ such that px < 1 =>xe U.

(3) A topological linear space is normable if and only if there exists a convex
neighborhood U of 0 such that if Vis a neighborhood of 0 then #¥ > U for some r.

[Hint: “only if”* is evident and to prove “if” consider the Minkowski functional
of a bounded, convex and balanced neighborhood W = U.]

5. The space S(T) (where T c R” has a positive finite measure). Let S be the real
linear space of all measurable functions on T. Then ¢ = {x - [ [|x{?)|/1 +
+ |x(t)|]] dt | x € S} is a norm for the underlying additive group of S, and S endowed
with the closure structure induced by ¢ is a topeiogical linear space.

(a) S is not locally convex (and hence, S is not normable). This is an immediate
consequence of the following result.

(b) S is the only convex neighborhood of 0. [Let » > 0 and let x be the measure.
We shall show that any x € S is a convex linear combination of elemznts with norm
<r Let {X;|1 £ i < n} be a decompoistion of T such that uX; < r for each i,
and let x; be the function which is 0 outside X; and x;t = n. xt if t € X;. Clearly

x =X Ifnx; and ox; < [X,dt = pX; < r.]
i=1
6. Proof of 18 D.16. Let A4 be a closed subalgebra of the normzd algebra F*(&, R)

where & is any struct, and assume that A4 contains all constant functions.

(a) If we know that for each a, b, r € R, ¥ > 0, there exists a polynomial function
P = P,, such that |Px — |x|| < r for each xe[a, b], then for any fe A with
|fx| < C for each x € &, we have || |f| — Pof|| <r with P = P_¢,, and hence
|f] € 4.

(b) (Alternate proof.) It is well-known and easily proved that (1 — r)'/2=
= 0202 a," uniformly on [0,1]. If fe 4, |fx| < C for each xe &, then |fx| =
_C = (€ = () = Gt = (1= [(F1) D) = (1 - F at -
— [(f. f) x/C?])") uniformly. "



844 EXERCISES
(Section 20)

1. Boundary. Let (P, u> be a closure space and let bd, called the boundary
operation associated with u, be the single-valued relation on exp P ranging in exp P
which assigns to each set X the boundary of X in P. The following conditions are
fulfilled:

(bd1) bd® =0, and X < Y implies bd X =« Yu bd Y.
(bd2) bd(X UY) cbdX U bd YforeachX < P, Y < P.
(bd 3) bd X = bd (P — X).

If bd is a single-valued relation on exp P ranging in exp P which satisfies conditions
(bd 1) and (bd 2), then

u={X->XUbdX|X c P}

is a closure operation for P and the boundary of any subset X in (P, u) is (X U
ubdX)n(P-X)ubd(P-X))=(bdX nbd(P-X))u(bdX n(P - X)) v
U (X nbd (P — X)), and hence, if bd fulfils also condition (bd 3), then the boun-
dary of any subset X of Pis bd X.

2. Let bd be the boundary operation associated with the closure structure of a
closure space 2. Then (a) a family {X, | a € A} of subsets of P is closure-preserving
if and only if bd U{X, | a € B} = U{bd X, | a € B} for each B = A4 (the equality is
not true; e.g. consider any two distinct closed intervals with a common point in the
space R of reals); (b) bd N{X,} = U{bd X,} for each finite family {X,} in exp P.

3. If?2 = (P, £, u)isaconnected generalized ordered space, then & is an ordered
space.

4. Let (P, u) be the subspace of R such that P =[0,1]u ]2, 3[. Thus u is
a generalized ordered space (17 A.22). There exists no order < for P such that u is
the order closure for (P, <). [Hint: assuming that u is the order closure for (P, <)
one finds (20 B.3, Corollary c) that < agrees with the usual order or with the inverse
of the usual order for R on [0, 1 ] as well as on ] 2, 3 [ and therefore (exactly) one
of the following possibilities occurs: either 1 is the supremum or the infimum of ] 2, 3 [
in (P, <) or 0 is the supremum or the infimum of | 2, 3 [ in (P, <).]

5. The empty space is connected and @ is the only component.

6. Let J,=(n") x [0,1],n=1,2,..,x=¢0,00, Q = U{J,|n=1,2,...},
P=9Qu (x) and let us consider the closure u for P such that u agrees with the clo-
sure structure of R x R on Q, the singleton (x) is closed and the sets U{J, | n 2 k} —
— (R % (0), k = 1,2, ..., form a local base at x. Consider the union Y of the locally
finite family {(<n~*, 0)) | n = 1, 2, ...}. The singletons (x) and () are separated for
each y in Y but the sets (x) and Y are not separated because the closure of each neigh-
borhood of x intersects Y.
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7. Homeomorphisms of connected ordered spaces. (2) A point x of a connected
ordered space (P, £, u), card P = 2, is the greatest element of (P, <) or the least
element of (P, <) if and only if the following condition is fulfilled: there exist
arbitrarily small neighborhoods U of x such that bd U is a singleton.

(b) Let 2, i =1, 2, 3, be connected ordered spaces such that card Igjil =2,
2, has the greatest element as well as the least element, £, has the greatest element
but not the least element, and £, has neither the least element nor the greatest ele-
ment. Then 2, is not a homeomorph of 2, i # j (Use (a)). E.g. ]0,1[and [0, 1]
are not homeomorphic.

(c) There exists a one-to-one continuous mapping f of Z{[0,1[|ne N} onto
J0, 1] .[Hint: f carries (n) x [0, 1 [ onto [ (n + 2)~*, (n + 1)7' [.]

(d) Let & be the sum of a family consisting of a countable infinite number of
singletons and of a countable number of open intervals, and 2 be the sum of a family
consisting of a countable infinite number of singletons and also of intervals [ 0, 1 [.
Then there exists a one-to-one continuous mapping of £ onto 2 and a one-to-one
continuous mapping of £ onto £, but the two spaces are not homeomorphic.

8. Assum: that a one-to-one sequence {x,} convergss to an x % x, in R. Consider
a closure u for R such that the subset X = (x) U E{x,} is closed, the subspace X is
discrete, R — X is a subspace of R (in the usual closure structure), and U is a neigh-
borhood of y € X in <R, u) if and only if (X — (y)) U U is a neighborhood of y
in R. The family {x,} is locally finite in (R, u), the sets (x,) and () are separated for
each n, but the sets E{x,} and (x) are not separated. Another example is given in
29B.9.

9. A subset C of a metrizable space P is connected if and only if the following
condition is fulfilled: if X c Pand CnX £ 0+ Cn (P — X), then Cnbd X + 0.
[Use the fact that int X and int (P — X) are semi-separated. ]

10. Connected collections of subsets of a set. A collection & of subsets of a set P
is said to be connected if for each X and Yin & there exists a finite chain from X
to Y, i.e. a finite sequence {X, | i < n}, neN,inZ such that X = X,,, Y = X, and
X,_,nX;*0fori = 1. Acomponent of a collection 4 is a maximal connected
subcollection &', of &, that is, &, is a component of & if & is connected, and when-
ever % is connected and ¥, «¢ % < &, then X, = ¥. Prove:

(2) Every connected subcollection &, of a collection % is contained in a component
of Z.

(b) If &, and &, are two components of a collection &, then &, = &, or (U%;) N
N (UZ,) = 0.

(c) If & is an interior cover of a closure space 2 and &, is a component of %,
then the set Y&, is simultaneously closed and open in P.

(d) A closure space 2 is connected if and only if each interior cover of 2 is connect-
ed (see 20 B.12).
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(¢) The union of a connected collection of connected subsets of a closure space 2
is a connected set in 2.

11. A collection Z of subsets of a closure space 2 is said to be quasi-connected if
for each X and Yin & there exists a finite sequence {X | i £ n} such that X, = X,
X, = Y and no pair of sets X;,_,, X;, i = 1, is semi-separated. Prove the following
ge reralization of 10 (e): The union of a quasi-connected collection of connected sub-
sets of a space £ is a connected set. Prove analogues of statements (a), (b), (c)
and (d) of 10 with connected collection replaced by quasi-connected collection (de-
fine quasi-components!).

(Section 21)

1. Point sets. A point set is defined to be a struct Z = (X, ?) where 2 is a
closure space and X is a subset of lg’| We have often worked with point sets ex-
plicitly (e.g. the relation o of 21 A is a class of point sets) or implicitly (we have spoken
about the closure, the interior or the boundary of a set not specifying the space in
question, e.g. the closure of the union of two sets is equal to the union of closures,
a family {X, | a e A} is closure preservingif and only if the closure of U{X, | a € B}
is equal to the union of {X, | a € B} for each B = A). The concept of a point set
enables us to give precise formulations of many definitions and theorems. Of course
we must give definitions needed for point sets. Roughly speaking, a point set Z' =
{X,?) has a property P if and only if the set X has the property P in 2, e.g. ¥ is
open or closed if X is open or closed in 22, % = (Y, 2) is the closure of X if ? = 2
and Yis the closure of X in 2.

Formal definitions. (a) Let T be the class of all point sets. The closure structure
of T is the single-valued relation on T ranging in T which assigns to each & =
= (X, (P, u)y) the point set {uX, (P, u)) which is called the closure of & and de-
noted by Z. Similarly we define the interior operation

int = {<X, (P, u)) - (int, X, (P, u)>},
and the boundary operation
bd = {<X, (P, u)) = <bd, X, (P,udd}.
(Clearly & is open or closed if and only if int = % or =% respectively.)
(b) Let < be the relation
(X, 2) - 1,2y | X < Y}

for Tand T; < is an order for T which is called the inclusion. It is easily seen that
(T, <) is boundedly-order complete and, given a space &, the relation {X —
<X, P?) IX c |.@|} is a bijective order-preserving relation for {exp lg’|, <) and
the ordered subset of (T, <) consisting of all (X, %), X < |9’| The supremum of
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a non-void family {<X,, #>} in (T, <) is the point set (U{X,}, #) which is called
the union of {(X,, #)} and denoted by U{(X,, #)}. The infimum of a {<X,, 2>}
is the point set {N{X,}, #) which is called the intersection of {<X,, #)} and denoted
by N{(X., #>}. It is convenient to define N{<X,, 2> | a € 0} = <|2|, #). Thus the
class of all closed sets is join-stable and completely meet-stable in (7, <), and the
class of all open sets is meet-stable and completely join-stable in (T, <). These two
results can be formulated as follows: the intersection of any family of closed point
sets is closed, the union of a finite family of closed sets is a closed set, the union of
a family of open sets is open, and the intersection of a finite family of open sets is
open.

(c) The complement of a point set (X,?) is defined to be the point set
( Iﬂl — X, ?). (Clearly % is open if and only if its complement is closed.)

(d) Z is a neighborhood of % if (and only if) % < int &. If % is the collection of
all neighborhoods of a point set &, then % is a filter in (T, <) and each element
of % contains Z. One can define the neighborhood system of a point set, a local base
and a local sub-base of a point set, and formulate the relations between the closure
structure of T, int, bd and neighborhoods.

(¢) The product (the sum) of a family {<X,, #,>}, denoted by II{<X,, Z,>}
(2{{X,, 2>}, respectively) is defined to be the point set {II{X,}, II{Z,}> (<Z{X,},
Z{.@,}), respectively). Thus the product of connected point sets is a connected
point set, the closure of a sum is the sum of closures and the closure of the product
is the product of closures; in symbols

&} = 27} &} = I{Z} .

(f) Localization. A relation o for the class of sets and the class of closure spaces
such that (X, ) e a implies X < lﬂl is a class of point sets. Let o be a class of point
sets. A point set & is said to be an a-set if Z € a. A point set & = (X, #) is locally
an a-set at x if there exist arbitrarily small neighborhoods % = (U, ) of {(x), #)
such that & N % is an a-set. A point set & is locally (relatively locally) an a-set if Z
is locally an a-set at each x € |2| (x € X). Similar definitions may be formulated for
feeble localization.

2. The closure of a locally connected subset need not be locally connected (see
21B.3): Let us consider the subset P = Z{[0,1]|ne N} of R x R and put X =
= P — (€0, 0)). Let u be the closure operation for P such that the relativization of u
to X agrees with the relativization of the closure structure of R x R, X is open in
{P,u),and U is a neighborhood of (0, 0) if and only if U is a neighborhood of
{0, 0) in the subspace P of R x R and U contains all {(n, 0) except for a finite
number of n’s. Consider the set ¥ = X{]0,1]|ne N}. It is casily seen that Y is
locally connected in (P, u)>. Evidenily uY = P and {P, u) is not locally connected
at <0, 0).
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3. A quasi-component which is not connected. Let £ be a subspace of
R x R such that |@| = (€0,0),¢0,1>) U U{P,|ne N} where P, =(27") x
x [ 0,1]. Each set P, and also (<0, 0)) and (<0, 1)) are components of 2. Clearly
each P, is a quasi-component of 2. On the other hand neither (<0, 0}) nor (0, 1)) is
a quasi-component. Iadeed, if X is a simultaneously open and closed subset of 2
containing <0, 0>, then X intersects all P, except for a finite number of n’s, and
hence, P, being connected, P, — X for all P, except for a finite number of »’s. Since
X is closed, <0, 1) belongs to X.

4. Totally disconnected spaces. Let a consists of all (X, #)> such that X
is simultaneously open and closed in 2. A space 2 is said to be totally disconnected
if 2 is locally an «-set. (a) Every totally disconnected set is topological. (b) A closure
space £ is totally disconnected if and only if 2 is topological and sets simultaneously
opzn and closed form an open base for 2. (c) The class of all totally disconnected
spaces is hereditary and closed under arbitrary products. (d) A space 2 with closed
singletons is totally disconnected if and only if £ is homeomorphic to a subspace
of 2" for some cardinal X where 2 denotes the two point set (0, 1) endowed with the
discrete closure. [Hint: “If”” is evident (see (c)), and “‘only if” is proved as follows:
Let & be the set of all simultaneously open and closed subsets of £, and for each B
in # let fp be the mapping of 2 into 2 such that fpx = 1if x € B and fzx = 0 other-
wise. Each fpis continuous, and the reduced product f of {fp | B e %} is an embed-
ding provided that £ is an open base for £ and the functions fp distinguish the
points of 2.] (¢) The following statements are equivalent (2 is totally disconnected):
X is an a-set in &; X is locally an a-set in &; X is feebly locally an a-set in 2.

5. The collection of all open (closed) sets in a topological space is locally determ-
ined.

6. Let o be a relation such that (Y, 2) € « implies that 2 is a space and Y < |.Q]
Given a space 2 = {P,u) and X c P, let X" (X', respectively) denote the set of
all x such that X is locally (feebly locally) an «-set at x in 2. Clearly X" < X'.
Prove:

(a) If X is an o-set in £, then X’ = P but X" may be empty.

(b) If @ is an a-set in 2, then X’ > X" > P — uX; if @ is the only a-set in 2, then
X' =X =P — uX.

(c) If 2 is topological, then X’ is open but X" need not be; however, if each
relatively open subset of an a-set is an a-set (in particular, if o is hereditary), then
X" = X' is also open.

(d) If « is hereditary, and X =« Y= P, then Y' = Y < X" = X',

(e) Let X* stand for P — X'. If 2 is topological, « is hereditary and  is an a-set
in &, then X < Yimplies X* = Y*, (X*)* « X* = u(X*) c uX, and if G is open
then G n X* = G n (G n X)*. If, in addition, « is additive (i.e. the union of two
a-sets is always an a-set), then (X U Y)* = X* U Y*.
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(Section 22)

1. If Xy < n £ expm, 2 is a topological space the total character of which is
=<m, then the density character of 2" is at most m.

2. The cardinal of any infinite point-finite family of non-void open sets is at
most the density character. The cardinal of any disjoint family of non-void open sets
is at most the density character.

3. If mis the total character of a space £ then each interior cover of # contains an
interior cover of a cardinal <m. In particular, if 2 has a countable total character,
then each interior cover contains a countable interior cover (a space with the last
property is said to be a Lindelof space).

Let 2 be the set of all reals endowed with the closure of right-approximation. Each
subspace Z of 2 is of a countable density character, and any open cover of # contains
a countable subcover. First prove that if & is a collection of at least two-point intervals
in R, then UZ = % for somes countable subcollection % of &. 2 is totally discon-
nected.

4. A pseudometrizable space is compact if and only if it is countably compact.
[Hint: If a pseudometric space (P, d) is countably compact then (P, d) contains a
countable dense set (if each two points of a set X has the distance =r > 0 then X is
finite), hence (P, d) has a countable total character, and hence, each interior cover
contains a countable interior cover.

If a semi-pseudomzstric space (P, d) is countably compact then there exists a
countable X < P such that each sphere about X is dense.

5. A topological space 2 is locally non-meager if and only if (% is dense for any
countable collection % of open dense sets. [Hint: If U is open and dense then |97‘| -U
is nowhere dense. ]

6. Complete pseudometric spaces. Let {P,d) be a pseudometric space. A Cauchy
net is a (directed) net (N, <) such that for each r > 0 there exists an a such that
b, ¢ = a implies d (N,, N.> < r. A proper filter & is a Cauchy filter if & contains
arbitrarily small sets, i.e. for each r > 0 there exists an X in & such that d(X) < r.
If x is an accumulation point (cluster point) of a Cauchy net (Cauchy filter) 4" then x
is a limit point of A". (P, d) is said to be complete if the following equivalent condi-
tions are fulfilled: '

(a) Each Cauchy filter has a cluster (or equivalently, a limit) point.

(b) Each Cauchy net has an accumulation (or equivalently, a limit) point.

(c) Each Cauchy sequence has an accumulation (or equivalently, a limit) point.

Any closed subspace of a complete pseudometric space is complete.

Each complete pseudometric space is a Baire space. [Hint: Let {U,} be a sequence
of open dense sets; choose open V, such that @ # V,,., < N{U; | i<n}nV,
d(Vyer) < (n + 1)71]

54—Topological Spaces
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7. The set I of all irrationals is not F,in R.[Hint: Each closed F < I is nowhere
dense and I is not meager because Q = R — I is meager and R is non-meager.] There
exists an uncountable disjoint family of countable dense sets in R.

The space (P, u) in 18 ex. 9 cannot be semi-metrized in such a manner that the
open spheres are open. [Hint: Let d semi-metrize (P, u); there exist an » > 0 and
anon-meager X = R — Qsuch that, foreach zin X x (0), the r-sphere U(z, r) about
z in (P, d) is contained in S(z, 1). Let x € Q be a cluster point of X; choose {x, y)>
with d {((x, 0>, {x, y>> < 4r; then {x, 0) is not an interior point of U({x, y), 1r).]

8. (2) A normed linear space is said to be complete if the pseudometric given by
the norm is complete. The normed space F*(#, R) is complete for any space 2.
[If {f,} is a Cauchy sequence, then {f,x} is a Cauchy sequence in R for each x; if
fx is the unique limit point of {f,x}, then f is a limit point of {f,}.]

(b) There exists a continuous function on I = [0, 1 ], which does not have a de-
rivative at any point. [Proof. Let C be the subspace of C*(I, R) consisting of all f
with f0 = f1, and for every f in C let f* be the unique extension of f to R with
f*(x + 1) = f*x for all x. For each n let F, be the set of all fe C such that there
exists an x in I with

[f*(x + h) — f*x|/h < n

for all h > 0. Each F, is closed (if {f,} converges to f in C, and f, fulfils the above
inequality at x,, and if x is an accumulation point of {x,} in I, then f and x satisfy the
inequality, and hence f € F,) and nowhere dense (this is obvious). Since C is locally
non-meager (C is closed in C*(I, R)), C — U{F,} * 0.]

9. If (P, d) is a semi-pseudometric locally non-meager space such that each open
sphere in (P, d)is an open set, and each sphere aboutan X < Pisdense, then X is dense.
The assumption that (P, d) is a locally non-meager space cannot be omitted; exhibit
an example with X a singleton. Corollary: T, cannot be semi-metrized in such
a manner that each open sphere is an open set. (T, is a countably compact Baire
space with an uncountable density character, see ex. 4.)

10. Classification of Borel sets. (a) Let P be a set and let ¢, and g, be single-valued
relations which assign to each countable family in exp P a subset of P. Assume that
0{X, | b e(a)} = X, for each a. Let Z be a collection of subsets of P. If % < exp P,
let g; > % { be the collection of all ¢,{X,} with {X,} ranging in #. Let us define
Zo =% and Z, = 0DVU{%, \ B < a}{, where a, ff are ordinals and i = 1 if « is
odd and i = 2 otherwise (each ordinal « can be written in a unique manner in the
form y + n where y is a limit ordinal and n € N; « is odd if »n is odd). Prove that
U{Z. |« < 0} =Z 4,41 = &, Hence %, is stable under both ¢, and g,. If « is
odd then ¢, )%, {( = &,, if o is even then ¢,>%,{ = %, provided that g; - ¢; < ;.

(b) If 2 is a topological space, % is the set of all closed sets, ¢; = U (precisely,
o{X,} = U{X,} for each {X,}) and ¢, = (), then &, is denoted by F, (more precisely
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F,(2)). If & is the collection of all open sets, ¢; = ), ¢; = U, then &, is denoted
by G, (more precisely, G,(%)).

(c) If F(?) = G, (#) or Gy(#) = F, (#), then F, = G,, is the collection of
all Borel sets. If & is pseudometrizable.then G, < F, and F, < G,. The families
{F;| B < »,} and {G, | B < @,} are said to be the Borel classifications of the Borel
sets.

11. Let Z be a collection of subsets of a space 2, (%) be the collection of all
countable unions (countable intersections) of sets in &. The family & (%) is count-
ably additive (countably multiplicative), and if & is multiplicative (additive) then
%, (%) is multiplicative (additive). If & is closed under locally finite unions then
Z , is closed under locally finite unions, and hence under o-locally finite unions. If
Z is multiplicative and closed under locally finite unions, and {X,} is locally finite in
L5, then U{X,} € Z; provided X, = ¥, for some locally finite family {Y,} in &

12. A o-point-finite family is point-countable and the converse is not true
({[x, »]| x e T,,} is locally countable but not o-point-finite because each point-
finite subfamily is finite.)

(Sections 23 —25)

1. Adjacent nets. Two nets &/ = (N, <) and 4 = (M, <) in a semi-uniform
space # = (P, %) are said to be adjacent if < = < (in particular DN = DM) and
the net {{(N,, M,)> | a € DN}, <) is eventually in each Ue#%. A 2-adjacent (or
%-adjacent) pair is a pair (¥, ) such that the nets .# and .# are adjacent in 2.
Let ¢(2) be the class of all 2-adjacent pairs of directed nets. Then

(a) 4(2) is a symmetric relation;

(b) %(2) is transitive if and only if £ is a uniform space;

(c) ¢(#) = 4(2) implies # = 3;

(d) two subsets X and Y of £ are proximal if and only if there exists an {4, 4>
in () such that 4" ranges in X and .# ranges in Y;

(e) a net 4" converges to x in &2 if and only if (A, #) € €(P) where A ranges
in (x) and the ordered domains of .# and 4" coincide.

2. Uniform local bases. Let P and A4 be sets, 4 & @, and let ¢ be a relation
on P x A ranging in exp P such that (1) x € {, ,, for each x, (2) for any a, and
a, in A there exists an a in 4 such that £, .y © &g, 5y N &(g,.xy for each x, (3) for
each a in A there exists a b in 4 such that y e &(o.xy implies x € £, . For each a let
U, be the sum of {&, l x € P}. Then the collection of all U, is a base for a semi-
uniformity %. The collection of all £, .y, a€ 4, is a local base at x in (P, %).
Discuss interrelations between semi-uniformities and uniform local bases. Find a
necessary and sufficient condition for a uniform local base to determine a uniformity.

s4%
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3. Let {P,d), P=[0,1], be a subspace of the metric space of reals. Let
D{y,x) = D¢x, y> =1if x=1/n, y=1/(n+ 1), n=1,2,..., and D{x, p) =
= d{x, y) otherwise. Evidently D is a semi-metric. Prove:

(a) The mapping f = §: (P, D) - (P, d) is a uniformly continuous proximal
homeomorphism, but f is not a uniform homeomorphism. Thus d and D are proximally
but not uniformly equivalent.

(b) Both d and D are totally bounded (hence d is proximally coarse), but D is not
proximally coarse.

~ 4. (a) The open cover # = {< ™[] |« < w,} of T, is not semi-uniformizable.
[Hint: Let ¥ be an inductive neighborhood of the diagonal such that {V'[x]} refines %.
Choose a sequence {x,} such that x,,, > sup V[x,] for each n. If x is an accumulation
point of {x,} then x ¢ U{V[x,]}.]

() A semi-uniformizable cover need not be uniformizable. E.g. consider a semi-
uniformizable cover (P — (x), P — (), x # y, of the space in 14 A5 (e). See also
28ex. 11. -

(¢) A semi-uniformizable vicinity of the diagonal need not be a neighborhood of
the diagonal, and hence not a uniformizable vicinity. Exhibit such a vicinity on R.

5. Every interior cover of a pseudometrizable closure space is uniformizable.
[Hint: It is sufficient to show that every interior cover of a pseudometrizable space is
star-refined by an interior cover. Let % be any interior cover of a pseudometrizable
space (P, d);for each x in P let r, be a positive real and X, be an element (or a mem-
ber) of % such that the r,-sphere at x is contained in X, and let Y, be the open r/4-
sphere at x. Thus & = {Y, | x € P} is a star-refinement of %. In fact, given x, let
r=sup{r,|xeY,}, and choose a z with r, > 4r; show that st (%, x) < X..]

6. Two constructions of uniform modification. (a) Let % be a semi-uniformity
for a set P. Define %, = %, %, is 2 semi-uniformity having the collection of all
U,U,Ue%,, for a base, %, = n{%ﬂ | f < a} if o is a limit ordinal. There exists
an o such that %, = %,.; %, is the uniform modification of %.

(b) The collection of all H{U,, o... o Uy | n € N, ¢ bijective on N, ;} with U, in %
is a base for the uniform modification of %.

(c) If {%,} is a family of uniformities for a set P, then sup {%,} = {%,} need not
be a uniformity.

7. Semi-uniformizable modification. For each closure operation u on P
there exists a finest semi-uniformizable closure v coarser than u. A mapping f:
: (P, u) — 2, with 2 semi-uniformizable, is continuous if and onlyif f: (P, v) - 2
is continuous.

To each closure u for P there exists a coarsest semi-uniformizable closure w for P
finer than u; if 2 is semi-uniformizable and if a mapping f: 2 — (P, u) is conti-
nuous, then f: 2 — (P, w) need not be continuous.
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8. Proximal neighborhoods. Let < be a relation for exp P such that (1) <X
for each X « P; (2) X <Y=>Xc Y; 3)If X =X, <Y, = Ythen X <Y; (4)if
X<Y,i=12then X <Y, nY,; (5 X <Y=(P — Y)<(P — X). Then there
exists a unique proximity p for P such that X < Y if and only if Yis a p-proximal
neighborhood of X.

9. Let P be an infinite set, x, € P. Let XpY if and only if x,e X U Yand X +
0+ YorXnY= 0; pis a proximity. Let u be the induced closure. A set Yis
dense if and only if xoeY or P — Y = (y,). Let d{x, y) = 1ifx + x, + y and
d{x, y> = 0 otherwise. Clearly d induces p.

(a) The constant mapping {y — x,} : & — (P, d) is dense in unif F(&, (P, d))
for each struct %. Hence the uniform limit of a constant net of uniformly continuous
mappings need not be continuous.

(b) d is totally bounded but not proximally coarse.

(c) Each interior cover of <P, d) is a uniform cover (it contains P). Hence (P, d)
and the uniform modification of (P, d) have the same semi-uniform covers. In parti-
cular, two distinct semi-uniform spaces may have the same semi-uniformizable
covers.

(d) Let % be the uniformly finest proximally coarse uniformity for P and let ¥~
consist of all Uu X, uX.; ', keN, Ue%, where X; = {x, > X,4, |n = k} and
{x,} is a one-to-one sequence in P; % is proximally coarse but ¥ not.

10. A semi-metric for reals. Let d{x,y>) =0 if x = y and d{x,y) =
=1 /Ix - y| otherwise. Evidently d is a semi-metric for R.

(@) A set X = R is open in (R, d) if and only if X contains a set of the form
X(n) = [ «,n] u[n -] The space <R, d) is topological.

(b) If a net 4" is eventually in each X(n) (or equivalently, 4" has no accumulation
point in the space R of reals), then 4 converges to each point in (R, d).

(c) The function d : (R, d) x (R, d) — R is not continuous. !

(dIfU=PxP—(0)x[«,O0[ then X < U[X] for each X = R. On the -
other hand, U is not a semi-neighborhood of the diagonal.

() The semi-pseudometric d is totally bounded; however the semi-uniformity is not
proximally coarse. '

(f) Every bounded mapping (i.c., the range is contained in a bounded interval) of
a semi-uniform space into (P, d) is a uniform limit of constant mappings. Hence .
the uniform limit of uniformly continuous mappings into a semi-uniform space need
not be continuous.

(g) If <P, d) is any semi-metric space, then D defined by D<(x, y> =0 1f
d{x, y> = 0 and D{x, y> = (d(x, y))~ " otherwise, is a semi-metric for P. Discuss
the properties of D.

11. If # is a uniform space and 2 is a proximity space, then the set P(2, #) is
closed in unif F(2, ).
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12. A proximally continuous mapping f of a pseudometric P space into a uniform
space 2 is uniformly continuous (if d is a uniformly continuous pseudometric on 2
then f: 2 — (].@I, d) is proximally continuous and hence uniformly continuous).

13. Extenstions of uniformly continuous pseudometrics and functions.
(a) Any semi-uniform space {(Q,¥") is a subspace of a semi-uniform space (P, %)
such that the relativization of any uniformly continuous pseudometric for (P, %)
to {Q, ¥") is zero. (b) Let (N, %) be a subspace of R. Since % is uniformly discrete,
each function or pseudometric on (N, %) is uniformly continuous. If f is a function on
{N, %> such that the sequence {I fn —f(n + 1)|} is not bounded, then f has no uni-
formly continuous extension on R. (c) If d<x, y> = |fx — fy| with f in (b), then
d has no uniformly continuous extension on R.

14. The Urysohn procedure. The fact that in a proximity space (P, p) satisfying
(prox 5) for each two distant sets X and Y there exists a proximally continuous func-
tion f, 0 < f < 1, such that f[X] < (0) and f[Y] = (1) can be proved as follows.
From (prox 5) we obtain at once that there exists a family X,, where r varies over all
rational dyadic numbers, such that X=X, X, =P - Y, X, =Pifr> 1, X, is
a proximal neighborhood of X,_,-n, and X, is distant from P — X,,,-n (where
r = (2p + 1)/2"). For each x e P let fx = inf {r I x € A,}. It is easily seen that f :
: (P, p> — R is proximally continuous.

15. The Stone-Weierstrass theorem is not true for complex functions. Let 2 be
the subspace of the proximity space C with underlying set E{x + iy | x? + y* =1}
f=1):2 - Cis a proximal embedding and hence f projectively generates 2. The
function g : {x + iy > x — iy} : # — C is proximally continuous but g — F|| 2
= r > 0 for each polynomial function F. Find .

16. Linear spaces. A pseudometric d on a module .% is said to be invariant
if d is invariant with respect to the underlying group. .% is pseudometrizable if and
only if it is induced by an invariant pseudometric. A pseudometrizable & need not be
locally convex (see 19 ex. 5).

17. Let #(2P, #) denote the set of all uniform homeomorphisms of a uniform
space 2 onto itself endowed with the group-structure o (the restriction of the compo-
sition of mappings) and the closure of uniform convergence (i.e. the closure struc-
ture is a relativization of the closure structure of unif F(#, #).

(a) #(2, 2) is a topological group (in general not commutative).

(b) If 2 = R then %x + %, (and hence %y + % =+ %), and the group multi-
plication {{f, g)> - fo g} is uniformly continuous with respect to no of the group
uniformities. [ Consider the subgroup consisting of “lines”, i.e. mappings of the form
{x >ax + h} :R > R]

18. Prove the assertion in the remark of 25 B.18. [ Hint: In the notation of Theorem
25B.18, fix an « in A and take a family {{P,, ¥7,>} of uniform spaces such that
¥, = %, for a + a and that ¥, is proximally equivalent to %,. Since the intersection
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of two proximal vicinities, one of which is finite square, is a proximal vicinity, it fol-
lows easily that the product uniformities [[{#%,} and [[{¥",} are proximally equi-
valent. ]

(Section 26)

1. Let (P, u) be a closure space. Each of the following conditions is necessary and
sufficient for a closure v for the set P to be the quasi-discrete modification of u:

(a) v is the coarsest quasi-discrete closure operation finer than u;

(b) a mapping f of a quasi-discrete space 2 into (P, u) is continuous if and only if
the mapping f : 2 - (P, v) is continuous.

2. The quasi-discrete modification (as a relation) commutes with the topological
modification, that is, the quasi-discrete modification of the topological modification
of a space £ coincides with the topological modification of the quasi-discrete modific-
ation of 2. The quasi-discrete modification also commutes with the operation of
forming subspaces.

3. Every quasi-discrete space is locally connected. [ The star of a connected set X is

connected as the union of connected sets (y, x), yeX,ye (;), each of which intersects
a connected set, namely X.]

4. A quasi-discrete semi-uniformizable space 2 is connected if and only if the topo-
logical modification of £ is an accrete space. More generally, the topological modific-
ation of a quasi-discrete semi-uniformizable space is a homeomorph of the sum of
a family of accrete spaces.

5. A closure space £ is semi-uniformizable and its quasi-discrete modification is
topological if the following condition is fulfilled: if U is a neighborhood of a point x

and y e @, then U is a neighborhood of y. The condition is also necessary provided
that £ is quasi-discrete.

6. A quasi-discrete space is discrete if and only if it is semi-separated.

7. Coarse semi-separated closures (see 26 B.8).

(a) A mapping f of a closure space 2 into a coarse semi-separated space 2 is conti-
nuous if and only if the sets f ~'[y], y € 2], are closed.

(b) Two coarse semi-separated spaces are homeomorphic if and only if they are
equipollent.

8. (a) If fis a continuous mapping of an infinite coarse semi-separated space 2 onto
a semi-separated space 2, then card l.@l = 1 or card ,9] = card |.@| [Hint: either all
inverse fibres of f are finite or f is constant. ]

(b) If f is an embedding-of an infinite coarse semi-separated space 2 into a product
space IT{#,} such that all 2, are semi-separated, then card |9”| < card |9,,| for some
a. [Hint: consider the mapping pr, o f : # — 2, and apply (a). ]
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(c) Theset Qin26B.10can bechosen suchthatcard Q = card P (this follows from the
proof 26 B.10) but cannot be chosen such that card Q < card P (this follows from (b).

(d) Let 2 be an infinite coarse semi-separated space and let ¥ be an infinite cardinal.
A topological semi-separated space 2 admits an embedding into 2% provided that card
l.ﬂl < card |.@| and the total character of £ is at most NX.

9. Let 2 be a coarse semi-separated space. The density character of 2 is min (N,
card |.¢’|).The total character of £ is card lﬂl The local character of 2 is 0 or 1 (if
|| is finite) or card || (if || is infinite).

10. In an infinite coarse semi-separated space, a set X is dense whenever its interior
is non-void.

11. Every continuous function on an infinite coarse semi-separated space is constant.
12. Every coarse semi-separated space is compact in the sense of 17 ex. 5.

13. The box-product of any family of quasi-discrete spaces is a quasi-discrete space.

(Section 27)

1. Prove the necessity of condition (a) of 27 A.7 without Theorem 27A.6. [For
each a, and a, in 4 let D, ,, = E{x | m,x = m,,x}. Prove that each D,,,, is closed,
and D is the intersection of all D, ,,, a;,€ A.]

2. If f is the identity mapping of a dense subspace 2 of a separated space 2 onto 2,
then f has no continuous domain-extension on any subspace 2 of #, Z + 2. [If g is
a continuous domain-extension on %, then the mapping h = {x >g,) R Ris
identity on a dense subspace of £, namely on 2, and hence k is the identity mapping.
Thus # = 2.]

3. A closure space 2 is said to be strongly separated if for each two distinct points x
and y there exist neighborhoods U of x and V of y such that U n ¥V = §. Prove:
every regular separated space is strongly separated and every strongly separated
space is separated. A separated space which is not strongly separated: Let 2, and 2,
be disjoint dense subspaces of a separated space # and let P = |21| U ((0) x
x |2,]) U (1) x |2,]) and let u be the closure for P such that (i) x 2, are open
subspaces of (P, u), 2, is a subspace of (P, u) and x € u((i) x X), where X < |2,|,
XE€E |.@1|, if and only if x belongs to the closure of X in 4. It is easily seen that (P, u)
is separated but not strongly separated (consider the points (i, x), i = 1,0, x € |.”22|).
A strongly separated space which is not regular: Let 2,, 2, and £ have the meaning
from the preceding example and let £ be strongly separated, and consider the sub-
space |2, U ((0) x |2,]) of (P, u).

4. If a subspace 2 of a separated space £ is compact, then ].@l is closed (compare
with 17 ex. 5). [Hint: if a net .4 ranging in | 2| converges to a point [#?| — | 2] then #°
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has no accumulation point in 2.] Hence a continuous mapping of a compact space
into a separated space carries closed sets into closed sets. Such a mapping need not
carry open sets- into open sets (e.g. consider a continuous function on a bounded
closed interval of reals).

5. Let J be a separated topological field which is not discrete (e.g. take R, Q
or Cas J). Theset F = E{(x,y)|(x,y)59" x 7,y =x"'}isclosedin 7 x
(if {(x, x7 ">} converges to (x, y), then y = x~! because x,.x, ' = 1 must con-
verge to x. y, which shows that x . y = 1). The projection I.T | — (0) of Finto J is
not closed. Hence projections of a product space onto the coordinate spaces need
not carry closed sets into closed sets. The set f = F u (€0, 0)) is closed in  x F
but the mapping f: & — J is not continuous.

6. If m is the density character of a separated space P, then card Z < exp exp m
(and hence the total character is at most exp exp exp m; this estimate is attained —
an example may be obtained by modifying the closure structure of SX).

7. (a) Each BX is separated. [If # and % are distinct ultrafilters then X N Y = 0
for some X in Z and Yin #.]

(b) The cardinal of any infinite closed subset F of X is at least exp exp No. [The
cardinal of X with X infinite is exp exp card X. If F is an infinite closed subset of fX

such that F n X is infinite, then F n X < F is a homeomorph of B(F n X) and hence
the cardinal of F is at least exp exp N,. If F n (X — X) is infinite then we can choose
a sequence {£,} in F — X and X, € {, such that {X,} is a disjoint family. Let Z =
= E{X,}. We shall construct a one-to-one mapping f of BZ onto the set F, =
= E{{,}  F. If n is a free ultrafilter on Z then the sets U{Y,|X,eN}, ¥, €&,
N en, form an ultrafilter f4 on X and fne F,. It is easily seen that f:8Z — F is
bijective. ] '

(c) There exists a family {2, | a € A} of countably compact subspaces of SN such
that N < 2, {|2,| — N} is disjoint, card 4 = exp exp N,. [Itis sufficient to show that
if the cardinal of a subset X of BN — N is less than card A then there exists a coun-
tably compact subspace £ such that N <= |9‘|, |9’| nX =0, card I.J/| =< exp N,
Since each infinite set has at least exp exp ¥, cluster points, it has a cluster point in
BN — X. Let ¢ be a single-valued relation which assigns to each infinite set a cluster
point in BN — X; denote by S(Y) the collection of all countable subsets of Y and
define by induction Y, = N, Y, = S(U{X,|B < a}, X, = ¢[Y,]. It follows that
Uiy, l « < w,} = X,, is countably compact, card X,,, = exp N, and ¥, n X = 0.]

(d) The product of two countably compact spaces need not be countably compact.
[Let 2 and 2 be two countably compact subspaces of N, N = lg’| N |.@| The set
N, = {<x, x) | x e N} is closed in # x 32; of course N, is discrete. ]

8. Some examples. There exists a continuous mapping f of a dense subspace 22
of a regular separated space 2 into a regular separated space £ such that f has a con-
tinuous extension on each subspace # u (x) but not on 2. (E.g., take an infinite
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separated space & with exactly one cluster point, say x, and an infinite set 4, and fix
an « in A. Next, let # = 2{& |ae(4 — («))} and let 2 be the space defined as
follows: the underlying set of 2 is Z{|.9’| | ae A}, ? is an open subspace of 2,
(«) x & is a closed subspace of 2, (¢) x (|#] — (x)) is an open subset of 2, and
{a, x) belongs to the closure of a set X if and onlyif either {a, x) belongs to the closure
of ((a) x |#]) 0 X in («) x & or X n (A x (x)) is infinite. Finally, fix a § in 4 — («)
and consider the mapping f of the subspace # of 2, 2| = |2| — 4 x (x), into 2
such that f is identity on || — (« x |#]), and f<«, y> = (B, y) for y € |#| — (x).)

(b) If a space 2 is not regular, then there exists a continuous mapping f of a dense
subspace £ of a space 2 into £, which has a continuous domain-extension to each
subspace || U (x) of 2 but not to 2. (Eg., if # = (P, u) is not regular, then there
exists an x in P such that, denoting by % the neighborhood system at x, uU — V = @
for some Ve % and each U e %. Exhibit a topological closure v for P finer than u on

— (x) such that the sets uU, U € %, form a local base at x, and consider the identity
mapping of the subspace ¥ of (P, v) into (P, u).)

9. In a regular topological space the collection % of all sets of the form G n F,
G open, F closed, is relatively feebly locally determined (see 21 A.12). [Hint: As-
suming that X relatively feebly locally belongs to %, prove that X e Z. It is
sufficient to show that X — X is closed because X = X n (P — (X — X)). Clearly
each point of P — X is an interior point of P — (X — X). Fix x € X. Since X feebly
locally belongs to & at x we can choose a neighborhood U of x such that U n X =
= G n F where G is open and F is closed. Choose an open neighborhood V of x with

VeUnG. We have VnXcVnXcUnXnGecFnG=XnUcX.
Thus x is an interior point of P — (X — X).]

10. A subset X of a regular topological space is relatively locally closed if and only
if X — X is closed (i.e. X = F n G where F is closed and G is open, by 15 ex. ).

11. Extension of mappings into complete metric spaces. (a) Let f be a continuous
mapping of a dense subspace (R, w) of a separated topological space {Q, v)> into
a complete pseudometric space (P, d) (definition 22 ex. 17). There exists a continuous
domain-extension g of f to a G;-subspace S, u) of {(Q, v) (i.e; such that S is a G,
in (@, v)). Proof: For each n in N let %, be the collection of all open subsets U of
{Q, v) such that the diameter of f[U n R] is at most (n + 1)”'. Put U, = U%,,
S = n{U,,}. For each x in S — R let %, be the neighborhood system at x, and ¥~,
-be the f-transform of the filter R N [%,]. Clearly ¥", contains arbitrarily small sets
and hence, (P, d) being complete, each ¥, converges to a point gx. Since {P, d)
is regular, g : {S, u) — (P, d) is continuous by 27 B.17 (b).

(b) State and prove (a) for uniformly continuous mappings of a dense subspace
of a uniform space into a complete pseudometric space (use 27 B.18 (b)).

(c) If a dense subspace 2 of a separated topological space # admits a metrization
by a complete metric, then l.@| isa G, in (P, u). [Let f be the identity mapping of the



EXERCISES 859

subspace 2 of 2 onto 2. By (a) f has a continuous domain-extension to a G,-sub-
space & of #. By ex. 2 f has no continuous proper domain extension, and hence
& = 2]

(d) Suppose that a space # admits a metrization by a complete metric. A subspace
2 of 2 admits a metrization by a complete metric if and only if ].@[ is a G; in 2.
[“If was proved in 22 ex. 7. Conversely, if 2 admits a metrization by a complete
metric then |.@| is a G; in the subspace IQI of 2 (by (c)) and hence in £ because each
closed subset of a pseudometrizable space is a G;. ]

(¢) Each homeomorphism f of a subspace %, of a complete metric space £ onto
a subspace 2, of a complete metric space £ has an extension to a homeomorphism g
of a G-subspace £, of #Z onto a G;-subspace 2, of . Proof: Take a continuous
extension f; of f to a mapping of a G;-subspace #' of Z into £ such that £, is dense
in %' (by (a)), and then a continuous extension of f ~* to a mapping f, of a Gs-sub-
space 2, of 2 into &’ such that 2, is dense in 2, (this is possible by (a) because by
virtue of (c) the space # admits a metrization by a complete metric). The mappings
112, > Pand f;.f, : P, = P coincide on a dense subspace of #,, namely on 2,,
and hence they are identical because 2 is separated. Thus f, o f, : #, — &, is the
identity mapping of 2, onto 2,, and hence f, is a homeomorphism of 2, onto the
subspace £, whose underlying set is f2[|.@2|]. The set lﬂzl is a G; in 2 and hence 2,
admits a metrization by a complete metric (by (d)), and thus £, admits such a
metrization; this implies that Iﬂzl isa G;in #' (by (c)) and hence a G, in £.

12. Two topologically equivalent uniformities coincide provide that they coincide
on a dense subset.

13. If the density character of a regular topological space is m then the local
character is at most exp m. The assumption of regularity is essential.

14. The box-product of a family of regular (separated) spaces is a regular (separated)
space.

15. If 2 is a separated infinite-dimensional normed real module and {f;} is a finite
family of linear functionals, then the set {f; *[0]} is not bounded.

(Sections 28 —30)

1. Exhibit a separated topological space on which every continuous function is
constant. [E.g. let {K,} be a disjoint sequence of non-void finite subsets of R — Q
such that any non-void open subset of R intersects almost all K,. Consider the closure
u for Q such that Q — N is an open subspace of {Q, u)> and each neighborhood of
any n € N is of the form (n) U (U n Q — N) with U a neighborhood of K, in R; if f
is a continuous function on (Q, u) then fg = lim {fn} | n € N} for each g in Q, and
hence f is a constant function. ]
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2. Exact Borel sets. Let 2 be a closure space. With the notation of 22 ex. 10,
if 0,{X,} = U{X.,}, e2{X.} = N{X,}, and & is the collection of all exact closed (exact
open) sets, then the elements of &', are termed exact F, sets (exact G, sets, respectively).
Of course we use the term exact F_ instead of exact F,, etc. Then exact F, c exact G,
and exact G, < exact F;, and hence exact F, = exact G, (by 22 ex. 10). The sets
from exact F,, will be termed exact Borel sets; it should be remarked that these sets
are often called Baire sets.

3. Afamily {f,} of functions on £ is termed locally finite (point-finite) if the family
{N(f.)} is locally finite (point-finite); here N(f,) = E{x|f,x * 0}. If f = {f,} is
point-finite, then :

{(xa y> - Z{Ifax —fayl}}

is a pseudometric, denoted by d,. If f is locally finite and all f, are continuous, then
d, is a continuous pseudomstric and each N(f,) is open in {|2|, d .

(a) A cover & of 2 is uniformizable if and only if it is refined by a locally finite
cover consisting of exact open sets.

A partition of the unity on £ subordinated to a cover & of 2 is a locally finite
family f = {f,} of non-negative continuous functions such that £{f,x} = 1 for each
x, and the family {N(f,)} refines Z.

(b) Some partition of unity is subordinated to & if and only if & is uniformizable.
[Hint: given a uniformizable cover %, take a locally finite family {f,} of non-negative
functions such that {N(f,)} is a cover refining &’; put g, = f,/Z{/.}.]

4. Extension of unbounded functions. Let 2 be a subspace of a closure
space 2 such that each bounded continuous function on 2 is the restriction of a
bounded continuous function on £ (i.e. such that the Cech proximity of 2 is the
relativization of the Cech proximity of #). Then each continuous function on 2 has
a continuous extension to £ provided that |.@| and any disjoint exact closed set are
functionally separated. [Hint: Let ¢ be a homeomorphism of R onto ] 1, 1 ; given
a continuous function f on 2, consider a continuous extension g of ¢ - f to # and
Z = E{x||gx| = 1}. Take a continuous function h, 0 < h <1, h[|2[] = (1),
h[Z] = (0)and put f* = ¢ ' o (g . h).]

5. Let & = (S, o) beastruct,¢ < exp S x exp S, and let A be a set. Suppose that
MpgN implies M <= N, and consider the set ¥ of all covers X of & with DX = A.
If X € ¥ then we write X = {X,}. For X € ¥ let ¥ denote the set of all Ye ¥ with
YoX,or Y, = X, for each a. Let < x denote the order for ¥y defined as follows:
Y <y Z if and only if, for each a, Z, + X, implies Y, = Z,.

(a) If X e ¥ is point-finite, then each monotone subset of ¥ has a lower bound;
in particular, each element of ¥y is greater than a minimal element (see part III of
the proof of Theorem 29 C.1).

(b) Suppose that X € ¥ is point-finite, and Ye ¥y, a € A imply that there exists
aZ <y Ywith Z X, Then there exists a Z in ¥y with Z_0X, for each a.
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(c) Let MgN if and only if M = N or M = 0. It follows from (a) that any point-
finite cover X of & has a “‘minimal”’ subcover Y, i.e. no proper subfamily of Y is
a cover.

6. A semi-uniformizable topological space 2 is normal provided that it is the
union of a locally finite family of closed normal subspaces.

7. A semi-uniformizable space with at most one cluster point is hereditarily para-
compact.

8. (a) Let X be the set of all isolated points of T, and Y be its complement in
T,,- The set X is locally F, in T, but not F, (each closed subset of X is finite), and
Yis locally G; but not G;. Thus neither F,-sets nor G;-sets need be locally determined
in a normal space.

The set X is relatively locally F_ in T, ,, but not F,, Y is relatively locally G, but
not G,; thus neither F_ -sets nor Gy-sets need be relatively locally determined in a
paracompact space (or even in a compact separated space).

(b) Any continuous pseudomztric on T,,, has an extension to a continuous pseudo-
metric for T, ., and consequently the fine uniformity of T, is the relativization
of the fine uniformity of T,,, .. [Hint: First prove that if F, and F, are two disjoint
closed sets in T, then at least one of the sets F; and F, is bounded. Then prove that
any continuous function on T, is constant on some set §[a] with o < wl.]

9. A space is pseudometrizable if and only if it is paracompact and there exists
a sequence {Z,} of interior covers such that {st (x, &,)} is a local base at x for each x.

10. If {X,} and {Y,} are locally finite families in a normal space such that X, and
Y, are functionally separated for each a and b, then Y{X,} and U{Y,} are functionally
szparated.

11. A space 2 is uniformizable (or regular) if and only if each cover (U, |2| — (x))
with U a neighborhood of x is uniformizable (semi-uniformizable, respectively).

(Sections 31— 35)

1. For each set P the mapping {u — {uX I X < P}} : €(P) — (exp P, =)**"
is completely join-stable. For each u in tC(P) let @(u) be the collection of all u-open
sets; the mapping {u — 0(u)} : tC(P) —» (V, o) is completely join-stable (but not
meet-stable), where V is the universal class.

2. If u is the infimum of a non-void collection {u,} in C(P) and X < P, then
x €uX if and only if for each finite cover {X;} of X there exists an X, such that
x € u,X; for each a. '

3. If a closure u has a lower modification in tC, then u € tC (show that u =
= sup {v | v < u, vetC}). On the other hand if u has a lower modification in vC
then u need not be uniformizable (consider C(P) where card P = 2).
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4. The class of all pseudometrizable spaces is countably meet-stable in C. [Hint:
If u, is pseudometrized by d, then inf {u,} is pseudometrized by £{2~" min (d,, 1)}.]

5. Let D be the class of all dense-in-themselves closure operations (a closure
is called dense-in-itself if each point is a cluster point.)

(a) If u is finer than v and u € D then ve D.

(b) If {u,} is a down directed (in particular, if E{u,} is a non-void and monotone)
family in D, then inf {u,} € D. Consequently, each closure of D is coarser than a
minimal element of D (which is said to be a fine dense-in-itself closure operation).

(¢) If K = C is completely meet-stable then K n D has property (b). In particular,
there exist fine topological, uniformizable, regular, etc., dense-in-themselves closure
operations.

(d) A closure u for P is a fine dense-in-itself closure operation if and only if [%Z,] N
N (P — (x))is an ultrafilter on P — (x) for each x (here %, is the neighborhood system
at x in (P, u)).

(¢) A topological dense-in-itself closure u for P is a fine topological dense-in-itself
closure operation if and only if the conditions x € uX, X is dense-in-itself imply
that (x) U X is a neighborhood of x (or equivalently, each dense-in-itself set is open).

6. The class of all locally connected spaces is inductive-stable. [ Either prove that
a space inductively generated by a single mapping from a locally connected space
is locally connected, and make use of the fact that the class of all locally connected
closure operations is completely join-stable in C, or prove that any quotient of a
locally connected space is locally connected and the sum of any family of locally
connected spaces is locally connected. ]

7. K = C is projective-stable if and only if, for each 2in C, there exists a k2 in K,
|x2| = | 2| such that f : 2 — & with 2 in K is continuous if and only if f : k2 — 2 is
continuous (of course, x2 is the upper modification of 2 in K). A similar result
holds for inductive-stable classes.

8. If 2 is a quotient of £ then the density character of 2 is at most that of 2, but
the local character and the total character of 2 may be greater than the corresponding
characters of 2 (consider the space obtained by identifying the points of a line in
R x R). If 2 is separated then 2 need not be separated (consider a uniformizable
space which is not normal, choose disjoint closed sets F; and F, which are not separ-
ated, and consider the space obtained by identifying the points of F; and of F,.
The points F, and F, are not separated).

9. The graph of a correspondence of £ into 2 is closed provided that the following
conditions are fulfilled:

(a) Df is closed.

(b) f is upper semi-continuous.
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(c) If # is the neighborhood system of f[x] then N{U | Ue%} = f[x](in particular,
f[x] is closed).

If 2 is regular then condition (c) may be replaced by the weaker condition that
each f[x] is closed.

10. Every space admits a single-valued determining relation. [Hint: If % is a de-
termining relation, A" € D%, then the set of all (4", x) € ¥ can be replaced by a set
consisting of points {A,, XD, x € €[ A], such that x & y = A", + A, (by a formal
change of the underlying sets). |

11. Topological modification of sequential closure operations. (a) If uis a se-
quential closure operation for a set P and u, X = u(U{u,X | B < a}) for cach X < P,
then each u, is a closure operation and u,,, = sup {u, |a < w,} is the topological
modification of u.

(b) Let 2 and 2 be closure spaces and let {F, u) be the set F(?, %) endowed with
the sequential modification of the closure of pointwise convergence, and let v be the
topological modification of u. The elements of vC(2, %) are called the Baire mappings
of # into 2, and the family {u,C(?, #) | « < w, } is called the Baire classification of
Baire mappings. The elements of u,C(P, %) are termed the mappings of the a-th
Baire class. Prove: an f € F(P, R) is a Baire function if and only if f ~![X] is a Baire
set in 2 for each closed (open, Baire) set in R.

12. Sequentially compact spaces.

An L-closure u for a set P is a coarse L-closure if and only if each sequence has
a convergent subsequence (i.e. if (P, u) is sequentially compact).

Each sequentially compact space is countably compact, and the converse is true
for each space with a countable local character. The class of all sequentially compact
spaces is closed under formation of countable products and closed subspaces.
The product of a sequentially compact space with a countably compact space is
countably compact. (Remember that the product of two countably compact spaces
need not be countably compact.)

13. For each S-closure u the closure gvu is the upper modification of u in svC.
A uniformizable space 2 is the uniformizable modification of an S-space if and
only if a function f on 2 is continuous whenever the following condition is fulfilled:
if a sequence S converges to x in 2, then the sequence f . S converges to fx in R.

14. The class ovC is completely meet-stable in S, and each accrete closure belongs
to avC.

15. Theclasses S, L, 6vC, s0C n L, S n v C, and L n vC are closed under sums.

16. A space 2 belongs to ovC if and only if & is a homeomorph of a subspace
of 7 x oR™ where #’ is the accrete space such that |?| = Ig”l and N is an appro-
priate cardinal (use 35 E.3).
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(Sections 36 —40)

1. A closure operation u for a set P is induced by a uniformity which is a coarse
semi-uniformity if and only if P = (J{F; } where {F;} is a disjoint family of closed
accrete subspaces and F;are finite and open except one, but the complements of
neigborhods of its points must be finite.

2. (a) Let f be a uniformly continuous mapping of a uniform space 2 = (P, %) into
a uniform space 2 = (Q,¥ ). If Z = (R, #°) is a dense subspace of £ such that
g =f: & - 2is a projective generating mapping, then f is a projective gznerating
mapping. [If Ve ¥ is a regular closed set in 2 x 2 then (f x f)™'[V] is the closure
of (g x g)™'[V].If Ue% and U'is a closed element of % contained in Uthen(g x g)~!
[V] € U n (R x R) for some regular closed Ve # and hence (f x f)™' [V] is
contained in U’ < U.]

(b) Let # be a dense subspace of a uniform space 2. If # is pseudometrizable or
proximally coarse then so is 4.

3. Hewitt uniformities. A Hewitt uniformity is defined to be a uniformity %
projectively gznerated by all continuous functions (hence, the proximally coarse
uniformity topologically equivalent to % is a Cech uniformity).

(a) A separated uniform space = (P, %) is a uniform homeomorph of a sub-
space of soms R¥ if and only if % is a Hewitt uniformity.

(b) (P, %) is projectively gznerated by a mapping into a product R if and only if
% is a Hewitt uniformity.

(c) The Hewitt uniformity of a closure space is defined to be the uniformly finest
continuous Hewitt uniformity. A closure space 2 is said to be pseudocompact if the
Cech uniformity of 2 and the Hewitt uniformity of 2 coincide, i.e. if each continuous
function is bounded.

(d) Every countably compact space is pseudocompact (if f is continuous and
[fx,| > n then {x,} is locally finite), a normal pseudoccmpact space is countably
compact (if {x,} is a locally finite sequence of points of a normal space then some sub-
sequence {x,} is discrete, and hence U{(x_,’,)} is a closed subspace F; if f is n on (—x_,’,)
then f is an unbounded continuous function on F which has a continuous extension).

(¢) A space 2 is pseudocompact if there exists a dense subspace 2 of 2 such that
no infinite family of non-void subsets of Z is locally finite in 2.

(f) There exists an infinite separated uniformizable pseudocompact space such
that no infinite subspace is countably compact. Let R € SN, R o N, card R =
= exp Ny, and let each infinite subset of N have a cluster point in R. Let < be
a minimal well-order for R — N. Let X be the set of all x € R such that x does not
belong to the closure of the set X, of all ye R, y < x (y # x). The subspace P =
= N u X of BN is pseudocompact; this will be proved by showing that each infinite
subset of N has a cluster point in X. Let Y be an infinite subset of N and let x be the
smallest element of R such that x belongs to the closure Y of Yin SN. The set Y is
open in BN, hence a neighborhood of x in SN and Y n X = 0. Hence x ¢ X,. The
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space P has the following property: no countable subset of X = P — N has exp ¥,
cluster points. In fact, if Z is countable subset of X, then Z < X, for soms x in R be-
cause (R, <) contains no countable cofinal subset, and consequently card ZFr <
< card (X, n X) < exp Ny; the first inequality follows from the fact that X, n X is
closed in P, and the second from the fact that < is minimal. That no infinite subspace
of P is countably compact now follows from 17 ex. 5 (each infinite set contains an
infinite set without a cluster point).

4. A pseudometrizable uniformity is not a proximally fine semi-uniformity if

there exists a Cauchy sequence {x,} such that the family {(x,)} is disjoint, in particular
if the induced closure is not quasi-discrete. [ Hint: Let (P, %) be a uniform space and

let {x,} be a sequence in P such that {(x,)} is disjoint, and consider the set X =
= {x,; = Xzx+1}- Then the set of all U — X — X~', Ue % is a base for a semi-
uniformity ¥~ proximally equivalent to %; clearly ¥~ + 4%.]

A uniformly quasi-discrete uniformity is a proximally fine semi-uniformity. The
converse does not hold.

5. Monotone uniformities. Let 2 = (P, %) be a semi-uniform space. £ is
defined to be monotone if % has a monotone base (i.e. a base ¥ such that (¥", =)
is monotone); e.g. every semi-pseudomatric space is monotone. The uniform character
of # is the smallest cardinal of a base for £.

(a) Theorem. Every monotone uniform space is proximally fine. This follows from
the following

(b) Theorem. If f is a proximally continuous mapping of a monotone uniform
space £ into a uniform space 2, then f is uniformly continuous.

The proof of (b) is similar to that of 25 A.14; instead of sequences use monotone
nets (as the ordered domain take a base for the uniform structure of 2 minimally
well-ordzred by = ; exhibit a cofinal set such that the ranges of restricted nets are
distant in 9). '

6. Locally fine uniform spaces. A semi-uniform space 2 = (P, %) is said
to be locally fine (a current term open to serious criticism) if {J : U[x] - & | x € P}
inductively generates £ for each U in %; here U [x] is considered as a semi-uniform
subspace of 2. ‘

(a) The class of all locally fine spaces is inductive-stable in U. Denote by 4 the
corresponding lower modification.

(b) If % is a uniformity then so is A%. (It is obvious that A% is locally fine in the
“uniform sense”, i.e. that the families in question are inductive generating in the
uniform sense.) '

(c) Given % one obtains A% by transfinite iteration of the following operation:
the set of all

U{(U[x] x U[x])n U, |xeP}, U,e, Ue,

is a base for a semi-uniformity which is inductively generated by the family {J : U [x] -
— P|x€P}.

55—Topological Spaces
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(d) Any fine uniform space is locally fine. Any subspace of a locally fine space is
a locally fine space; in particular, every subfine space (i.e. a subspace of a fine space)
is locally fine. No example of a locally fine uniform space which is not subfine
is known.

(e) A presheaf & of sets over a uniform space is said to be projective in the uni-
form sense if the usual conditions are fulfilled with restriction to uniform spaces.
A space 2 is locally fine if and only if, for each uniform space 2, the presheaf of all
uniformly continuous mappings of 2 onto 2 is projective in the uniform sense.

(f) The following is an interesting property of some uniform spaces 2: f : 2 — 2
is uniformly continuous provided that f is locally uniformly continuous, i.e. each
point has a neighborhood U such that the restriction of fon U is uniformly continuous,
or in other words, for each space 2 the presheaf of all uniformly continuous mappings
of 2 into 2 is projective at |2|.

(8) Every uniformly continuous function on a subspace £ of a locally fine uniform
space 2 has a uniformly continuous extension to 2. [Hint: Given f on 2 choose
a uniform cover % of 2 such that the diameter of f[U n |.¢’|] is at most 1 for each U
in %, and apply appropriately the extension theorem for bounded functions to obtain
“uniformly locally> a uniformly continuous extension.]

7. The projective limit of a presheaf & over a set {4, <) may be empty even if
all connecting mappings are surjective (this is elementary) and (4, <) is left-di-
rected. E.g. let A be the set of all countable ordinals, < be the inverse of the usual
order for ordinals, S, be the set of all order embeddings f of the set of all f < a
into Q such that Ef is right-bounded, and f,, assign to each f € S, the restriction of f
to Sy. Clearly lim & = 0 (there exists no order-embedding of countable ordinals
into Q) and all f,, are surjective.

(Section 41)

1. Pseudometric spaces. (a) A pseudometric space is complete if and only if
the uniform space is complete.

(b) Let 2 be a completion of a uniform space . Each uniformly continuous
pseudometric d on £ is the restriction of the unique uniformly continuous pseudo-
metric d* on 2; in addition, d induces the uniform structure of £ if and only if d*
induces the uniform structure of 2.

(c) The existence of completions may be proved as follows: If each pseudometriz-
able space has a completion then any uniform space has a completion; indeed, any
uniform space can be embedded in a product I1{#,} of pseudometrizable spaces and
if 2% is a completion of 2, then IT{#}} is a completion of I1{#,}; the closure of the
range of the embedding is the required completion. Next, each metrizable space
P, d) can be embedded into U*({P, d), R) (by the relation {x - {y — d{x, y>}:
(P, d) — R}); If 2 is P endowed with the uniformly accrete uniformity then any
pseudometric space (P, d) can be embedded into 2 x U*({P, d), R).
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2. A completion of 2 is totally bounded if and only if 2 is totally bounded.

3. Completions of topological rings and modules. (a) Any separated topological
ring is a dense topological subring of a complete topological ring which is said to be
its completion. If &, and &, are Cauchy filters in # = (R, +,-,u), then y =
= [%,] . [%.] is a base for a Cauchy filter; in fact, given a neighborhood U of 0-we
can choose a neighborhood V of 0 and X;e &; such that X} .V + V. X, < U; if
X, eZ, X;cX;and X;— X, V,then X, .X, — X, . X, <cX].V+ V.X;cU.

(b) Any separated topological linear space or algebra has a completion. [It must
be shown that the external multiplication can be extended continuously; i.e. if & is
a Cauchy filter and r is a scalar, then r . & is a Cauchy filter.]

4. Two complete topologically equivalent uniformities need not coincide. E.g.,
R is complete and (R, %) is complete if % is the Hewitt uniformity for R; clearly the
uniformities are different.

5. Hypercomplete uniform spaces. (a) The Hausdorff hyperspace of a semi-
uniform space 2 = (P, %) is the semi-uniform space H(#) = {exp’ P, #*) where
@* has the collection of all U* = E{<X, Y) | X = U[Y], Y < U[X]}, Ue %, for
a base. If £ is a uniform space then H(#) is a uniform space. The mapping f =
= {x - (x)} : 2 > H(2) is an embedding: if & is a separated uniform space then Ef
is closed in H(#). Consequently, if & is separated and H(<) is complete, then 2 is
complete. If 2 is complete then H(#) need not be complete; it can be proved that
H(2) is complete if and only if £ is paracompact and the locally fine modification
of the uniform structure of 2 is fine. If H(#) is complete then £ is said to be hyper-
complete. Any complete metrizable space is hypercomplete (prove!).

(b) Let 2 be a semi-uniform space and let E(#) be exp’ (P x P) endowed with
the semi-uniformity which has the collection of all E{(X , Y) I UsX>oY,UY X },
U € %, for a base. The mapping f : {x — <z, x)} : # - E(%)is an embedding, and 2
is a uniform space if and only if E(g’) is a uniform space. 2 is hypercomplete if and
only if E(#) is complete.

6. Counter-examples to compactness. (a) Find a compact space £ such that
some interior cover contains no finite interior cover. [Hint: Let N be an open discrete
infinite subset of a separated compact space (P, u), R = P U (x) with x ¢ P, and
Iet v be a closure for R such that N is an open discrete subspace of {R,v>, R — N
is a compact subspace of (R, v> with only one accumulation point, namely x, R — N
is a neighborhood of x, U is a neighborhood of a ye P — N if and only if ye U
and U v (P — N) is a neighborhood of y in (P, u). (R, v) is compact and there
exists an interior cover which contains no interior cover of cardinal less than
card (P — N).]

(b) Find a space ¢S, w) which is not compact but each infinite subset has a com-
plete accumulation point. [Hint: Let card N = ¥, in (a), choose P, = P — N such
that each subset of N has an accumulation point in P, but N u P, is not compact,
and let ¢S, w) be the subspace of (R, v) with S = N U P, U (x).]

55+
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(c) Find a space (P, u) such that each monotone centred collection has a cluster
point, but some infinite subset N of (P, u) has no complete accumulation point.
[Hint: Let (P, u) be a space such that P is the disjoint union N U M v (x), where
N = U{N, | ne N} with N, = N,,,, card N,;, > card N,, N, are compact sub-
spaces of (P, u); M u (x) is a compact space with only one accumulation point,
namely x, each point of M has a neighborhood U such that U n N is countable, and
finally, each sequence {x,}, x, € N,+; — N,, has a limit point in M. ]

7. If Y% = X in a compact space, % is a filter, and each U € % is a neighborhood
of X, then % is the neighborhood system of X. If a compact space is regular and
N% = (x) where % is a collection of neighborhoods of (x), then % is a local sub-base
at x.

8. Correspondences. (a) If f is an upper semi-continuous full correspondence of
a compact space 2 onto a topological space 2 and if the fibres f[x], x € 2, are compact,
then 2 is compact. [If % is an additive open cover of 2, then the sets Vy =
= E{x | f[x] = U}, U e %, are open and cover 2.]

(b) Xf f: 2 — 2 is a correspondence such that gr f is closed in 2 x 2and 2is
compact, then f is upper semi-continuous. [Hint: Assume that {x,} converges to x
in 2, U is a neighborhood of f[x] in 2 and X, = f[x,] — U = 0 for each a. Choose
¥, in X, and take a generalized subnet {y;} of {y,} which converges to a point y.
If {x;} is the corresponding generalized subnet of {x,}, then {x;, y;> € gr f, {{x5, y3)}
converges to {x, y> and {x, y) ¢ grf.]

(¢) Let f be an upper semi-continuous full correspondence of a compact space 2
onto a separated topological space 2 such that the fibres f[x] are compact. Then f
is inversely upper semi-continuous. [2 is regular and the fibres f[x] are closed,
hence gr f is closed, which implies that f ~! is upper semi-continuous. ]

9. In any compact topological group the right uniformity, the left uniformity and
the two-sided uniformity coincide. Hence, even if all group uniformities coincide then
the group need not be commutative.

10. Let & be a collection of continuous functions on a compact space # = II{Z,}
containing each function fopr,:# — R with fe C*, R). Then the smallest
algebra containing & is dense in C*(2, R). (Apply the Stone-Weierstrass Theorem.)

11. pX is a Cech-Stone compactification of X endowed with the discrete closure
structure. [Prove that each bounded function on X has a continuous extension to X ]

12. If 2 is an infinite discrete space, then card [82?| = exp exp card |2| (Pospiil).
[Use the fact that there are exactly exp exp X ultrafilters on an infinite set X. An
alternate proof: Consider any one-to-one mapping f of £ onto a dense subset of
2 = [0, 1]*'®1 (22 A.10); f is continuous and has a continuous extension to a map-
ping of B2 onto 2. Hence card |82 2 card |2| = exp exp card |#|. On the other hand,
if the density character of a separated space £ is m, then card 2 < exp exp m.]
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13. A uniformizable space is normal if and only if for each two distinct maximal
centered collections &, and &, of closed sets some F; e &, and F, € &, are separ-
ated.

14, Wallman compactification. Let & be a topological space and let X be the set
ofallx e ].@] and all maximal centered collections & of closed sets in & with NF = 0.
For each closed F in 2 let F* be the union of F and the set of all # e X — ]g’l such
that F € &. The collection of all F* is a closed base for a topological closure u for X.
The space (X, u) is called the Wallman compactification of 2. Prove:

(a) <X, u) is compact.

(b) J: 2 - (X, u) is an embedding and ]9’| is dense.

(¢) <X, u) is separated if and only if £ is separated and normal.

(d) The Wallman proximity of & is a relativization of the Wallman proximity
of (X, ud.

(¢) The following conditions are equivalent: <X, u) is uniformizable, 2 is normal,
X, u) = 2.

15. If a regular space £ contains a dense subspace 2 such that each net in 2 has

an accumulation point in & (2 is said to be compact in 2), then £ is compact.

16. If fis a non-negative real-valued relation on I = [0,1], then f: 7 - R is
upper semi-continuous (in the sense of 18 D.1) if and only if the correspondence
Y{[0,fx]|x eI} I - R is upper semi-continuous.
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