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AN LMI-BASED CONVEX FAULT TOLERANT CONTROL
OF NONLINEAR DESCRIPTOR SYSTEMS VIA UNKNOWN
INPUT OBSERVERS

Alberto Ortiz, Daniel Quintana, Victor Estrada-Manzo
and Miguel Bernal

This paper proposes a fault tolerant control scheme for nonlinear systems in descriptor form.
The approach is based on the design of an unknown input observer in order to estimate the
missing state variables as well as actuator faults, such design is carried out once a proper
estimation error system is obtained via a recent factorization method; then, the estimated
signals are employed in the control law in order to drive the states asymptotically to the origin
despite actuator faults. The designing conditions are given in terms of linear matrix inequalities.
Numerical as well as physical systems are used to illustrate the advantages of the proposal.

Keywords: Takagi–Sugeno model, descriptor system, fault tolerant control, linear matrix
inequality, Lyapunov method, unknown input observer

Classification: 93B53, 93B50,93C10,93C15,93D05

1. INTRODUCTION

The behavior of a closed-loop system is affected by uncertainties, disturbances, and
faults; such misbehavior may lead to physical deterioration of the system. In the case of
faults, we can identify the ones occurring at sensors, actuators or in the process [2, 59].
A fault can be defined as an abnormal behavior or deviation of at least one characteristic
property or parameter that consequently modifies the average performance of the system
[24]. Many approaches have been developed to increase the safety operation of systems as
to achieve control tasks such as asymptotic stability, trajectory tracking, among others.
For example, fault diagnosis and isolation [13, 42, 44, 53], fault estimation [23, 49],
fault tolerant controllers [5, 15]. Many of these approaches are based on observers,
in particular unknown input (UI) ones [20, 36, 37, 41, 46, 56]; such observer allows
estimating both the system states as well as the actuator faults; in this case, the better
the observer scheme is the more efficient the task of diagnosis or the performance of
the fault tolerant scheme is. Particularly, convex (LPV systems, Takagi–Sugeno (TS)
models) approaches are highly appreciated because the designing conditions are given
in terms of linear matrix inequalities (LMIs) [6] as a result of using the direct Lyapunov
method together with convex models (constituted by a blending of linear vertex models
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and scalar convex functions) [51]. Nevertheless, for observer schemes, an important
problem related to the scalar convex functions must be faced, that is, when the functions
depend on signals (scheduling variables) that are not available/measured [30]; such issue
has been overcome by means of uncertain/perturbed setups [34], Lipschitz constraints
[57, 58], the differential mean value theorem [18]. Recently, in [43] a methodology based
on factorization allows overcoming this persistent problem, thus a greater family of
nonlinear systems can be treated.

On the other hand, the presence of a fault does not always mean the stoppage of the
system, therefore the fault tolerant control (FTC) must allow the system to continue
operating with a behavior as close as possible to the nominal, maintain stability, and
provide a desirable performance [35]. The FTC scheme hereby proposed belongs to
the active type, that is, it permits reconfiguration of the control parameters [33, 60].
Observer-based FTC schemes have been design via several techniques such as virtual
actuators/sensors [4], adaptive setups [32, 54], convex approaches [1, 21, 45, 40]. In
particular, in [21], two FTC approaches are presented, but these algorithms only consider
available scheduling variables and they do not contemplate descriptors models; although
[45] considers descriptor systems, conditions cannot be used because the scheduling
vector must be known.

Contribution: An extension of the factorization methodology presented in [43] to
descriptor systems is developed; this allows constructing an UI observer to estimate the
missing states and the actuator faults. Thus, in the context of convex approaches, the
proposal overcomes traditional shortcomings from [1, 21, 45, 40], especially with respect
to unmeasurable premise variables; thus, the family of systems under consideration is
larger. In contrast with sliding mode and high-gain observers, the proposal provides
a systematic way of computing the observer and controller gains, with the possibility
of adding performance requirements (speed convergence, bounds on the input/output)
within a single framework. As a result, an active observer-based fault tolerant control
scheme capable of dealing with descriptor systems is designed by means of LMIs.

Organization: The rest of the document is organized as follows: in Section 2, the
problem to be studied is stated while a brief on the factorization method is given and
illustrated, convex modeling is also introduced in this section. In Section 3, the main
results are given, they are divided in three parts: (1) the design of an UI observer, (2)
the design of nonlinear controller (3) the integration of the the complete FTC scheme.
In Section 4 the performance of the proposal is illustrated via two examples, the first one
being a numerical nonlinear system while the second one is the well-known pendulum
on a cart. Finally, Section 5 presents the conclusions and final remarks.

Notation: An asterisk (∗) will be used in-line expressions to denote the transpose of
the terms on its left side, i. e., A + B + AT + BT + C = A + B + (∗) + C; in matrix
expressions it denotes the transpose of the symmetric element. Additionally, P > 0 (< 0)
means that P ∈ Rn×n is positive (negative) definite. Arguments will be omitted when
their meaning can be inferred from the context.
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2. PROBLEM STATEMENT

Consider a nonlinear descriptor system under actuator faults

E(y)ẋ(t)=f(x)+g(x) (u(t)+fa(t)), y(t)=h(x), (1)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector, y ∈ Ro is the output
vector, fa ∈ Rm is the actuator fault vector, the nonlinear mappings f(x) : Rn 7→ Rn,
g(x) : Rn 7→ Rn×m, and h(x) : Rn 7→ Ro are assumed to be sufficiently smooth, E(y) :
Ro 7→ Rn×n is assumed to be invertible for all x in a region around the origin [17]. It is
also assumed that the origin x = 0 is an equilibrium point of the system. The task is to
design a nonlinear control law of the form

u(t) = K(x̃)x̂(t)− f̂a(t), (2)

K(x̃) ∈ Rm×n, x̃ ∈ Rn is employed to indicate that the controller gain only depends
on available signals x̂ and y, such that the closed-loop system holds limt→∞ x(t) = 0,
i. e., the system trajectories go asymptotically to zero despite actuator faults. The

design is carried out under the assumption1 ḟ
(p)
a (t) ≈ 0, p is the derivative order, the

estimated signals x̂(t) and f̂a(t) are calculated from an UI observer such that the esti-

mation errors ex(t) = x(t)− x̂(t) and efa(t) = fa(t)−f̂a(t) satisfy limt→∞ ex(t)=0 and

limt→∞ efa(t)=0. Once the signals x̂ and f̂a are recovered, they can be employed in the
fault tolerant control scheme (2). In [9], an UI observer for descriptor systems has been
presented; however, this observer cannot deal with unmeasurable scheduling variables,
thus reducing its applicability to real systems. In order to overcome this issue, section
3.1 presents an UI observer based on the factorization proposed by [43].

2.1. Factorization of error signals

The observation problem for nonlinear systems obliges the designer to deal with ex-
pressions of the form f(x) − f(x̂) in order to factorize the observation error e = x − x̂
as to write the time derivative of the Lyapunov function in the form eTQ(·)e, so LMI
conditions can be derived. Most of the existing works, especially those based on convex
structures, consider f(x) = A(y)x and thus A(y)x − A(y)x̂ = A(y)(x − x̂) = A(y)e
[17, 29]; nevertheless, in general this is not always the case [18, 21]. In [43], a methodol-
ogy to factorize at the left-hand side the error signal is provided as long as the hypotheses
of the differential mean value theorem (DMVT) hold. Thus, such approach allows ob-
taining f(x)− f(x̂) = F (x, x̂)(x− x̂) where f(x) could be a function with multivariate
polynomial or non-polynomial expressions; the former can be directly arranged for fac-
torization while the later ones are approximated with any degree of accuracy by Taylor
series, i. e.,

f(x)− f(x̂)≈
v∑

i=0

f (i)(0)

i!
xi−

v∑
i=0

f (i)(0)

i!
x̂i.

Expanding up to a v-order (including the most significant terms) suffices to factorize
the error signal and perform the required manipulations to achieve the corresponding

1This assumption is customary in the context of proportional multi-integral (PMI) observers [26, 28,
22, 11]. In practice, even piecewise continuously differentiable but bounded signals can be estimated.
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analysis and design, since from the numerical point of view the high order terms make
no difference.

For example, let us consider x = [x1 x2]
T and x̂ = [x̂1 x̂2]

T , functions f(x) =
[x2

1 sin(x2) + x1]
T and f(x̂) = [x̂2

1 sin(x̂2) + x̂1]
T . Thus, we have the following

f(x)−f(x̂) =

[
(x1 − x̂1)(x1 + x̂1)

(x1 − x̂1) + sinx2 − sin x̂2

]
≈
[
x1 + x̂1 0

1 1− 1
6 (x

2
2 + x2x̂2 + x̂2

2)

][
e1
e2

]
,

where e1 = x1 − x̂1, e2 = x2 − x̂2 and a third order approximation for sinx2 − sin x̂2

have been used.

2.2. Convex structures

The sector nonlinearity [39] is employed to express bounded non-constant terms z(·) ∈
[z0, z1] as a convex sums of its bounds, that is, z(·) = w0(z)z

0 + w1(z)z
1, where z0

and z1 are the minimum and maximum of z(·) in a region of interest; functions w0 =
(z1 − z(·))/(z1 − z0) and w1 = 1−w0 hold the convex sum property in the same region,
i. e., w0(z) + w1(z) = 1 and w0, w1 ∈ [0, 1]. In our case, in order to obtain an useful
convex rewriting, the non-constant terms are split into those depending exclusively on
available signals (x̂ and y), gathered in z(x̂, y) ∈ Rs, while the rest of terms are gathered
in ζ(x, x̂, y) ∈ Rσ. Due to designing specifications, each entry of z(x̂, y) and ζ(x, x̂, y)
is bounded in x ∈ Ωx ⊂ Rn, x̂ ∈ Ωx̂ ⊂ Rn, i. e., zi(x̂, y) ∈ [z0i , z1i ], i ∈ {1, 2, . . . , s}
and ζj(x, x̂, y) ∈ [ζ0j , ζ1j ], j ∈ {1, 2, . . . , σ}. Then, each zi(x̂, y), i ∈ {1, 2, . . . , s} and
ζj(x, x̂, y), j ∈ {1, 2, . . . , σ} can be exactly rewritten as

zi(x̂, y) =wi
0(x̂, y)z

0
i + wi

1(x̂, y)z
1
i

ζj(x, x̂, y) =ωj
0(x, x̂, y)ζ

0
j + ωj

1(x, x̂, y)ζ
1
j ,

where wi
0(x̂, y) = (z1i − zi(x̂, y))/(z

1
i − z0i ), wi

1(x̂, y) = 1−wi
0(x̂, y), ωj

0(x, x̂, y) = (ζ1j −
ζj(x, x̂, y))/(ζ

1
j − ζ0j ), and ωj

1(x, x̂, y) = 1−ωj
0(x, x̂, y) are scalar functions holding the

convex sum property in Ωx × Ωx̂, i. e., wi
0(x̂, y) + wi

1(x̂, y) = 1, wi
0(x̂, y), w

i
1(x̂, y) ∈

[0, 1], ωj
0(x, x̂, y) + ωj

1(x, x̂, y) = 1, ωj
0(x, x̂, y), ω

j
1(x, x̂, y) ∈ [0, 1]. Hence, the so-called

scheduling functions are defined as:

wi(z) = w1
i1(z1)w

2
i2(z2) · · ·w

s
is(zs),

ωj(ζ) = ω1
j1(ζ1)ω

2
j2(ζ2) · · ·ω

σ
jσ (ζσ),

with i ∈ {1, 2, . . . , r}, j ∈ {1, 2, . . . , ρ} ij ∈ {0, 1}, r = 2s, ρ = 2σ; the sets of indexes
[i1i2 · · · is] and [j1j2 · · · jσ] are a s-digit and σ-digit binary representation of (i− 1) and
(j − 1); respectively. The scheduling functions also hold the convex sum property in
Ωx ×Ωx̂ ×Ωu, i. e.,

∑r
i=1wi(z) = 1, wi(z) ∈ [0, 1],

∑ρ
j=1 ωj(ζ) = 1, and ωj(ζ) ∈ [0, 1].

The following lemma is useful in order to derive LMI conditions from convex inequal-
ities:

Lemma 2.1. (Tuan et al. [52]) Let Υj
ik=

(
Υj

ik

)T
, (i, k) ∈ {1, 2, . . . , r}2, j ∈ {1, 2, . . . , ρ},

be matrices of adequate dimensions. Then
∑r

i=1

∑r
k=1

∑ρ
j=1 wi(z)wk(z)ωj(ζ)Υ

j
ik < 0
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holds if
2

r − 1
Υj

ii +Υj
ik +Υj

ki < 0, (3)

for all (i, k) ∈ {1, 2, . . . , r}2, j ∈ {1, 2, . . . , ρ}.

3. MAIN RESULT

As customary in descriptor approaches, system (1) is expressed as the following aug-
mented system via the so-called descriptor redundancy approach [50]:[

I 0
0 0

][
ẋ
ẍ

]
=

[
ẋ

f(x)+g(x)(u+fa)−E(y)ẋ

]
, x̄=

[
x
ẋ

]
. (4)

Both the controller and UI observer gains are carried out for this augmented system.

3.1. The unknown input observer

Recall that the actuator faults (viewed as an unknown input) holds f
(p)
a (t) ≈ 0, where

p is the order of the derivative, this can be arranged as a set of first order differential

equations by defining d1(t)=fa(t), d2(t)= ḟa(t), d3(t)= f̈a(t), . . . , dp(t)=f
(p−1)
a (t); thus

ḋ = Sd, with S=


0 Im 0 · · · 0
0 0 Im · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

, d=

d1
d2
d3
...
dp

. (5)

In general, as fa ∈ Rm we have d ∈ Rmp and S ∈ Rmp×mp. Now, we are ready to define
the following augmented system with χ = [xT dT ]T ∈ Rn+mp:

Ed(y)χ̇ = fd(χ, u), y = hd(χ), (6)

where

Ed(y)=

[
E(y) 0
0 Imp

]
, fd(χ, u) =

[
f(x)+g(x)u+g(x)Wd

Sd

]
,

hd(χ) = h(x), and W = [Im 0m×m(p−1)]. As before, using descriptor redundancy we
have [

In+mp 0
0 0n+mp

][
χ̇
χ̈

]
=

[
χ̇

fd(χ, u)− Ed(y)χ̇

]
. (7)

Inspired by developments in [17], consider β(t) ∈ Rn+mp and the following UI observer[
In+mp 0
0 0n+mp

][
˙̂χ

β̇

]
=

[
β

fd(χ̂, u)−Ed(y)β

]
+

[
Nd1(z)
Nd2(z)

]
(y−ŷ), (8)
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where Nd1(z), Nd2(z) ∈ R(n+mp)×o are the observer gains to be designed via LMIs; they
only depend on available signals gathered in z(x̂, y). Then, the error system is

Ēd ˙̄ed =
(
Ād(χ, χ̂, u)− N̄d(z)C̄d(χ, χ̂)

)
ēd, (9)

with

ēd=

[
eχ
eβ

]
=

[
χ− χ̂
χ̇− β

]
, Ād(χ, χ̂, u)=

[
0 I

Ad(χ, χ̂, u) −Ed(y)

]
,

Ēd=

[
I 0
0 0

]
, N̄d(z)=

[
Nd1(z)
Nd2(z)

]
, C̄d(χ, χ̂)=

[
Cd(χ, χ̂) 0

]
,

where Ad(χ, χ̂, u)eχ = fd(χ, u) − fd(χ̂, u) and Cd(χ, χ̂)eχ = hd(χ) − hd(χ̂) have been
obtained from the factorization method given in [43] (see section 2.1). The following
result provides LMI conditions for the stabilization of (9):

Theorem 3.1. The origin of the error system (9) is asymptotically stable if there exist
matrices Pd1 = PT

d1, Pd3k, Pd4k ∈ R(n+mp)×(n+mp), Ld1k, Ld2k ∈ R(n+mp)×o, k ∈
{1, 2, . . . , r} such that Pd1 > 0 and LMIs (3) hold with

Υj
ik:=

[
PT
d3kAdij−Ld1kCdij+(∗) (∗)

PT
d4kAdij−Ld2kCdij+Pd1−ET

diPd3k −ET
diPd4k+(∗)

]
,

for (i, k) ∈ {1, 2, . . . , r}2, j ∈ {1, 2, . . . , ρ}. If found feasible, the UI observer structure is

Ed(y) ˙̂χ=fd(χ̂, u)+
[
Ed(y) I

][Nd1(z)
Nd2(z)

]
(y − ŷ). (10)

P r o o f . Consider the Lyapunov function candidate

V (ēd) = ēTd Ē
T
d P̄d(z)ēd, P̄d(z)=

[
Pd1 0

Pd3(z) Pd4(z)

]
,

with Pd1, Pd3(z), Pd4(z) ∈ R(n+mp)×(n+mp), holding ĒT
d P̄d(z) = P̄T

d (z)Ēd ≥ 0 and Pd1 >
0; its time derivative is

V̇ = ˙̄eTd Ē
T
d P̄d(z)ēd + ēTd P̄

T
d (z)Ēd ˙̄ed.

Once system (9) is substituted; then, holds V̇ < 0 if(
Ād(χ, χ̂, u)− N̄d(z)C̄d(χ, χ̂)

)T
P̄d(z) + P̄T

d (z)
(
Ād(χ, χ̂, u)− N̄d(z)C̄d(χ, χ̂)

)
< 0. (11)

In order to obtain LMI conditions, the previous expression is rewritten in a convex form
(see Section 2.2) with

P̄d(z)=

r∑
k=1

wk(z)P̄dk, Ād(χ, χ̂, u)=

r∑
i=1

ρ∑
j=1

wi(z)ωj(ζ)Ādij ,
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C̄d(χ, χ̂)=

r∑
i=1

ρ∑
j=1

wi(z)ωj(ζ)C̄dij ;

then (11) is equivalent to

r∑
i=1

r∑
k=1

ρ∑
j=1

wi(z)wk(z)ωj(ζ)
(
P̄T
dkĀdij−L̄dkC̄dij+(∗)

)
<0,

where

r∑
k=1

wk(z)L̄dk=

[∑r
k=1wk(z)Ld1k∑r
k=1wk(z)Ld2k

]
and N̄d(z)=

(
r∑

k=1

wk(z)P̄dk

)−T[∑r
k=1 wk(z)Ld1k∑r
k=1 wk(z)Ld2k

]
,

have been substituted. The proposed LMI conditions are obtained once Lemma 2.1 is
applied. The final observer form (10) can be derived by writing (8) as

˙̂χ =Nd1(z) (y − ŷ) + β (12)

Ed(y)β =fd(χ̂, u)+Nd2(z)(y−ŷ). (13)

From (12) we have β = ˙̂χ−Nd1(z) (y − ŷ) and substituting it in (13) yields:

Ed(y) ˙̂χ=fd(χ̂, u)+Ed(y)Nd1(z)(y−ŷ)+Nd2(z)(y−ŷ),

which after regrouping terms gives (10). Thus, concluding the proof. □

Remark 3.2. The performance of the UI observer can be improved in terms of decay
rate, i. e., the convergence rate of the error towards the origin. This can be guaranteed
by V̇ (ēd) ≤ 2αV (ēd), α > 0, which in turn is implied by LMIs (3) with

Υj
ik :=

[
PT
d3kAdij−Ld1kCdij+(∗)+2αPd1 (∗)

PT
d4kAdij−Ld2kCdij+Pd1−ET

diPd3k −ET
diPd4k + (∗)

]
,

for (i, k) ∈ {1, 2, . . . , r}2, j ∈ {1, 2, . . . , ρ}.

3.2. The controller

Let us consider a nonlinear control law:

u(t) = K(x)x(t), (14)

with K(x) ∈ Rm×n as the nonlinear controller gain. Thus, without the actuator fault
fa(t), the closed-loop system yields[

I 0
0 0

][
ẋ
ẍ

]
=

[
ẋ

f(x) + g(x)K(x)x− E(y)ẋ

]
. (15)
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In order to design the control law by means of LMIs, a convex rewriting of the closed-
loop system is required (see Section 2.2); thus assuming that f(x) = A(x)x, where the
nonlinearities in A(x) are well-defined in Ωx, then (15) gives

[
I 0
0 0

][
ẋ
ẍ

]
=

r∑
i=1

r∑
k=1

wi(x)wk(x)

[
0 I

Ai+BiKk −Ei

][
x
ẋ

]
, (16)

where it has been considered:

E(y)=

r∑
i=1

wi(x)Ei, f(x)=A(x)x=

r∑
i=1

wi(x)Aix,

g(x)=

r∑
i=1

wi(x)Bi, K(x)=

r∑
k=1

wk(x)Kk;

the vertex matrices are computed such that

Ei = E(y)|wi=1, Ai = A(x)|wi=1, Bi = g(x)|wi=1, Ki ∈ Rm×n, i ∈ {1, 2, . . . , r},

the latter being matrices to be designed. The following result is adopted from the
developments in [16]:

Theorem 3.3. The origin of the system (15) is asymptotically stable if there exist
matrices X1 = XT

1 , X3k, X4k ∈ Rn×n and Mk ∈ Rm×n, k ∈ {1, 2, . . . , r} such that
X1 > 0 and LMIs

2

r − 1
Υii +Υik +Υki < 0,

hold for all (i, k) ∈ {1, 2, . . . , r}2 with

Υik :=

[
X3k +XT

3k (∗)
AiX1+BiMk−EiX3k+XT

4k −EiX4k−XT
4kE

T
i

]
,

for (i, k) ∈ {1, 2, . . . , r}2. If found feasible, the controller gains are Kk = MkX
−1
1 ,

k ∈ {1, 2, . . . , r}, then u =
∑r

k=1wk(x)Kkx = K(x)x.

P r o o f . It follows similar lines as the ones given in [16] and therefore not repeated
here. □

Recall that the control law (2) is constituted by the term K(x̃)x̂, where x̃ ∈ Rn

denotes that the gain only depends on available signals (x̂ and y), for instance, if x ∈
R4 and yT = [x1 x3], then x̃T = [y1 x̂2 y2 x̂4] = [x1 x̂2 x3 x̂4]. In what follows a
mathematical proof is given to show that the separation principle holds.
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3.3. The fault-tolerant control scheme

As mentioned in Section 2, the control law under design is (2) for the faulty system (1),

that is, u = K(x̃)x̂ − f̂a, with K(x̃) being the controller gain that uses only available
signals x̂ and y. Thus, the closed-loop system is

E(y)ẋ =f(x)+g(x)K(x̃)x̂+ g(x)fa−g(x)f̂a

=f(x)+g(x)K(x̃)x− g(x)[K(x̃) W ]

[
x− x̂

d− d̂

]
, (17)

which combined with the UI observer (10):[
E(y) 0
0 Imp

][ ˙̂x
˙̂
d

]
=

[
f(x̂)+g(x̂)u−g(x̂)Wd̂

Sd̂

]
+
[
Ed(y) In+mp

][Nd1(x̃)
Nd2(x̃)

]
(y − ŷ)

yields the following error system in terms of x − x̂ and d − d̂ (the dynamics of d are

taken from (5)), where the error signal is eχ = [xT − x̂T dT − d̂T ]T :

Ed(y)ėχ=

[
f(x)−f(x̂)+g(x)Wd−g(x̂)Wd̂+(g(x)−g(x̂))u

S(d− d̂)

]
−
[
E(y) In+mp

][Nd1(x̃)
Nd2(x̃)

]
(h(x)−h(x̂)).

Once the factorization of error signals is performed, we have Ao(x, x̂, u, d)(x − x̂) +

Bo(x, x̂)W (d− d̂) = f(x)−f(x̂)+g(x)Wd−g(x̂)Wd̂+(g(x)−g(x̂))u and Co(x,x̂)(x− x̂) =
h(x)− h(x̂), so the previous error system results in

Ed(y)ėχ =

([
Ao(x,x̂,u,d) Bo(x,x̂)W

0 S

]
−
[
E(y) In+mp

][Nd1(x̃)
Nd2(x̃)

] [
C(x,x̂) 0

])
eχ.

In order to drive the trajectories of x(t) and eχ(t) asymptotically to zero, the following
augmented system is built (recall that E(y) and Ed(y) are invertible):[

ẋ
ėχ

]
=

[
Ac(x)+Bc(x)K(x̃) −Bc(x)K(x̃)

0(n+mp)×n Ao(χ, χ̂, u)− L(x̃)C(x, x̂)

][
x
eχ

]
, (18)

where

Ac(x)x=E−1(y)f(x), Bc(x) = E−1(y)g(x),

Ao(χ, χ̂, u)=

[
E−1(y)Ao(x, x̂, u, d) E−1(y)Bo(x, x̂)W

0 S

]
,

K(x̃) = [K(x̃) W ], C(x, x̂)=[Co(x, x̂) 0],

L(x̃)=E−1
d (y)

[
E(y) In+mp

][Nd1(x̃)
Nd2(x̃)

]
.

The following theoretical result is based on the developments found in [6, Section 7.6],
it shows the possibility of designing the complete fault tolerant controller scheme by
means of LMI conditions in theorems 3.1 (for the UI observer) and 3.3 (for the fault-free
control law).
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Theorem 3.4. The origin of the augmented system (18) is asymptotically stable if there
exist matrices X = XT ∈ Rn×n, Q = QT ∈ R(n+mp)×(n+mp) such that X > 0, Q > 0
and the inequalities

X (Ac(x)+Bc(x)K(x̃)) + (∗) < 0, (19)

(Ao(χ,χ̂,u)−L(x̃)C(x,x̂))Q+ (∗) < 0, (20)

hold in Ω ⊂ R2n+mp, 0 ∈ Ω.

P r o o f . The asymptotic stability at the origin of (18) is implied by the existence of

P =

[
X X12

XT
12 X22

]
being positive definite and such that

P
[
Ac(x)+Bc(x)K(x̃) −Bc(x)K(x̃)

0(n+mp)×n Ao(χ, χ̂, u)−L(x̃)C(x,x̂)

]
+(∗)<0, (21)

holds in Ω ⊂ R2n+mp, 0 ∈ Ω. The first block-position (1,1) of the previous inequality
yields the one in (19). Now, if applying congruence on (21) with

Q =

[
Q11 Q12

QT
12 Q

]
=

[
X X12

XT
12 X22

]−1

,

results in [
Ac(x)+Bc(x)K(x̃) −Bc(x)K(x̃)

0(n+mp)×n Ao(χ, χ̂, u)−L(x̃)C(x, x̂)

]
Q+(∗)<0, (22)

which implies (20) by the block position (2,2). Now, considering that conditions (19)
and (20) are satisfied, then

V =

[
x
eχ

]T [
λX 0
0 Q−1

] [
x
eχ

]
(23)

is a valid Lyapunov function candidate for system (18), with some λ > 0 to be specified
later on. The time-derivative of (23) is negative definite if (arguments omitted)[

λX(Ac(·)+Bc(·)K(·))+(∗) −λXBc(·)K(·)
(∗) Q−1(Ao(·)−L(·)C(·))+(∗)

]
< 0, (24)

holds in Ω ⊂ R2n+mp, 0 ∈ Ω. Applying Schur complement yields

λR(·)− S(·) > 0, (25)

with
S(·) = X (Ac(·)+Bc(·)K(·)) + (∗) and

R(·) = XBc(·)K(·)
(
Q−1 (Ao(·)−L(·)C(·)) + (∗)

)−1
KT (·)BT

c (·)X.

Conditions (19) and (20) assure that λmin(R(·)) < 0 and λmax(S(·)) < 0; therefore, λ
can be chosen such that λ (λmin(R(·))) > λmax(S(·)) to guarantee (25). □
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Remark 3.5. As the previous theorem shows, the controller and the UI observer can
be designed independently. Moreover, as LMIs in theorems 3.1 and 3.3 can be verified
simultaneously [6, 48], the numerical complexity of the entire LMI problem can be
approximated by log10(n

3
dnl), where nd is the number of scalar decision variables and

nl is the number LMI rows in both theorems [55]. Hence, we have nd = 0.5(n +
mp)(n +mp + 1) + 2r(n +mp)2 + 2r(n +mp)o + 0.5n(n + 1) + 2rn2 + rmn and nl =
r2ρ(2n+ 2mp) + (n+mp) + r22n+ n. Thus, the numerical complexity is linked to the
number of states as well as the number of nonlinearities s and σ as the number of vertex
exponentially increases, i. e., r = 2s and ρ = 2σ; additionally, inverting the descriptor
matrix E(y) may introduce more nonlinearities [10].

In contrast with other methodologies, the LMI framework provides conditions nu-
merically tractable [6, 3]; additionally, closed-loop performances such as speed converge
(see Remark 3.2), input bounds, disturbance attenuation via H∞ can be directly added
within the same framework. On the other hand, observers based-on sliding mode [8]
or high-gain [38] approaches might be applied too; nonetheless, the former requires to
compute a change of variables and to satisfy matching conditions that might be hard to
satisfy while for the later the observer gain might be too large and it may destabilize
the closed-loop system because of the well-known peaking phenomena [27]. Therefore,
the fault-tolerant control scheme hereby presented is fully in terms of LMIs, which are
solvable in polynomial time via commercially available software [14].

4. EXAMPLES

In this section, the advantages of the proposal are illustrated via both academic as well
as physical examples. The first one is intended to show how the UI observer works
on nonlinear descriptor systems where the considered fault is adequately estimated.
The second example illustrates the actuator fault estimation problem occurring on the
inverted pendulum on a car. The LMI conditions as well as simulations have been carried
out in the LMIToolbox [14] and Simulink within MATLAB.

Example 4.1. Consider a nonlinear descriptor (1) with:

E(y) =

[
0.87 0.33+0.5(1−2η)

0.53−δ(1−2η) 0.95

]
,

f(x)=

[
−0.81x1 + 0.83x2 + x2δ sinx1

−0.74x1 + 0.57x2

]
, g(x)=

[
0
1

]
,

where the output is y = h(x) = x2, the term η = 1/(1 + x2
2) depends exclusively on

available signals, δ > 0 is a real-valued parameter, the actuator faults are

fa(t) =


1.5(t− 5) + 0.3 sin(5t), 5 ≤ t < 10
1.5(15− t) + 0.3 sin(5t), 10 ≤ t ≤ 15
0.5 sin(5t) + 0.3 sin(5t), 20 ≤ t < 37
0.5(t− 45 + 0.3 sin(5t)), 45 ≤ t ≤ 50
0, otherwise.

(26)
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The task is to design a nonlinear fault tolerant control law (2), to this end let us first
design an UI observer (10) such that x1 and the fault fa are reconstructed, under the

assumption that f
(3)
a (t) ≈ 0; hence the augmented error system (9) can be obtained by

means of the factorization method firstly presented in [43] and summarized in section
2.1.

Notice that g(x) = [0 1]T , then let us focus on the difference

f(x)− f(x̂)=

[
−0.81e1+0.83e2+δ(x2 sinx1−x̂2 sin x̂1)

−0.74e1 + 0.57e2

]
;

by using a third order approximation (sinx1 ≈ x1 − x3
1/6) and grouping terms yields[

−0.81+δx2− 1
6δx2(x

2
1+x1x̂1+x̂1) 0.83+δx̂1− 1

6δx̂
3
1

−0.74 0.57

] [
e1
e2

]
.

Now, we are ready to express the error system (9) with matrices:

Ad(χ, χ̂, u)eχ=


f(x)−f(x̂)

0 0 0
1 0 0

0 0
0 0
0 0

0 1 0
0 0 1
0 0 0


and Ed(y) =

[
E(y) 02×3

03×2 I3

]
with χ1 = x1, χ2 = x2, χ3 = fa, χ4 = f

(1)
a and χ5 =

f
(2)
a . Hence, we have 5 measurable nonlinearities (x2, x̂1, x̂

2
1, x̂

3
1 and 1/(1 + x2

2)) and
2 unmeasurable ones (x1 and x2

1); a convex representation in the region of interest
Ωx × Ωx̂ = {|x1| ≤ 1, |x̂1| ≤ 1, |x2| ≤ 1} gives 27 vertex models (omitted here due to
space reasons). LMI conditions in Theorem 3.1 are found feasible for δ = 0.6, some of
the computed gains are:

Ld11 = 1× 106


1.6099
7.1595
0.8550
1.8139
1.2205

 , Ld21 = 1× 106


3.4452
6.6859
−4.9892
−1.6365
0.5400

 .

Now, under the assumption that fa(t) = 0 and all states are measurable, the controller
(14) will be designed. To do this, a new convex representation of the system is needed;
by considering the same region Ωx × Ωx̂ we have z1(x) = 1/(1 + x2

2) ∈ [0.5 1] and
z2(x) = sinx1 ∈ [−0.8415 0.8415]. LMIs in Theorem 3.3 are feasible, the resulting gains
are:

K1 =
[
4.0105 −13.1415

]
, K2 =

[
4.0363 −12.8426

]
,

K3 =
[
2.4243 −9.6254

]
, K4 =

[
2.2045 −8.0947

]
,

X1 =

[
120.0703 22.2918
22.2918 16.5766

]
.
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For illustration purposes, the time-evolution of the states without a fault tolerant control
(f̂a = 0) is depicted on the top of Figure 1 for initial conditions x(0) = [0.5 − 0.5]T ; as
expected when the fault (26) occurs the states are seriously affected and driven to outside
of designing region. Additionally, the fault and its estimation is shown on the bottom
of Figure 1, as expected, It can be clearly appreciated that the fault fa is adequately
reconstructed.

On the other hand, under the fault tolerant scheme (2), simulation results are shown
in Figure 2. It can be clearly appreciated that the closed-loop system has a good
performance under the signal fault (26), as the system states are always closed to the
origin, see the top of Figure 2. The evolution in time of control law (2) is displayed on
the bottom of Figure 2.
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Fig. 1. Time-evolution of the states and fault versus their estimation

in Example 4.1.

Finally, it is important to stress that:

• The system under study is in descriptor form; the proposed FTC scheme begins
by constructing an UI observer (10); in this sense we compare with works focused
on such observers. Hence, approaches [19, 20, 25, 36] cannot deal directly with the
system under study, because they only consider standard systems and the schedul-
ing parameters are assumed to be available, which is not the case for this example.
Approaches in [37, 41, 56] deal with unmesaurable variables but they are not in
the descriptor form. As for approaches concerning UI observers for descriptor sys-
tems, [9] cannot deal with unavailable premise variables. Nonetheless, from system
(1), it is always possible to obtain ẋ(t) = E−1(y) (f(x) + g(x) (u(t) + fa(t))) as to
compute an error system via factorization (this step might be more difficult due
to complex nonlinear expressions). In order to perform a “fair” comparison, we
employ LMIs in Theorem 3.1 with Ei = I, r = 26 = 64, ρ = 22 = 4 and adequate
vertex matrices Aij . The LMIs for the descriptor as well for the standard forms
are run for positive values of δ, for the descriptor we have feasible solutions up to
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Fig. 2. Closed-loop trajectories under the FTC scheme (2) for

Example 4.1.

δ = 0.683 while the standard configuration is feasible until δ = 0.446; the larger
the value of δ is, the less conservative are the conditions. In terms of numerical
complexity (see Remark 3.5), our descriptor FTC approach has 14.7149 while for
the standard setup is 16.2148.

• Comparisons with respect to observer-based FTC: the algorithm proposed in [21,
Section 4] only considers available scheduling variables and does not contemplate
descriptors models; similar shortcoming presents [47]. Conditions in [1, 31] cannot
be directly employed since they are for standard state space representations. As for
descriptor approaches, [45] conditions cannot be used because the scheduling vector
must be available. Regarding approaches based-on sliding modes, [7] provides
conditions to estimate actuator faults for LPV systems; nevertheless it cannot be
used for the fault estimation part as the scheduling vector must be known and the
considered system is not in a descriptor form.

Example 4.2. Consider the inverted pendulum on car with dynamics [12]:

(ml+M)ẋ3+mlLẋ4 cosx2+bx3−mlLx
2
4 sinx2=F,

mlLẋ3 cosx2+(J+mlL
2)ẋ4−mlgL sinx2+κx4=0,

where x1 (m) and x3 (m/s) are the position an velocity of the car, respectively; x2

(rad) and x4 (rad/s) are the position and velocity of the pendulum, respectively; the
parameters are L = 0.3 m, M = 2.3 Kg, ml = 0.2 Kg, J = 0.0099 Kg·m2, b = 5× 10−5

N·s·m−1, g = 9.81 m·s−2, and κ = 0.005 N·m·s·rad−1; F = −9.6(u + fa) with u (V)
being the control signal and fa is an actuator fault; positions x1 and x2 are measured
with encoders, i. e., the output is y = [x1 x2]

T . The state-space model in descriptor
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form can be written as (1) with

E(y)=


1 0 0 0
0 1 0 0
0 0 ml +M mlL cosx2

0 0 mlL cosx2 J +mlL
2

,

f(x)=


x3

x4

mlLx
2
4 sinx2 − bx3

mlL sinx2 − κx4

, g(x)=


0
0

−9.6
0

.
The fault is defined as

fa(t) =


0.08(t− 5), 5 ≤ t ≤ 10
0.08(15− t), 10 ≤ t ≤ 15

0.05 sin(0.75t− 4) + 0.05, 20 ≤ t ≤ 37
0.07(t− 45), 45 ≤ t ≤ 50

0, otherwise.

Now, by considering the measurable signals (output) in the descriptor model, matrix

Ed(y) and vector fd(χ, u) with p = 3 (impliying f
(3)
a ≈ 0) can be easily identified. The

states of the extended system (6) are χ1 = x1, χ2 = x2, χ3 = x3, χ4 = x4, χ5 = fa,

χ6 = f
(1)
a , and χ7 = f

(2)
a . Once an unknown input nonlinear descriptor observer in (8)

is considered, the error system (9) can be obtained with

Ed(y) =

[
E(y) 04×3

03×4 I3

]
and Ad(χ,χ̂)=



0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 −b mlL(χ4+χ̂4) sin y2 −9.6 0 0
0 0 0 −κ 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0


,

where factorization mlLχ
2
4 sin y2 −mlLχ̂

2
4 sin y2 = mlL(χ4 + χ̂4) sin y2 in Ad(χ, χ̂)eχ =

fd(χ, u) − fd(χ̂, u) has been employed, with χ̂1 = y1 and χ̂2 = y2 in fd(χ̂, u). The
non-constant terms in the nonlinear error system are: z1 = x̂4 = χ̂4 ∈ [−3, 3], z2 =
sin y2 ∈ [−0.383, 0.383], and z3 = cos y2 ∈ [0.924, 1] (available); ζ1 = x4 = χ4 ∈ [−3, 3]
(unavailable); the bounds have been induced from the desired operation region Ωx×Ωx̂ =
{|y2| ≤ π/8, |x4| ≤ 3, |x̂4| ≤ 3}. In order to increase the converge rate of the UI observer,
LMIs with α = 5 together with simple matrices Pd3k = Pd3 and Pd4k = Pd4 are found
feasible (see Remark 3.2).

First, the UI observer is put at test in simulation, the results are shown in figures
3 and 4 for initial conditions x(0) = [0.05 0.0873 0 0]T , x̂(0) = [0 0 0 0 0]T , under
the control law u = −6.218x1 − 56.297x2 − 11.676x̂3 − 14.59x̂4; this controller has
been obtained from Theorem 3.3 by using z1 = x2

4, z2 = (sinx2)/x2, and z3 = cosx2

to construct the corresponding convex model; for simplicity, the controller gain has
been chosen constant, that is, K = MX−1

1 . Secondly, the FTC scheme (2), with u =
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−6.218x1−56.297x2−11.676x̂3−14.59x̂4− f̂a has been implemented for the same initial
conditions, simulation results are depicted in Figure 5.

Comparing results in Figure 4 with those in Figure 5 it is easy to see the advantage
of using the fault tolerant control (2) in contrast with simple state feedback.
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Fig. 4. Time evolution of the states x(t) and its estimations x̂(t)

under a state feedback u = Kx̂ control law.
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Fig. 5. Time evolution of the states x(t) and their estimations x̂(t)

under the fault tolerant control law (2).

5. CONCLUSION

An observer-based fault tolerant control scheme for nonlinear descriptor systems has
been presented. The proposed scheme is able to drive the trajectories of the system
asymptotically to the origin despite actuator faults. The FTC consists an UI observer
whose LMI conditions have been obtained by a recently appeared factorization method;
this UI observer provides estimations of the missing state variables as well as the actuator
faults. Once the signals are estimated, they are fed by the fault-tolerant controller.
All the conditions have been obtained in the form of LMIs. Two examples have been
employed to illustrate the advantages of the proposal.
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