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Abstract. We introduce and study the disjoint weak p-convergent operators in Banach
lattices, and we give a characterization of it in terms of sequences in the positive cones. As
an application, we derive the domination and the duality properties of the class of positive
disjoint weak p-convergent operators. Next, we examine the relationship between disjoint
weak p-convergent operators and disjoint p-convergent operators. Finally, we characterize
order bounded disjoint weak p-convergent operators in terms of sequences in Banach lattices.
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1. Introduction

In 1993 Castillo and Sánchez introduced and studied the notion of p-convergent

operators on Banach spaces (see [3]). After that, many authors became interested

in the study of these operators (see for instance [1], [4], [5], [10] and [12]). Re-

cently, Zeekoei and Fourie (see [12]) considered weak and disjoint versions of the

p-convergent operators, the so-called weak p-convergent operators and disjoint p-

convergent operators, respectively. In this study, we continue along this path, and

we introduce the disjoint version of weak p-convergent operators, the so-called dis-

joint weak p-convergent operators (see Definition 3.1). More precisely, we give a

characterization of positive disjoint weak p-convergent operators between two Ba-

nach lattices in terms of sequences in the positive cones (see Theorem 3.2), and we

derive the domination property of this class of operators (see Corollary 3.3). After

that, we examine the property of indirect duality for the class of disjoint weak p-

convergent operators (Theorem 3.5). Note that each disjoint p-convergent operators

c© The author(s) 2023. This is an open access article under the CC BY-NC-ND licence cbnd

DOI: 10.21136/MB.2023.0160-22 409

https://creativecommons.org/licenses/by-nc-nd/4.0
http://dx.doi.org/10.21136/MB.2023.0160-22


is disjoint weak p-convergent but the converse is not true in general (see Remark 3.7).

Inspired by this fact, we study the relationship between disjoint weak p-convergent

operators and disjoint p-convergent operators between Banach lattices (see Theo-

rem 3.8 and Theorem 3.10). After that, we end this work with a characterization of

order bounded disjoint weak p-convergent operators in terms of sequences in Banach

lattices (see Theorem 3.14).

2. Definitions and notations

To state our results, we need to fix some notation and recall some definitions.

A Banach lattice is a Banach space (E, ‖·‖) such that E is a vector lattice and its

norm satisfies the following property: for each x, y ∈ E such that |x| 6 |y|, we

have ‖x‖ 6 ‖y‖. If E is a Banach lattice, its topological dual E′, endowed with

the dual norm, is also a Banach lattice. A norm ‖·‖ of a Banach lattice E is order

continuous if for each generalized sequence (xα) such that xα ↓ 0 in E, the sequence

(xα) converges to 0 for the norm ‖·‖, where the notation xα ↓ 0 means that the

sequence (xα) is decreasing, its infimum exists and inf(xα) = 0. A Riesz space is

said to be σ-Dedekind complete if every countable subset that is bounded above has

a supremum, equivalently, whenever 0 6 xn ↑6 x implies the existence of sup(xn).

Throughout the paper we useX , Y to denote Banach spaces. The identity operator

onX is denoted by IdX and the closed unit ball ofX byBX . As is custom, we agree to

use E, F to denote Banach lattices. The dual of a Banach space X is denoted by X ′.

We use the term operator between two Banach spaces to mean a bounded linear

mapping T : X → Y . Its adjoint operator T ′ is defined from Y ′ intoX ′ by T ′(f)(x) =

f(T (x)) for each f ∈ Y ′ and for each x ∈ X . In particular, T : E → F is positive if

T (x) > 0 in F whenever x > 0 in E. Let 1 6 p < ∞. The conjugate number will be

denoted by p′, i.e., 1/p+1/p′ = 1. The Banach space of p-summable scalar sequences

is denoted by lp and l∞ is the space of bounded scalar sequences. The closed subspace

of l∞, consisting of the scalar sequences which are convergent with limit 0, is denoted

by c0. The unit vector basis of l
p is denoted by (en). Recall from [7], page 32 that a

sequence (xn) in X is weakly p-summable if f(xn) ∈ lp for each f ∈ X ′. A sequence

(xn) in a Banach lattice E is disjoint if |xn| ∧ |xm| = 0 for n 6= m.

Let 1 6 p 6 ∞. An operator T : X → Y is called

⊲ p-convergent if T maps weakly p-summable sequences in X into norm-null se-

quences in Y (see [3]). The 1-convergent operators are precisely the uncondi-

tionally converging operators and the ∞-convergent operators are precisely the

Dunford-Pettis operators.

⊲ weak p-convergent if fn(T (xn)) → 0 as n → ∞ for every weakly p-summable

sequence (xn) in X , and for every weakly null sequence (fn) in Y ′ (see [12]).
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An operator T : E → F is disjoint p-convergent if it maps disjoint weakly p-

summable sequences in E into norm-null sequences in F (see [12]).

A Banach space X has the Dunford-Pettis property of order p if fn(xn) → 0 as

n → ∞ for every weakly p-summable sequence (xn) in X , and for every weakly null

sequence (fn) in X ′ (see [3], Proposition 3.2).

A Banach lattice E has the positive Schur property of order p if each disjoint

weakly p-summable sequence in E+ is norm-null in E (see [12], Proposition 3.3).

The reader is referred to Aliprantis and Burkinshaw (see [2]), Diestel (see [6]), Di-

estel, Jarchow, and Tonge (see [7]) and Dunford and Schwartz (see [9]) for undefined

notation and terminology.

3. Main results

We start this work by the following definition of a disjoint weak p-convergent

operator between Banach lattices.

Definition 3.1. An operator T from a Banach lattice E to a Banach lattice F

is disjoint weak p-convergent if fn(T (xn)) → 0 as n → ∞ for every disjoint weakly p-

summable sequence (xn) in E, and for every disjoint weakly null sequence (fn) in F
′.

Now, using the sequences in the positive cones, we characterize positive disjoint

weak p-convergent operators between two Banach lattices.

Theorem 3.2. Let E and F be two Banach lattices. For every positive operator T

from E into F , the following assertions are equivalent:

(1) T is a disjoint weak p-convergent operator.

(2) For every disjoint weakly p-summable sequence (xn) ⊂ E+, and every disjoint

weakly null sequence (fn) ⊂ (F ′)+, we have fn(T (xn)) → 0 as n → ∞.

(3) For every disjoint weakly p-summable sequence (xn) ⊂ E+, and every weakly

null sequence (fn) ⊂ F ′, we have fn(T (xn)) → 0 as n → ∞.

(4) For every disjoint weakly p-summable sequence (xn) ⊂ E+, and every weakly

null sequence (fn) ⊂ (F ′)+, we have fn(T (xn)) → 0 as n → ∞.

(5) For every weakly p-summable sequence (xn) ⊂ E+, and every weakly null se-

quence (fn) ⊂ (F ′)+, we have fn(T (xn)) → 0 as n → ∞.

P r o o f. (1) ⇒ (2): It is obvious.

(2) ⇒ (3): Assume by way of contradiction that there exist a disjoint weakly

p-summable sequence (xn) ⊂ E+, and a weakly null sequence (fn) ⊂ F ′ such that

fn(T (xn)) 9 0. The inequality |fn(T (xn))| 6 |fn|(T (xn)) implies that |fn|(T (xn))

does not converge to 0. Then there exist some ε > 0 and a subsequence of |fn|(T (xn))

(which we shall denote by |fn|(T (xn)) again) satisfying |fn|(T (xn)) > ε for all n.
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On the other hand, since (xn) is a weakly p-summable sequence in E, then

(T (xn)) → 0 weakly in F . Now, an easy inductive argument proves that there

exist a subsequence (zn) of (xn) and a subsequence (gn) of (fn) such that

|gn|(T (zn)) > ε and

(

4n
n
∑

i=1

|gi|

)

(T (zn+1)) <
1

n

for all n > 1. Put h =
∞
∑

i=1

2−n|gn| and hn =
(

|gn+1| − 4n
n
∑

i=1

|gi| − 2−nh
)+

. By

Lemma 4.35 of [2] the sequence (hn) is disjoint. Since 0 6 hn 6 |gn+1| for all n > 1

and (gn) is weakly null in F ′, then from Theorem 4.34 of [2], (hn) is weakly null

in F ′. From the inequality

hn(T (zn+1)) >

(

|gn+1| − 4n
n
∑

i=1

|gi| − 2−nh

)

(T (zn+1)) > ε−
1

n
− 2−nh(T (zn+1))

we see that hn(T (zn+1)) > 1
2ε must hold for all n sufficiently large (because

2−nh(T (zn+1)) → 0), which contradicts our hypothesis (2).

(3) ⇒ (4): It is obvious.

(4) ⇒ (5): Assume by way of contradiction that there exist a weakly p-

summable sequence (xn) ⊂ E+ and a weakly null sequence (fn) ⊂ (F ′)+ such

that fn(T (xn)) 9 0. Then there exist some ε > 0 and a subsequence of fn(T (xn))

(which we shall denote by fn(T (xn)) again) satisfying fn(T (xn)) > ε for all natural

numbers n.

On the other hand, as (fn) is a weakly null sequence in (F
′), we see that

(T ′(fn)) → 0 weakly in E′. Now, an easy inductive argument shows that there exist

a subsequence (zn) of (xn) and a subsequence (gn) of (fn) such that

T ′(gn)(zn) > ε and T ′(gn+1)

(

4n
n
∑

i=1

zi

)

<
1

n

for all n > 1. Put z =
∞
∑

i=1

2−nzn and yn =
(

zn+1−4n
n
∑

i=1

zi−2−nz
)+

. By Lemma 4.35

of [2], the sequence (yn) is disjoint. Since 0 6 yn 6 zn+1 for all n > 1 and (zn) is

weakly p-summable in E, then from Remark 1.3 of [12], it follows that (yn) is a

weakly p-summable sequence in E. From the inequality

T ′(gn+1)(yn) > T ′(gn+1)

(

zn+1 − 4n
n
∑

i=1

zi − 2−nz

)

> ε−
1

n
− 2−nT ′(gn+1)(z)

we see that gn+1(T (yn)) = T ′(gn+1)(yn) >
1
2ε must hold for all n sufficiently large

(because 2−nT ′(gn+1)(z) → 0), which contradicts our hypothesis (4).
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(5) ⇒ (1): Let (xn) be a weakly p-summable sequence in E consisting of pairwise

disjoint terms, and let (fn) be a weakly null sequence in F ′ consisting of pairwise

disjoint terms. From Remark (1) of [11] we see that (|fn|) is weakly null in F ′, and

from Proposition 2.2 of [12] we have that (|xn|) is weakly p-summable in E. So by our

hypothesis (5), |fn|(T |xn|) → 0 as n → ∞. Now, from the inequality |fn(T (xn))| 6

|fn|(T (|xn|)) for all natural numbers n, we conclude that fn(T (xn)) → 0 as n → ∞,

and this completes the proof. �

As a consequence of Theorem 3.2, we derive the domination property for the class

of positive disjoint weak p-convergent operators.

Corollary 3.3. Let E and F be two Banach lattices. If S and T are two positive

operators from E into F such that 0 6 S 6 T and T is disjoint weak p-convergent,

then S is also disjoint weak p-convergent.

P r o o f. Let (xn) be a weakly p-summable sequence in E+ and (fn) be a

weak null sequence in (F ′)+. According to (5) of Theorem 3.2, it suffices to prove

that fn(S(xn)) → 0 as n → ∞. Since T is disjoint weak p-convergent, then

Theorem 3.2 implies that fn(T (xn)) → 0 as n → ∞. Now, by the inequality

0 6 fn(S(xn)) 6 fn(T (xn)) for each natural number n, we see that fn(S(xn)) → 0

as n → ∞, and we are done. �

For the proof of the next theorem, we need the following lemma, which is just

Lemma 2.8 of [12].

Lemma 3.4. Let E be a Banach lattice with type q, 1 < q 6 2, and let p > q′.

Each disjoint sequence (xn) in the solid hull of a relatively weakly compact subsetW

of E is weakly p-summable in E. In particular, the sequence (|xn|) is weakly p-

summable in E.

Now, we establish the duality property for the class of positive disjoint weak p-

convergent.

Theorem 3.5. Let T be a positive operator from a Banach lattice E into another

Banach lattice F such that F ′ is of type q, 1 < q 6 2, and let p > q′. If the

adjoint T ′ from F ′ into E′ is disjoint weak p-convergent, then T itself is disjoint

weak p-convergent.

P r o o f. Let (xn) be a disjoint weakly p-summable sequence in E
+, and let (fn)

be a disjoint weakly null sequence in (F ′)+. Now, let τ : E → E′′ be the canonical

injection of E into its topological bidual E′′. As τ is a lattice homomorphism, we see

that (τ(xn)) is a weakly null sequence in (E′′)+. On the other hand, by Lemma 3.4
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we get that (fn) is a weakly p-summable sequence in F ′, and since the adjoint T ′ is

disjoint weak p-convergent from F ′ into E′, then from Theorem 3.2, assertion (4),

we get that (τ(xn))(T
′(fn)) → 0 as n → ∞. As

fn(T (xn)) = (T ′(fn))(xn) = (τ(xn))(T
′(fn))

holds for all natural numbers n, we deduce that fn(T (xn)) → 0 as n → ∞, and this

completes the proof. �

Proposition 3.6. Let E, F be two Banach lattices and G be a Banach space.

If G has the Dunford-Pettis property of order p, then each operator T : E → F that

admits a factorization through the Banach space G, is disjoint weak p-convergent.

P r o o f. Let P : E → G and Q : G → F be two operators such that T = Q ◦ P .

Let (xn) be a disjoint weakly p-summable sequence in E and let (fn) be a disjoint

weakly null sequence in F ′. It is clear that P (xn) is weakly p-summable in G and

Q′(fn) → 0 weakly in G′. As G has the Dunford-Pettis property of order p, then

fn(Txn) = fn(Q ◦ P (xn)) = (Q′fn)(P (xn)) → 0 as n → ∞.

This shows that T is disjoint weak p-convergent, and this ends the proof. �

R em a r k 3.7. Note that each disjoint p-convergent operator is disjoint weak p-

convergent, but the converse is not true in general. In fact, the identity operator Idc0 :

c0 → c0 is disjoint weak p-convergent because c0 has the Dunford-Pettis property of

order p (see Proposition 3.6), but Idc0 is not disjoint p-convergent because (en) is a

disjoint weak p-summable sequence in c0 and ‖en‖ 9 0 as n → ∞.

Now, we are in a position to give the relation between disjoint weak p-convergent

and disjoint p-convergent operators.

Theorem 3.8. Let E and F be two Banach lattices such that F is σ-Dedekind

complete. If each positive disjoint weak p-convergent operator T : E → F is disjoint

p-convergent, then one of the following assertions is valid:

(1) E has the positive Schur property of order p,

(2) the norm of F is order continuous.

P r o o f. Assume by way of contradiction that E does not have positive Schur

property of order p and F does not have the order continuous norm. We have

to construct a positive disjoint weak p-convergent operator which is not disjoint

p-convergent.
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Since E does not have the positive Schur property of order p, there exists a disjoint

weakly p-summable sequence (xn) in E+ which is not norm convergent to 0. As

‖xn‖ = sup{|f(xn)| : f ∈ (E′)+, ‖f‖ = 1}, there exist a sequence fn ∈ (E′)+ with

‖fn‖ = 1, some ε > 0 and a subsequence (yn) of (xn) such that |fn(yn)| = fn(yn) > ε

for all natural numbers n. Now, consider the operator P : E → l∞ defined by

P (x) = (fk(x))
∞
k=1.

Clearly, P is positive. Also, since the norm of the Dedekind σ-complete Banach

lattice F is not order continuous, it follows from Theorem 4.51 of [2] that l∞ is

lattice embeddable in F . Let Q : l∞ → F be a lattice embedding. Then there exist

m > 0 and M > 0 such that

m‖((λk)
∞
k=1)‖∞ 6 ‖Q((λk)

∞
k=1)‖ 6 M‖((λk)

∞
k=1)‖∞

for all ((λk)
∞
k=1) ∈ l∞. Note that Q is also a lattice homomorphism, and hence it is

positive (see page 235 and 236 of [2]). Let T = Q ◦ P : E → l∞ → F . As l∞ has

the Dunford-Pettis property of order p, it follows from Proposition 3.6 that T is a

positive disjoint weak p-convergent operator. On the other hand, T is not disjoint

p-convergent. In fact, note that (yn) is a disjoint weakly p-summable sequence in E

and for every n ∈ N we have

‖T (yn)‖ = ‖Q((fk(yn))
∞
k=1)‖∞ > m‖(fk(yn))

∞
k=1‖∞ > mfn(yn) > mε.

This shows that T is not disjoint p-convergent, and we are done. �

R em a r k 3.9. The second necessary condition of Theorem 3.8 is not sufficient.

In fact, the identity operator Idc0 : c0 → c0 is disjoint weak p-convergent but is

not disjoint p-convergent. However, the norm of c0 is order continuous. Now, if

we replace the arrival space F by its topological dual space F ′, then the second

necessary condition of Theorem 3.8 becomes sufficient; for more details see the next

theorem.

Theorem 3.10. Let E and F be two Banach lattices. Then the following asser-

tions are equivalent:

(1) Each positive disjoint weak p-convergent operator T : E → F ′ is disjoint p-

convergent.

(2) One of the following assertions is valid:

(a) E has the positive Schur property of order p,

(b) the norm of F ′ is order continuous.
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P r o o f. (1) ⇒ (2): It follows from Theorem 3.8.

(2a) ⇒ (1): It is obvious.

(2b) ⇒ (1): Let (xn) be a disjoint weakly p-summable sequence in E+. Then

|T (xn)| = T (xn) is weak
⋆ null sequence in (F ′)+. Now, let (yn) be a disjoint norm

bounded sequence in F+. As the norm of F ′ is order continuous, it follows from

Corollary 2.9 of [8] that (yn) is weakly null in F+. Since the canonical injection

τ : F → F ′′ is a lattice homomorphism, we see that τ(yn) is a disjoint weakly null

sequence in (F ′′)+. As T : E → F ′ is a positive disjoint weak p-convergent operator,

it follows from Theorem 3.2, assertion (2), that (τ(yn))(T (xn)) → 0 as n → ∞. The

equality

(τ(yn))(T (xn)) = (T (xn))(yn)

implies that (T (xn))(yn) → 0 as n → ∞. By Corollary 2.7 of [8] we conclude that

‖T (xn)‖ → 0 as n → ∞, and the proof is complete. �

From Theorem 1.18 of [2] and Proposition 2.2 of [12], we obtain:

Proposition 3.11. Let E be a Banach lattice and (fn) be a disjoint weakly p-

summable sequence in E′. Then for each z ∈ E+ we have

sup
x∈[−z,z]

|fn(x)| = |fn|(z) → 0 as n → ∞.

As a simple consequence we derive:

Corollary 3.12. Let T : E → F be an order bounded operator between two

Banach lattices E and F . If (fn) is a disjoint weakly p-summable sequence in F ′,

then for each z ∈ E+ we have

sup
y∈T ([−z,z])

|fn(y)| = |fn ◦ T |(z) → 0 as n → ∞.

Proposition 3.13. Let T : E → F be an order bounded operator from a Banach

lattice E into another Banach lattice F , and let A be a norm bounded solid subset

of E. The following statements are equivalent:

(1) For every disjoint weakly p-summable sequence (fn) in F ′ we have

sup
y∈T (A)

|fn(y)| → 0 as n → ∞.

(2) For every disjoint sequence (xn) in A+ = A ∩E+ and for every disjoint weakly

p-summable sequence (fn) in F ′ we have sup
y∈{T (xn) : n∈N}

|fn(y)| → 0 as n → ∞.

(3) For every disjoint sequence (xn) in A
+ and for every disjoint weakly p-summable

sequence (fn) in F ′ we have fn(T (xn)) → 0 as n → ∞.
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P r o o f. (1) ⇒ (2) and (2) ⇒ (3) are obvious.

(3) ⇒ (1): As sup
y∈T (A)

|fn(y)| = sup
x∈A

|fn(T (x))|, then it suffices to show that

sup
x∈A

|fn(T (x))| → 0 as n → ∞ for every weakly p-summable sequence (fn) in F ′.

Otherwise, there exists a sequence (fn) in F ′ satisfying sup
x∈A

|fn(T (x))| > ε for some

ε > 0 and all n ∈ N. Hence, for every natural number n there exists zn ∈ A+

such that |T ′(fn)|(zn) > ε. On the other hand, it follows from Corollary 3.12 that

|fn ◦T |(z) → 0 as n → ∞ for each z ∈ E+. An inductive argument proves that there

exist a subsequence (yn) of (zn) and a subsequence (gn) of (fn) such that

|T ′(gn+1)|(yn+1) > ε and |T ′(gn+1)|

(

4n
n
∑

i=1

yi

)

<
1

n

for all n > 1. Now, put x =
∞
∑

i=1

2−iyi and xn =
(

yn+1 − 4n
n
∑

i=1

yi − 2−nx
)+

. By

Lemma 4.35 of [2] the sequence (xn) is disjoint. As 0 6 xn 6 yn+1 for all n > 1 and

(yn+1) in A+, we see that (xn) in A+. From the inequality,

|T ′(gn+1)|(xn) > T ′(gn+1)

(

yn+1 − 4n
n
∑

i=1

yi − 2−nx

)

> ε−
1

n
− 2−n|T ′(gn+1)|(x).

Hence, |T ′(gn+1)|(xn) > 1
2ε must hold for all n sufficiently large (because 2−n ×

T ′(gn+1)(x) → 0 as n → ∞).

In view of |T ′(gn+1)|(xn) = sup{|gn+1(T (z))| : |z| 6 xn}, for each n sufficiently

large there exists some |zn| 6 xn with |gn+1(T (zn))| >
1
2ε. As (z

+
n ) and (z−n ) are

norm bounded disjoint sequences in A+, by our hypothesis we see that

ε

2
< |gn+1(T (zn))| 6 |gn+1(T (z

+
n ))|+ |gn+1(T (z

−
n ))| → 0

as n → ∞, a contradiction, and this completes the proof. �

Theorem 3.14. Let E and F be two Banach lattices such that E is of type q,

1 < q 6 2, and F ′ is of type r, 1 < r 6 2, and let p > max(q′, r′). Let T be an order

bounded operator from E into F . Then the following assertions are equivalent:

(1) T is a disjoint weak p-convergent operator.

(2) fn(T (xn)) → 0 as n → ∞ for every disjoint weakly p-summable sequence (xn)

in E and for every disjoint weakly null sequence (fn) in F ′.

(3) fn(T (xn)) → 0 as n → ∞ for every weakly p-summable sequence (xn) in E and

for every disjoint weakly null sequence (fn) in F ′.
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P r o o f. (1) ⇔ (2): It follows from Definition 3.1.

(3) ⇒ (2): It is Obvious.

(2)⇒ (3): Let (xn) be a weakly p-summable sequence in E and (fn) be a disjoint

weakly null sequence in F ′. We show that fn(T (xn)) → 0 as n → ∞. Let A be

the solid hull of the weak relatively compact subset {xn : n ∈ N} of E. If (zn) is

a disjoint sequence in A+, then from Lemma 3.4 we have that (zn) is a weakly p-

summable sequence in E (because E is of type q, 1 < q 6 2, and p > q′), and by

our hypothesis we get fn(T (zn)) → 0 as n → ∞. As F ′ is of type r, 1 < r 6 2, and

p > r′, then by Lemma 3.4 we have that (fn) is disjoint weakly p-summable in F ′.

Now, Proposition 3.13 implies that sup
y∈T (A)

|fn(y)| → 0 as n → ∞. Since

|fn(T (xn))| 6 sup
x∈A

|fn(T (x))| 6 sup
y∈T (A)

|fn(y)|,

we obtain fn(T (xn)) → 0 as n → ∞, and the proof is finished. �

A c k n ow l e d gm e n t . The author is thankful to the referee for their valuable

comments and suggestions.
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