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Abstract. A commutative ring R with unity is called a special principal ideal ring (SPIR)
if it is a non integral principal ideal ring containing only one nonzero prime ideal, its length e
is the index of nilpotency of its maximal ideal. In this paper, we show a characterization
of irreducible polynomials over a SPIR of length 2. Then, we give a sufficient condition for
a polynomial to be irreducible over a SPIR of any length e.
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1. Introduction

The irreducibility of polynomial functions is among the most important topics in

the abstract algebra. They are widely used in number theory [7], cryptography [5],

coding theory [2] and complexity theory [8].

It is well known that irreducible polynomials in C[X ] are exactly the ones of

degree 1 and in R[X ], irreducible polynomials are of degree 1 and those of the form

aX2 + bX + c, where b2 − 4ac < 0. But in the general case of fields or commutative

rings, irreducible polynomials are not really known. Some good tools are used to find

more information about them like Eisenstein’s criterion and the Newton polygon.

But this was not sufficient to find all of them.

In this paper, we are interested in irreducible polynomials over the commutative

special principal ideal ring (SPIR). Recall that a SPIR is a non integral principal ideal

ring which contains only one nonzero prime ideal (see [3], page 176, Definition 14.3).

If k is its residual field, πR is its maximal ideal and e its index of nilpotency, we

denote (R, πR, k, e) and we say that R is a SPIR of length e.
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Our aim is to give a complete characterization of irreducible polynomials over

a SPIR of length 2; this allows to identify completely irreducible polynomials over

C[Y ]/(Y 2) and R[Y ]/(Y 2). Moreover, we give a sufficient condition for a polyno-

mial f to be irreducible over a SPIR of any length e. So we get some irreducible

polynomials over C[Y ]/(Y e) and R[Y ]/(Y e).

2. Preliminaries

For every x ∈ R we denote by x the class of x in k = R/πR, and for every

polynomial f(X) = a0 + a1X + . . .+ anX
n we denote by f the polynomial in k[X ]

defined by f(X) = a0 + a1X + . . .+ anX
n.

Proposition 2.1 (Hensel’s development). Let (R, πR, k, e) be a SPIR. Then:

∀x ∈ R ∃! (x0, . . . , xe−1) ∈ ke : x =

e−1∑

k=0

πkxk,

∀ f ∈ R[X ] ∃! (f0, . . . , fe−1) ∈ k[X ]e : f =

e−1∑

k=0

πkfk,

and f is a unit in R[X ] if and only if f0 is a unit in k[X ].

P r o o f. Since R contains only one nonzero prime ideal, the nilradical of R

is its maximal ideal Nil(R) = πR. It follows that π is nilpotent. Let e be its

index of nilpotency. Now for any x ∈ R, there is a unique x0 ∈ k = R/πR such

that x = x0. Then x − x0 ∈ πR, namely there exists x′

0 ∈ R such that x =

x0 + πx′

0. By the same method, there exists a unique x1 ∈ k such that x′

0 = x1.

Then x = x0 + πx1 + π2x′

1, where x
′

0 − x1 = πx′

1. By induction we conclude that

there exists a unique (x0, x1, . . . , xe−1) ∈ ke such that x = x0+πx1+ . . .+πe−1xe−1

since πe = 0. Notice that R is local. Then x is a unit in R if and only if x 6= 0

in k if and only if x0 6= 0. Now let f(X) = a0 + a1X + . . . + anX
n ∈ R[X ] and

ak = a0,k + πa1,k + . . .+ πe−1ae−1,k for each k ∈ {0, . . . , n}. Then f = f0 + πf1 +

. . .+πe−1fe−1, where fi(X) = ai,0+ ai,1X + . . .+ ai,nX
n for each i ∈ {0, . . . , e− 1}.

Notice that f = f0 + πF for some F ∈ R[X ]. If f0 is a unit and g0 is its inverse,

then f
e−1∑
k=0

(−1)kfe−k−1

0 (πF )k = fe
0 + (−1)e−1(πF )e = fe

0 , then fg = 1, where g =

ge0
e−1∑
k=0

(−1)kfe−k−1

0 (πF )k. Conversely, if f is a unit, then there exists a polynomial g

such that fg = 1. Let f = f0 + πF and g = g0 + πG for some F and G in R[X ].

Then f0g0 = 1. This completes the proof. �
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E x am p l e 2.2. The ring Z/35Z is a SPIR, where π = 3, 3Z/35Z is its maximal

ideal and e = 5 its index of nilpotency. We get for example:

114 = 0 + 23 + 03
2
+ 13

3
+ 13

4
.

Lemma 2.3. Let R be a commutative ring with unity. Then R is a SPIR if and

only if it is not an integral local principal ideal ring.

P r o o f. If R is a SPIR, Nil(R) 6= 0 is its maximal ideal. Let Nil(R) = πR.

Then π is nilpotent, then R is not integral. Conversely, if R is not an integral local

principal ideal ring, let πR be its maximal ideal and suppose that π is not nilpotent.

Lemma 2.1 shows that for any element x ∈ R there exist a unique integer p and a

unique family (xi)06i6p in k such that x =
p∑

i=0

xiπ
i and xp is a unit. Since R is not

integral, there exist x 6= 0 and y 6= 0 such that xy = 0. By Proposition 2.1 we have

x =
p∑

i=0

xiπ
i and y =

q∑
i=0

yiπ
i. Then the (p+ q)-th entry is xpyq, which is a unit. By

the unicity of Hensel’s development, we should get xpyp = 0. This is a contradiction.

Then π is nilpotent. This shows that πR = Nil(R) and R contains a unique prime

ideal. Hence, R is a special principal ideal ring. �

Lemma 2.4. Let k be a field. Then R = k[X ]/(Xe) is a SPIR of length e with k

its residual field and XR its maximal ideal.

P r o o f. Since k is a field, k[X ] is a principal ideal ring and so is R. Moreover, let

s /∈ XR. Then there exist a ∈ k[X ] and b ∈ k such that s = aX + b and b 6= 0. We

have that aX is a nilpotent element in R and b is a unit in R. Then s is a unit in R.

Therefore, R is a local ring and XR is its maximal ideal and its index of nilpotency

is e. Since R is not integral, it is a SPIR of length e. �

E x am p l e 2.5. C[X ]/(Xe) and R[X ]/(Xe) are two SPIRs of length e.

Lemma 2.6 (Lemma 23, [4]). Let (R, πR, k, e) be a SPIR and f(X) = anX
n +

. . .+ a1X + a0 ∈ R[X ]. The following statements are equivalent:

(1) f is regular (if xf = 0, then x = 0, where x ∈ R).

(2) f is primitive ((an, . . . , a1, a0) = R).

(3) There is i ∈ {0, . . . , n} such that ai is unit.

(4) f0 6= 0 (f0 obtained by Hensel’s development 2.1).

(5) f 6= 0 in k[X ].

Lemma 2.7. Let (R, πR, k, e) be a SPIR of length e. Then the ideals of R are

0 = πeR ⊂ πe−1R ⊂ . . . ⊂ πR ⊂ R.
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P r o o f. Let k be a positive integer 0 < k < e, and I be an ideal of R such

that πk+1R ⊆ I  πkR. Then for any element x ∈ I, x = πkx′ for some x′ ∈ R.

If x′ ∈ πR, then x ∈ πk+1R. Else, we get that x′ is a unit in R, thus πk ∈ I and

I = πkR, which is impossible. Therefore, I = πk+1R. It follows that the ideals of R

are all of the form πkR. �

Since R contains a finite number of ideals, it is a complete ring (see [6], page 182).

As well, Theorem 2.3 in [9] shows that R is a Henselian ring, that is, a ring in which

Hensel’s lemma holds (see [1]).

Lemma 2.8 (Hensel’s lemma, Theorem 7.18 in [6]). Let R be a complete local

Noetherian ring and f be in R[x] such that f = g1 . . . gk in k[x], where g1, . . . , gk
are pairwise coprime polynomials in k[x]. Then there is G1, . . . , Gk ∈ R[x] such that

f = G1 . . .Gk ∈ R[x], Gi = gi for all i ∈ {1, . . . , k}.

3. Main results

Theorem 3.1. Let (R, πR, k, 2) be a SPIR of length 2 with πR its maximal ideal

and k its residual field. A primitive polynomial f is irreducible in R[X ] if and only

if it satisfies one of the following statements:

(1) There exist f0 and f1 in k[X ] and p > 2 a positive integer such that f = fp
0+πf1,

f0 is an irreducible polynomial in k[X ] and f0 does not divide f1.

(2) f is irreducible in k[X ].

P r o o f. Let f = fp
0 + πf1 be Hensel’s development 2.1 such that f0 is an irre-

ducible polynomial in k[X ] and f0 does not divide f1. Let f = gh with g = g0 + πg1
and h = h0 + πh1 being Hensel’s development 2.1 of g and h. Then

fp
0 = g0h0, f1 = g0h1 + g1h0.

Since f0 is irreducible, g0 and h0 are either units or are divisible by f0. If g0 and h0 are

both divisible by f0, then f0 divides f1; this is a contradiction since we have assumed

that f0 does not divide f1. Then either g0 is a unit or h0 is a unit. Therefore, by

Proposition 2.1 either g is a unit or h is a unit. Thus, f is irreducible in R[X ].

For the second statement, suppose now that f is irreducible in k[X ]. Let f = gh

for some polynomials g and h in R[X ]. By Hensel’s development 2.1, f = f0 + πf1,

g = g0 + πg1 and h = h0 + πh1. Then

f0 = g0h0, f1 = g0h1 + g1h0.
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Since f is irreducible in k[X ], f0 is irreducible, then either g0 is a unit or h0 is a unit.

Therefore, by 2.1 either g is a unit or h is a unit. It follows that f is irreducible.

Conversely, suppose f is irreducible in R[X ] and assume f is not irreducible in

k[X ]. If f is not primary, Hensel’s lemma 2.8 yields that f is not irreducible. This

contradicts the fact that f is irreducible.

Suppose f is irreducible in R[X ]. Then there exists an irreducible polynomial f0
in k[X ] such that f = fp

0 for a positive integer p > 2. Then Hensel’s development 2.1

proves that f = fp
0 + πf1 for a polynomial f1 ∈ k[X ]. It is enough to prove that f0

does not divide f1. Contrariwise, we put:

F =
f1
f0

, g = f0, h = fp−1

0 + πF.

Then f is not irreducible since f = gh and neither g nor h is a unit. This is a

contradiction. So f0 does not divide f1. �

Corollary 3.2. Let (R, πR, k, 2) be a SPIR of length 2 with πR its maximal ideal,

and k its residual field. We fix an irreducible polynomial f0 in k[X ]. Then irreducible

polynomials in R[X ] such that f0 divides f are

(1) f = uf0, where u is a unit in R[X ],

(2) f = u(fp
0 + πf1), where p is a positive integer, f1 is a coprime with f0 in k[X ]

and u is a unit in R[X ].

Corollary 3.3. Let R = C[Y ]/(Y 2). Irreducible polynomials of R[X ] are

(1) f = u(X + a), where a ∈ C and u is a unit in R[X ],

(2) f = u((X − a)p + Y f ′), where a ∈ C, p is a positive integer, f ′ is a polynomial

in C[X ] such that f ′(a) 6= 0 and u is a unit in R[X ].

Corollary 3.4. Let R = R[Y ]/(Y 2). Irreducible polynomials of R[X ] are

(1) f = u(X + a), where a ∈ R and u is a unit in R[X ],

(2) f = u((X − a)p + Y f ′), where a ∈ R, p is a positive integer, f ′ is a polynomial

in R[X ] such that f ′(a) 6= 0 and u is a unit in R[X ],

(3) f = u(X2+aX+b), where a, b ∈ R such that a2−4b < 0 and u is a unit in R[X ],

(4) f = u((X2+aX+b)p+Y f ′), where a, b ∈ R such that a2−4b < 0, p is a positive

integer, f ′ is a polynomial in R[X ] which is not divisible by X2 + ax + b and u

is a unit in R[X ].

We can prove, by the same way as in the proof of the Theorem 3.1, a general result

for every length e of R:
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Theorem 3.5. Let (R, πR, k, e) be a SPIR of length e with πR its maximal ideal,

and k its residual field. Let f be a primitive polynomial in R[X ]. If f is irreducible

in k[X ], then f is irreducible in R[X ].

P r o o f. Assume f is irreducible in k[X ]. Let f = gh for some polynomials g and h

in R[X ]. By Hensel’s development 2.1, f = f0+. . .+πe−1fe−1, g = g0+. . .+πe−1ge−1

and h = h0 + . . .+ πe−1he−1. Put F = f1 + . . .+ πe−2fe−1, G = g1 + . . .+ πe−2ge−1

and H = h1 + . . .+ πe−2he−1. Then

f0 = g0h0, f1 = g0H +Gh0.

Since f is irreducible in k[X ], f0 is irreducible, then either g0 is a unit or h0 is a unit.

Therefore, by Hensel’s development 2.1, either g is a unit or h is a unit. It follows

that f is irreducible. �

Corollary 3.6. Let R = C[Y ]/(Y e) for a positive integer e > 1. For any a ∈ C

and any g ∈ R[X ] satisfying g(a) 6= 0, the polynomial f = (X−a)+Y g is irreducible

in R[X ].

Corollary 3.7. Let R = R[Y ]/(Y e) for a positive integer e > 1. For any a, b ∈ C

verifying a2 − 4b < 0, for any g ∈ R[X ] satisfying g(a) 6= 0 and for any h ∈ R[X ] not

divisible by (X2+aX+b), polynomials f = (X−a)+Y g and f ′ = (X2+aX+b)+Y h

are irreducible in R[X ].
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