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Abstract. We consider the initial-boundary value problem for a nonlinear higher-order
nonlinear hyperbolic equation in a bounded domain. The existence of global weak solutions
for this problem is established by using the potential well theory combined with Faedo-
Galarkin method. We also established the asymptotic behavior of global solutions as ¢t — oo
by applying the Lyapunov method.
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1. INTRODUCTION

In this paper we consider the following coupled problem of the nonlinear higher-
order hyperbolic equation with nonlinear source term and delay term:

utt(x, t) + AU((E, t) + p1g1 (Ut(l', t))

+p2ga(us(z,t — 7)) = alulP~%u  in Q x ]0, 00|,

(1.1) D%u(z,t) =0, |a] <m—1 on 99 x [0, c0],
’U,(J?,O) = ’LL()(J?), ’U,t(l‘,O) = ’U,l(l‘) in Qa
ug(x, t —7) = fola,t —7) in  x]0, 7],

where A = (—A)™, m > 1, is a natural number, p1,pu2 > 0 and p > 1 is a real
number, Q is a bounded domain in R™, n € N*, with a smooth boundary 0, A is
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n
the Laplace operator in R", o = (a1,02,...,ap), |a = o, D = 08 /0x] =
=1

3
olelj(0xS x> .. a%), & = (x1,T2...2,), a, p1 and up are positive real numbers,

g1 and g2 are two functions, 7 > 0 is a time delay, and the initial data (ug,u1, fo)
are in a suitable function space.
When m = 1, Liu and Zuazua (see [6], [15]) considered the equation

uge(x,t) — Au(z, t) + aoue(x, t) + aug(z,t —7) =0 in Q x ]0, 00|,
(1.2) u(z,t) =0 on 99 x [0, c0],
u(z,0) = up(z), u(x,0) =uq(z) in Q.

It is well-known, in the absence of delay (a = 0, ag > 0), that this system is exponen-
tially stable. In the presence of delay (a > 0), Nicaise and Pignotti (see [9]) examined
system (1.2) and proved, under the assumption that the weight of the feedback with
delay is smaller than the one without delay (i.e., 0 < a < ag), that the energy is
exponentially stable. However, in the opposite case, they could produce a sequence
of delays for which the corresponding solution is unstable.

In the case for m = 1, Benaissa and Louhibi (see [2]) studied the following problem:

uge(x,t) — Au(z, t) + prgr(ue(x, b)) + poga(ue(z,t — 7)) =0 in Q x ]0, 00],

u(z,t) =0 on 00 x [0, 00|,
U(QE,O) = ’LL()(CL'), ut(xvo) = Ul(l’) in Q,
ut(z,t —7) = fo(z,t —7) in Qx]0,7[.

They showed global existence of weak solutions using the Faedo-Galerkin method,
and obtained general stability estimates by introducing multiplier method and gen-
eral weighted integral inequalities.

For the initial-boundary value problem of a single higher order nonlinear hyper-
bolic equation

uge(z,t) + Au(z,t) + alu|" 2wy = blu/P~2u  in Q x ]0, oo,
(1.3) Du(z,t) =0, o <m—1 on 08 x [0, 0],
’LL(J,‘,O) = UJO(J")) ut(x70) = ul(x) in Qa

Nakao (see [7]) has used Galerkin’s method to present the existence and uniqueness
of the bounded solutions, almost periodic solutions to problem (1.3) as the dissipative
term is a linear function vu;. Nakao and Kuwahara (see [8]) study decay estimates
of global solutions to problem (1.3) with the degenerate dissipative term a(z)u; by
using a different inequality.
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In the case of m > 1 and p; = po = 0, problem (1.1) becomes the following
initial-boundary value problem:
uge(z,t) + (—A)™u(x,t) = alulP2u  in Q x ]0, 0],
(1.4) D*u(z,t) =0, |a| <m—1 on 99 x [0, o],
u(z,0) = uo(x), ue(x,0) =u1(z) in Q.

Brenner and von Wahl (see [3]) proved the existence and uniqueness of classical
solutions to (1.4) in a Hilbert space. Moreover, Ye (see [14]) proved that this system
is stable polynomial type with decay rates depending on the smoothness of initial
data. Pecher in [11] investigated the existence and uniqueness of Cauchy problem for
the equation in (1.4) by use of the potential well method due to Payne and Sattinger
(see [10]). Wang in [12] showed that the scattering operators map a band in H?*
into H? if the nonlinearities have critical or subcritical powers in H*.

Yanbing et al. in [13] studied solutions to

ug(w,t) + A%u(x,t) — Au(x,t) — alAug(z,t) = f(u) in Q x]0,00],
(1.5) Au(z,t) = u(z,t) =0, |a) <m—1 on 99 x [0, oo,
U(IE, 0) = ’U,()(il,'), ut(xa 0) = ul(x) in Qv
and proved a global well-posedness result, asymptotic behavior and finite time blow
up for a strongly damped nonlinear wave equation.

In this article, we prove the global existence of solutions for problem (1.1) by
applying the potential well theory and Faedo-Galerkin method. Meanwhile, we study
the asymptotic behavior of global solutions by the Lyapunov method.

This article is organized as follows: in the next section, we give some preliminaries
and main results. Then Section 3 contains the proofs of the global existence and
general decay results.

2. PRELIMINARIES AND MAIN RESULTS

To state and prove our result, we use the following assumptions:

(A1) g1: R — R is a nondecreasing function of class C* and H: Ry — R, is convex,
increasing and of class C1(R.) N C2(]0, 0o]) satisfying

(2.1) H(0) =0 and H is linear on [0,¢] or
H'(0) =0 and H” > 0 on ]0, €] such that
Alsl <lgi(s)] < eals|if [s] > €,
5”4+ gi(s) < H '(sgi(s)) if |s] <e,

where H ! denotes the inverse function of H and ¢, ¢y, ¢} are positive constants.

13



(A2) g2: R — R is an odd nondecreasing function of class C'(R) such that there
exist co, 1,2 > 0,

(2.2) |92(s)] < c2,

(2.3) a1592(s) < G(s) < azsgi(s),
where G(s) = [; g2(r) dr.

(A3) oo < agus.

(A4) m > 1 is a natural number, p satisfies 2 < p < oo if n < 2m and 2 < p <
2(n—m)/(n —2m) if n > 2m.

Lemma 2.1. Let g be a real number with 2 < g < oo if n < 2m and 2 < ¢ <
2n/(n — 2m) if n > 2m. Then there is a constant Cs depending on 2 and q such that

lullq < Cs A 2ullz Vu € Hi* ().

Remark 2.2. Let us denote by ®* the conjugate function of the differentiable
convex function P, i.e.,

®*(s) = sup (st — ®(t)).

teERT

Then ®* is the Legendre transform of ®, which is given by (see Arnold [1],
pages 61-62)

& (5) = (@) 1(5) = B(D)L(s)] it 5 € (0,8/(r)],
and ®* satisfies the generalized Young inequality
(2.4) AB < ®*(A)+ ®(B) if A€ (0,9 (r)], B € (0,r].
We introduce, as in Nicaise and Pignotti (see [9]), the new variable
z(x, 0,t) = ue(x,t —o7), 2€Q, p€(0,1), t>0.
Then we have

(2.5) 724, 0.) + 2o, 0,8) =0 in 2 x (0,1) x (0, 00).
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Therefore, problem (1.1) is equivalent to

uge(x,t) + Au(z, t) + p1g1(ue(x, 1))
+u2g2(z(z,1,t)) = alulP~2  in Q x ]0, 00|,
Tz(x, 0,t) + 2p(x, 0,8) =0 in 2 x]0,1[ x ]0, oo,
(2.6) D%u(z,t) =0, o] <m—1 on 99 x [0, o0,
z2(x,0,t) = ue(x,t) on Q) x [0, 00],
u(z,0) = uo(x), u(z,0) = uq(z) in Q,
z(z, 0,0) = fo(z, —or1) in 2 x]0,1[.

We first define the following functionals:
(2.7) 1(t) = I(u(t) = || A" *ull3 - alful]?,

1 a
J(t) = J(u(t)) = 5HA1/QUH§ - ]—)HUHZ

We denote the total energy by

1
28)  B(®) = glul+ 51400+ | [ Gl o) dode - Suly

1 1
= sluli+¢ | [ Gletw.0.0)dode + Tute)
0
where £ is a positive constant such that

1— —
pal=o) o =
o (€5

and
1 1 ! a
BO) = gl + 514wl +6 | [ Glale,~or) deds = Zfuf
2 2 QJo p
Then for problem (2.6) we can define the stable set as
W= {u\ue Hy'(Q), I(u) >0} U{0}.
We give an explicit formula for the derivative of the energy.

Lemma 2.3. Let (u, z) be a solution to problem (2.6). Then the energy functional
defined by (2.8) satisfies

(2.9) E(0) < — (1m 52 — o) /Q (2, £)g (un (1)) da

- (52 - o) [ 21000 1,0) ds

N
o
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Proof. By multiplying the first equation in (2.6) by u,, integrating over 2 and
using integration by parts, we obtain

(210) 5 (Glu®I + 51472013 - S o)
—l—ul/Qut(a:,t)gl(ut(x,t))dm
+ p2 /Q ug(x,t)ga(z(z, 1,t))dz = 0.

We multiply the second equation in (2.6) by £g2(z), we integrate the result over
2 x (0,1) to obtain

¢ /Q / 0. 0ga(=( 0.1)) dpdz = — / / ' 2o(e, 0 0a(=(a, 0.1)) dg
// 5 (Gl 2.) deda

= > [ (Gla,1,1) — G(x(x.0,1))) da.

T J

Hence

(2.11) §%/Q/O G(z(m,g,t))dgda::—é/ﬂG(z(m,l,t))dx—i—é/ﬂG(ut(m,t))dx

Combining (2.10) and (2.11), we obtain

E(t) = —m / w(,t)g1 (ue(, ) da — s / w(,t)ga(=(e, 1,1)) da

/G (z,1,t))dx 4+ = /Gut

and recalling (2.3), we obtain
, a
@12 E0< - (n-2) [ ) d
T Q
- ug/ us(x,t)ge(z(x, 1,t)) do — —/ G(z(z,1,1))
Q

From the definition of G and by using Remark 2.2, we obtain
G*(s) = 571 (5) - Glgs () Vs> 0.

Hence

G* (gQ(Z(xa 17t))) = Z(i[:, ]-at)QQ(Z(xa 17t)) - G(Z({E, 17t))
< (1 - al)z(x, ]-at)QZ(Z(xa 17t))'
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Using (2.3) and (2.4) with A = go(2(z, 1,1)) and B = (=, t), from (2.12) we obtain
E(t) < — (m - iﬂ) /Qut(x g1 (e (2, 1)) dar — —/ G(2(z,1,1))
1z [ (Glun(e.0) + 6 (oa(o(w.1,1)) da
< = (1 =522 < paoo) [ o)1) da
- (% (L - ) /Qz(a:, 1, g (2 (x, 1,1)) da
< 0.
O

Theorem 2.4 (Local existence). Assume that (A1)—(A4) hold. If ug € H*™(2)N
H(Q), vy € H(Q) and fo € H'(2, H™(0,1)) satisfy the compatibility condition
f(-,0) = uq, then there exists T > 0 such that problem (1.1) has a unique local
solution u(t) which satisfies

u € C([0,00); HY* (), uy € C([0,00); L*(2)).
Now we have the existence of a global solution.

Theorem 2.5. Let
ug € H*™(Q)NW, wuy € H'(Q)NL*(Q) and fo € H(Q, H™(0,1))

satisfy the compatibility condition f(-,0) = wu;. Assume that (Al)—(A4) hold.
Then (1.1) admits a global weak solution u(z,t) such that
u € L*([0, 00); H*™(Q) NHG* (), ur € L¥([0, 00); H" () N L*(Q)),
ug € L2([0,00); L*(2)).

Also we have a uniform decay rates for the energy.

Theorem 2.6. Assume that (A1)—(A4) hold. Then there exist positive constants
w, we, ws and €g such that the solution of (1.1) satisfies

E(t) < wsHy (wit +wy) Vt>0

where
(2.13)
t if H is linear on [0,&'],

() = /t Hj(s) ds and Hy(t) = {tH’(eot) if H'(0) =0 and H"” > 0 on ]0,&'].

17



3. PROOFS OF MAIN RESULTS

Proof of Theorem 2.5. Throughout this section we assume ug € H>™(Q) N W,
uy € HY(Q)NL2(Q) and fo € H(Q, H™(0,1)). We employ the Galerkin method to
construct a global solution. Let T' > 0 be fixed and denote by V} the space generated
by {wh,w?, ..., w*}, where the set {w”*, k € N} is a basis of H*™(Q) N H* (). Now,
we define for 1 < j < k, the sequence ¢7(z, 9) as follows:

¢ (2,0) = w’.

Then, we may extend ¢’ (z,0) by ¢’(z, 0) over L?(2 x (0,1)) so that (¢7); forms
a base of L2(2, H™(0,1)) and denote by Zj the space generated by {pF}. We

construct approximate solutions (u*,2%), k = 1,2,3,..., in the form
k k
uf(t) =) Ml (@), M) = M)y,
j=1 j=1

where ¢/* and d’% (j = 1,2,...,k) are determined by the ordinary differential equa-

tions
(3.1) (ufy (), w?) + (A 2ab(t), AV ) + (g1 (uf), w?)
+p2(92(2" (-, 1)), w?) = a(ju®P~2u, w),
(3.2) 2M(x,0,t) = ul (1),
k
(3.3) Z ug, w )w! — ug  in H*™(Q)NW as k — oo,
j=1
k
(3.4) ub(0) =uf = (ur,w)w? = uy  in HY(Q) N LA(Q) as k — oo,
j=1
and
(3.5) (r2f +25,¢') =0, 1<j<k,
k
(3.6)  2F(p,0) = 2k = Z fo, o)’ — fo in HFY(Q, H™(0,1)) as k — oo.

By virtue of the theory of ordinary differential equations, the systems (3.1)—(3.6)
have a unique local solution which is extended to a maximal interval [0, T}] (with
0 < Ty < 00) by Zorn lemma since the nonlinear terms in (3.1) are locally Lipschitz
continuous. Note that u*(t) is from the class C2. In the next step, we obtain a priori
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estimates for the solution, so that it can be extended outside [0, T%] to obtain one

solution defined for all ¢ > 0. In order to use a standard compactness argument for

the limiting procedure, it suffices to derive some a priori estimates for (u*, z%).

First estimate. Since the sequences u%, uf and z§ converge, the standard calcu-
lations, using (3.1)—(3.6), similar to those used to derive (2.9), yield

t t

E*(t) — E*(0) < —61/ /ufgl(uf)dxds—ﬂg/ /zk(x,l,s)gg(zk(x,l,s))dxds,
0 Ja 0 Jo

where 81 = 1 — Ean/T — paag and By = oy /7 — pa(l — a1). So we obtain

t t
k(t)—l—ﬁl/o /Qufgl(uf)da:ds—l-ﬁg/o /sz(x,1,s)g2(zk(x,1,s))da:dsSE’“(O),

where

EXt) = g t||2+5// G (x, 0.1)) doda + J(u*(1)),

k 1/2, k k
J(u (t))=§||«4 Py ||2—1—7||u 15
and

1 ! 1 a
BH0) = glul3+6 | [ G, 0.0) doda + 51421~ Sl < €1

For some C; independent of k we obtain the first estimate:

a2 + //G (2, 0,8)) doda + J(u //uy ) da ds

—|—/ /zk(x,1,s)gg(zk(x,1,s))dxdsgCl.
0o Jo

These estimates imply that the solution (u*, 2¥) exists globally in [0, co|.

(3.7) u* is bounded in L2, (0, 0o, H'(R2)),

(3.8) u¥ is bounded in L{% (0, 00, L*(Q)),

(3.9) G(2*(x, 0,1)) is bounded in L (0, 00, L*(Q x (0,1))),
(3.10) uf (t)g1 (uf (t)) is bounded in L*(Q x (0,7)),

(3.11)  2F(x,1,t)g2(2"(x, 1,1)) is bounded in L' (Q x (0,T)).
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Second estimate. First, we estimate uF,(0). Taking ¢t = 0 in (3.1), we obtain

(uty(0),w?) + (AY2ub(0), AY2w?) + 1 (91 (ur) (0), w’)
+ p2(g2(2" (-, 1)(0), w”)) = a|u" (0)P~*u*(0), w?),

multiplying by cgtk and summing over j from 1 to k,

(uft(O),uft(O))—l- (.Auk(O),uft(O))—l-,ul(gl( )( ), utt( )
+ pa(g2(2" (-, 1)(0), ug, (0)) = a(|u”(0)[P~?u*(0), uy;, (0)).

Using Holder’s inequality, we have
g (O < [l AU ) + prallgr (i) | + pallg2 (=) | + all lug [~ ug]l-
Since g1 (u¥), ga(2¥) are bounded in L?(€2), (3.3), (3.4) and (3.6) yield
lu (O] < C,

where C' is a positive constant independent of k.
Now, differentiating (3.1) with respect to ¢,

(uty (8), w”) + (Auy (8),w7) + pa (g (uf), w?)
+pa(27 g5 (2" (1), w’) = alp = 1)(Ju"P~2uf, w?),

multiplying by cgf and summing over j from 1 to k,

312 GO + 14O+ m [ k(00 () da

N =

+m/wﬁ%@&ﬁ%(@ﬂﬁmw

= alp=1) [ [ OF 2 @0 do

We have from Hélder’s inequality

p—1) /Iu 2y (ugy (8) doe < alp — D (ON5,7  lug (8)ll2-1) lut (D)2,

where
p—2 1 1

2p-1) " 2(p-1) 2
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Using Lemma 2.1, Young’s inequality and (3.7), we have

(3.13) p—1) /|u VP 2ul (t)uf, (t) da

a(p — HCEH A2 (01572 AT Puf (0l ]|u ()] 2

<
< OEIMPug ()3 + el u, ()13

Differentiating (3.5) with respect to t, we obtain

(thkt + zfg, gaj) = 0.

Multiplying by d{k and summing over j from 1 to k, it follows that

B+ 5B =

Integrating over (0,1) with respect to o, we obtain

(3.14) 5 / ¥ do + 5ll=E (e, 1,013 — 5 (e 3 = .

Taking the sum of (3.12) and (3.14), we obtain

1d !
357 (1A + 142k 01 + 7 [ ||zf||§d@)

i / (uh ()64 (b (1)) da + 5|5, 1, )3
= alp=1) [ [t O et 0 ds

(3.15)

1
=iz [ b (0= (@105 (o 1,0) o+ 503

Using (2.2) and Young’s inequality, we conclude
2
c
(3.16) /Q gl (2, 1, D)llg2(=" (2, 1, 0) [ dw < ell2f (2, 1415 + 2 iz 15
A combination of (3.13), (3.15) and (3.16) then yields

s (o3 + 1472t 01 + 7 [ 113 o)
o / (u ()64 (b (1)) o+ (5 — ) 1, 1, 1) 3

(3.17)

< (e+ G+ D) bl + COIAY2E )
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integrating over [0, ] for all ¢ € [0,T] with arbitrary fixed T,
(3.18) %(HUZ(QH% + A2 O3 + Tll2f (2, 0, D)1 22 (x (0,1))

+u1/ [ horaiearars (5-<) [ 1t 1oga
(lug ()13 + 1A 2ug )13 + 7ll=f (2, 2, 0) 1 22 (@ 0,1))

2 1 t t
b+ B d) [tizare ce [ 1amdoRa
46 2 0 0

l\DI»—l

Then from (3.18), after choosing ¢ small enough and using Gronwall’s lemma, we

obtain
luf, (113 + A 2uf ()13 + 7ll2F (2, 0, )17 2 x 0.1))

+/J/1/ / U’tt Ut( )) dl‘dt+ (_ — £ / Hzt J,‘,17t)||2dt

for all t € [0,T], where M is a positive constant independent of k& € N. Therefore,

we conclude that

(3.19) uk, is bounded in L2 (0, 00, L*(1)),
(3.20) u¥ is bounded in L{° (0, 0o, HJ*(Q)),
(3.21) 2F is bounded in L%, (0, 00, L?(Q x (0,1))).

Third estimate. Replacing w’ by Aw’ in (3.1), multiplying by cgk and summing
over j from 1 to k, it follows that

(3.22)

33 A O + A1)+ [ 1420051 (uf) do

+ 2 / AY2 2R (21,0 AV 2ub gh (25 (2,1, 1)) da
Q
= a/ AV (Juk P=2R) AV 20k d.
Q
Replacing ¢’/ by Ay’ in (3.5), multiplying by d’¥ and summing over j from 1 to k,

it follows that

1d
A 5 A2 =0

We integrate over (0, 1) to find
829 5 [ IAPF OB+ JIA 10 - AP OIR =0
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Combining (3.22), (3.23), using (2.2), Cauchy-Schwarz and Young’s inequalities pro-
duce the estimate

1d

337 (1420013 + At 01 + / A2 o0, de)

[ AV ot () o
+ (5 - )12 G 1, 1)1

CEAEWIE +a [ AV (kP20 Al da.
Q
Integrating the last inequality over (0,t), we have

A2 (1) 3 + A ()] + / A2 e, 0,02 do
—|—2u1/ / |AY2uk ()2 g4 (uk) dze dt
+ 2 — / | AY22E (2,1, 5)|13 dt
< 4%0) + C(e) / A2 (s) 2
e LAY () A ()
<40+ 0 [ 14k ar
+3/ AVt (0D i+ & / AV ()
< A*(0) + max { (C(e) + g) , C(Ek(O))p}
<[ (A2 () 4 A2 )]2)
where
A4(0) = LAY (0)3 + AuF @3 + LAY, 0,6) Bxqxony
and using Gronwall’s lemma, we have
B2a) ARO[ AV 0, 1) 2 do < AF(0)eT
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for all t € Ry, therefore we conclude that

(3.25) u* is bounded in L{2.(0, 0o, H*™(1)),
(3.26) 2¥ is bounded in L2 (0, co, HJ*(Q, L2(0,1))).

Passing to the limit. Applying Dunford-Petti’s theorem, we conclude from
(3.7)(3.11), (3.19)—(3.21) and (3.25)—(3.26), after replacing the sequences u* and z*
by subsequences if necessary, that

u? = u  weak-star in L™

k

0, 00; H*™(£2)),
0, 00; HJ*(2)),

(3.27) (
(3.28) uy — uy weak-star in L™(
(3.29) uf, — uyy weak-star in L°°(0, 0o; L2(Q2)),

(3.30) g1(uf) = x  weak-star in L*(Q x (0,7)),

(3.31) 2P — 2z weak-star in L>(0, 0o, HJ*(Q, L?(0,1))),
(3.32) 2F — 2 weak-star in L>(0, 00, L?(Q x (0,7))),
(3.33) ga(u¥) = ¢ weak-star in L*(Q x (0,7)).

On the other hand, from Aubin-Lions theorem (see Lions [5]), we deduce that there
exists a subsequence {u™} of {u*} such that

(3.34) u™ — u strongly in L?(0,T, L*(Q)),

(3.35) ul™ — uy strongly in L%(0, T, L*()),

which implies
u™ — u almost everywhere in B

and

(3.36) uy® — uy almost everywhere in B.
Hence

(3.37) |u™[P~2u™ — |u[P~?u almost everywhere in B,

where B=Q x (0,T).
/B (™ =2/ =1 4 dt < /B ) e dt < CILAY2um 2,
using (3.7) we obtain

(3.38) [w™[Le/@-1(s) < C-
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Thus, using (3.37), (3.38) and Lions lemma, we derive
(3.39) [u™|P~2u™ — |ulP~2u weakly in LP/(P=1)(B),

and
2™ — z strongly in L?(0,T, L*(Q)),

which implies

2™ — z almost everywhere in B.

Lemma 3.1. For each T > 0, g1(us), g2(2(z, 1,t)) € L*(B) and ||g1 (u¢)|| 118y < K,
llg2(2(x, 1,1))|| 18y < K, where K is a constant independent of t.

Proof. By (Al) and (3.36), we have

g1(ui*(z,t)) = g1(us(z,t)) almost everywhere in B,

0 < ul(x,t)gy (u™(z,t)) — we(z,t)g1 (us(2,t)) almost everywhere in B.

Hence, by (3.10) and Fatou’s lemma, we have
T
(3.40) / / ug(x,t)g1(ur(x,t))dedt < Ky for T > 0.
0o Jo

Now, we can estimate fOT Jo lg1(ue(z,t))| dzdt. By Cauchy-Schwarz inequality and
using (3.40), we have

T T 1/2
[ [ttt oplazat < i ( [ [ wtevgtate.0)as dt)
0 Q 0 Q
< c|l?>’|1/2K11/2 =K.
Similarly, we have
T T 1/2
| [t plasar < s ( | [ rome Lt))dxdt)
0 Q 0 Q
< c|l’)’|1/2K11/2 =K.
This completes the proof of Lemma 3.1. ([

Lemma 3.2. g;(uf) — g1(u;) in LY(Q2x (0, 7)), g2(2%) = g2(2) in L1 (2 x (0,T)).
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Proof. Let E C Q x[0,T] and set

E, = {(x,t) € E: |g1(uf(z, 1)) < L} By =E\ Ei,

VIE|

where |F| is the measure of E. If M (r) = inf{|s|: s € R and |g(s)| = r},

1 -1
k k k
g1(uy)|dedt < c E+<M< )) / uigr(uy)| da dt.
/|1(t)| |E| rEl 2|t1(t

By applying (3.10) we deduce that sup [, [g1(uy)|dzdt — 0 as |[E] — 0. From
k

Vitali’s convergence theorem we deduce that
g1(uF) = g1 (ur) in LI(Q x (0,T)).

Similarly, we have
g2(2") = ga(2) in L' (Q x (0,7)).

This completes the proof of Lemma 3.2. O
Hence

(3.41) g1(ul) = g1(us) weak in L*(Q2 x (0,T)),

(3.42) g2 (2%) = ga(2) weak in L*(Q x (0,T)).

By multiplying (3.1) by 6(¢) € D(0,T) and by integrating over (0,7, it follows that
(3.43) / (ulF (), w)o' (t) dt + / (A2 (1), AY2w?)(t) dt
0 0
T .
b [ (b w0 d
0
T .
b [ (gl 1) 07)000) o
0
T .
_ / (P20, w)0(t) dt,
0

and by multiplying (3.3) by 6(¢t) € D(0,T) and integrating over (0,7) x (0,1), it
follows that

T 1
(3.44) / / (T2 + 28, ¢7)0(t) dtdo = 0.
0 0
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The convergences of (3.27)—(3.33), (3.39), (3.41) and (3.42) are sufficient to pass to
the limit in (3.43) and (3.44) to obtain

T T T
/ (WO W (1) de+ [ (20RO, AP0 g [ (), w0)oe) de
0 0 0
T / (922" (-, 1)), w)(t) dt = / (Iu* P20, w)6(1) dt
and
T 1
/ / (T2 + 20, 0)0(t) dt dp = 0.
0 0
By integrating, we have

T T
| A 0+ g () + (e 1) w002t = [ fap~2use)a

This completes the proof of Theorem 2.5. O

4. ASYMPTOTIC BEHAVIOR

Proof of Theorem 2.6. In this section, we prove the energy decay result by
constructing a suitable Lyapunov functional.
Now we define the following functional

(4.1) L(t) = NE(t) + N1 Fi(t) + Fa(t),
where

(4.2) Fi(t) = /Quut dzx,

(4.3) Fy(t) = /Q/O e TG (z(z, 0,t)) dodx

and we also need the following lemma:

Lemma 4.1. Let (u,z) be a solution of problem (2.6). Then there exist two
positive constants A1, Ay such that

(4.4) ME®) < L(t) < ME({),  t>0,

for N sufficiently large and Ny a positive real number to be chosen appropriately
later.
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Proof. Let L(t) = N1 F1(t) + Fa(t),

1
L0 <N [ Junldz+ [ [ e G (0. 0,1)) doda.
Q QJo

By Young’s inequality, Lemma 2.1, (2.8) and the fact that e=27¢ < 1 for all p € [0, 1],
we obtain

N NiC,y !
2O < FHulf+ 14 + [ [ 6w 0.0 deds < B O).
0

Consequently, |L(t) — NE(t)| < cE(t), which yields
(N —c)E(t) < L(t) < (N + ¢)E(t).
Choising N large enough, we obtain estimate (4.4). O

Lemma 4.2. Let (u, z) be a solution of (2.6). Then the functional F;(t) defined
by (4.2) satisfies for any n > 0 the estimate

@5)  F{(t) < lluel3 +allully — (1 =002 (a1 + p2)) | A ull3

m/ 2 H2C2
+ — g1(ug)|de + —=— [ z(x,1,t)g2(2(x,1,t)) dx.
el RGO LR ol EER IOPACER D)

Proof. Taking the derivative of Fj(t) with respect to ¢ and using the first
equation of (2.6), we obtain
(4.6)

Fi(t) = [luell3 +/Quttudw = uel3 + alluly — 14"/ 2ul3

— i [ g 0)do = i | ugn(eln1,0) o

Now, we estimate the terms on the right hand side of (4.6) using Young’s inequality
and Lemma 2.1 and we obtain

1
(47) [ v do < nC21A 20l 5 - [ (o)
Q nJa
1
(48) /Q uga(.1,8)) do < nCEAY 20l + - /Q g2 (= 1, )2 da.
From (2.2), (4.8) becomes

(4.9) /ugg(z(x,l,t))da:SnCQHAl/QuH%—i—Z—;/z(x,l,t)gg(z(x,l,t))da:.
Q Q

Estimate (4.5) follows by substituting (4.7) and (4.9) into (4.6). O
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Lemma 4.3. Let (u, z) be the solution to (2.6). Then the functional F5(t) defined
by (4.3) satisfies the estimate
(4.10) Fy(t) < — 2e_27/ / G(z(z, 0,t))dodx

aq

/ 2,1, )ga(z(a, 1, ) do + 22 / wn, g (e (2, 1)) do.
Q

T

Proof. By differentiating (4.3) with respect to ¢ and using (2.3) and (2.5), we

obtain
= ——// _2” z(z,0,t)) dodz

_ __//0 8—9(5%@@(2@, 0.4))) dz + 2re 272G (x(z, 0, 1)) doda

:__1/(’%G(@JJD G (ui(x,1))) dz

—2// “2eq(2(x, 0,t)) dodx

— __/ e TG (2(x,1,t)) do + — /Gutxt))d

—2// 272G (2(z, 0,t)) dodx

= —2F(t /G ue(x,t))d z(z,1,t)) de

N

—2F5(t) + 7 /Q ug(z, t)g1 (ue(x, t)) do

a1672r

[ #(100a(x(2 1, 0)
Q

T

Since —e~27¢ is an increasing function, we have —e=27¢ < —e~27 for all ¢ € [0, 1],

—2F(t *27// G(z(z,0,t))dodz.

The proof of Lemma 4.3 is complete. O

we deduce

Lemma 4.4. Let (u,z) be a solution of (2.6) and assume that (A1)—(A4) hold.
Then the functional defined by (4.1) satisfies

(4.11) L'(t) < —=mE(t) + Cr(||udll3 + [lg1 (we)3)
for positive constants m and Cf.
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Proof. By differentiating (4.1) and recalling (2.9), (4.5) and (4.10), we obtain
(4.12) L'(t) = NE'(t) + N1 F{(t) + Fi(t)
o
- (N51 - —2) / ug(x, t)g1(ue(x,t)) do
T/ Ja

—27

(NBQ—N “2;2+ - )/ 22,1, 0)go(2(x, 1, 1)) dz

_27// G(z(z, 0, dgda:+N1—/|gl (u)|? do

+ Niflull3 + Naallulll = Nu(1 = nC3 (i + ) [ A 2ull3.
We choose N large enough such that

H2C2

N -2 >0 and NG, — N 22 > 0.
T

Thus, (4.12) becomes

1
()< <2 [ | Gleta0.0) dode — Ni(1 = 1€+ pa)) |4 ul}
QJ0
+ Nialullp+ Nl + N5 [ o) o
Q

We choose 7 small enough so that 1 — nC?(u1 + p2) > 0. Noting by

—27

m = min {2N1(1 — nC’Q(M + p2)), ef }

and choosing N; small enough so that p/N; < m, we obtain

m
L(t) < =mB(e) + 3wl + Nl + Na / 91 (u) P do
Q

< m )+ el + [ o)

This completes the proof of Lemma 4.4. O

As in Komornik (see [4]), we consider the following partition of €:
le{xéﬂ |Ut| E}, QQ:{xGQ: |ut|<5}
By using (2.1), we have

(4.13) / |ut|2da:+/ g1 ()2 der < (c’l—l-cl)/ g () dz < —pa E'(8)
1951 Q1 931

and
/ |ut|2dx+/ |g1(ut)|2dx < H_l(utgl(ut)) dz.
Qo Qo Qo
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Case 1. H is linear on [0,¢’]. In this case, one can easily check that there exists
w2 > 0 such that

(4.14) a2 da +/ 101 ()2 Ao < — o B (1),
Qo

Substitution of (4.13) and (4.14) into (4.11) gives
(4.15) (L(t) + pE(t) < mH(E(t)), where p = Ci(u1 + p2).

Case 2. H'(0) > 0 and H” > 0 on ]0,¢’]. We define

1

0O =107 Jo,

ug(ug) da

and use Jensen’s inequality and the concavity of H~! to obtain

H Y1, (t) = C i H™ (urg(uy)) de.

By using (2.1), we obtain

Qo
< CH Y (t)) < CH™ Y (—CLE'(t)).

(4.16) /Q (ual? + 11 ()P dz < [ H (uaga (ue)) da

Combining (4.11), (4.13) and (4.16), we get
(4.17) (L(t) + Cyn E(t)) < —mE(t) + CH Y (—CoE'(1)).

By recalling that £ < 0, H > 0, H” > 0 on (0,¢] and making use of (4.17), we
obtain

(H'(20E(t))(L(t) + C1m E(t)) + CC2E(t))’
= ol (t)H" (0 E(t))(L(t) + C1n E(t))
+ H'(e0B()(L(t) + Cyn E(t)) + CCLE'(t)
< —mH'(e9E(t))E(t) + CCLE'(t)
+ CH'(0E(t))H ™ (—CLE' (1)),
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by using Remark 2.2 with H*, the convex conjugate of H in the sense of Young, we

obtain
(4.18) (H'(e0 B())(L(t) + Crpn E(1)) + CC2E (1))’
< — mH (s E(®)E(t) + CH" (H' (0 E(2))
< —mH'(e0E(t)E(t) + CeoH' (e0 E(t)) E(t)
< — C3H'(e0E(t)) E(t)
= — C3Hy(E(1)).
Let
L(t)+ pE(t) if H is linear on [0, €],

L(t) = { H'(eoE(){L(t)C + Crpu1 E(t))} + CC2E(t)
if H(0) > 0 and H” > 0 on ]0,¢].
From (4.15) and (4.18), it follows

(4.19) iL( 1) < —CyHa(E(t)) V> to.

From Lemma 4.1, we have that L(t) is equivalent to E(t). So, L(t) is also equivalent
to E(t) for some positive constants £; and o,

(4.20) 51E(t) < L(t) < & E(t).
Let
(4.21) L(t) = gii(t).

Then we observe from (4.19) and (4.21) that

L) < -2 Ha(B(0) < -2 Ha(2L0) =~ 2 Ha(L(1).
Then
L G

mew) S &
By recalling (2.13), we deduce Ha(t) = —1/H{(t), hence

LOHLE) > 2.
€2

A simple integration over (0, t) yields
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Exploiting the fact that Hy ! is decreasing, we infer

L(t) < Hy! (g—jt + Hl(L(o))).

Consequently, the equivalence of L, Land E yields the estimate

E(t) < wzH; ' (wit + wy).

This completes the proof of Theorem 2.6. O
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