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Abstract. In this paper, we consider a comparison problem of predictors in the context of
linear mixed models. In particular, we assume a set ofm different seemingly unrelated linear
mixed models (SULMMs) allowing correlations among random vectors across the models.
Our aim is to establish a variety of equalities and inequalities for comparing covariance
matrices of the best linear unbiased predictors (BLUPs) of joint unknown vectors under
SULMMs and their combined model. We use the matrix rank and inertia method for
establishing equalities and inequalities. We also give an extensive approach for seemingly
unrelated regression models (SURMs) by applying the results obtained for SULMMs to
SURMs.
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1. Introduction

Linear regression models are one of the most commonly used well-known statisti-

cal methods from both theoretical and practical points of view. In linear regression

models, regression coefficients are considered fixed, while linear mixed models ex-

tend the linear regression models by allowing for the addition of random effects. In

statistical analysis, data may be collected from the same individuals over time, or

data in some studies may be collected from clusters in related statistical units. Lin-

ear mixed models used for both fixed and random effects in the same analysis are

useful tools for researchers for modeling such problems encountered and analyzing

the data when the correlations exist among the observations. Statistical inference

concerning linear mixed models is an important part of data analysis and there have

been various books on such models and related topics in the field of statistics and

other disciplines; see e.g. [5], [6], [16], [34] among others.
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In some statistical problems, we may encounter several number of models, each

with different dependent variables. Within the framework of linear mixed models,

we can consider the following set of m different linear mixed models, formulated by

(1.1) Mi : yi = Xiαi + Ziγi + εi,

where yi ∈ R
ni×1 is a vector of observable response variables, Xi ∈ R

ni×ki and

Zi ∈ R
ni×pi are known matrices of arbitrary rank, αi ∈ R

ki×1 is a vector of fixed

but unknown parameters, γi ∈ R
pi×1 is a vector of unobservable random effects

and εi ∈ R
ni×1 is an unobservable vector of random errors, i = 1, . . . ,m. Instead

of considering the models Mi in (1.1) individually, a common approach to a set of

different models is to consider them jointly since combining information on different

models may lead to gain efficiency in prediction or estimation. We can combine these

models in the form




y1

y2
...

ym


 =




X1 0 . . . 0

0 X2 . . . 0
...

...
. . .

...

0 0 . . . Xm







α1

α2
...

αm


+




Z1 0 . . . 0

0 Z2 . . . 0
...

...
. . .

...

0 0 . . . Zm







γ1

γ2
...

γm


+




ε1

ε2
...

εm


 ,

or briefly, it can be rewritten in the following compact form:

(1.2) M : y = Xα+ Zγ + ε,

where y ∈ R
n×1, X ∈ R

n×k, Z ∈ R
n×p, α ∈ R

k×1, γ ∈ R
p×1, and ε ∈ R

n×1 with

n = n1+ . . .+nm, p = p1+ . . .+pm, k = k1+ . . .+km. We note that the modelsMi

are transformed models ofM. They are obtained from pre-multiplying the modelM

by transformation matrices Ti = [0, . . . , Ini
, . . . ,0], respectively, i = 1, . . . ,m.

The modelsMi are said to be seemingly unrelated linear mixed models (SULMMs)

since all the matrices and unknown vectors in these models are different. Although

the models Mi seem unrelated due to not having any common unknown vectors,

they may have individual relations to each other under certain assumptions such as

having correlation among the random vectors between the models. According to this

case, the following general assumptions on expectations and dispersion matrices of

random vectors are considered for the modelsMi andM,

E

[
γi

εi

]
= 0, E

[
γ

ε

]
= 0,(1.3)
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D

[
γi

εi

]
= cov

{[
γi

εi

]
,

[
γi

εi

]}
=

[
Vi,i Vi,m+i

Vm+i,i Vm+i,m+i

]
,(1.4)

D




γ1
...

γm

ε1
...

εm




=




V1,1 . . . V1,m V1,m+1 . . . V1,2m

...
. . .

...
...

. . .
...

Vm,1 . . . Vm,m Vm,m+1 . . . Vm,2m

Vm+1,1 . . . Vm+1,m Vm+1,m+1 . . . Vm+1,2m

...
. . .

...
...

. . .
...

V2m,1 . . . V2m,m V2m,m+1 . . . V2m,2m




,(1.5)

where D

[
γi

εi

]
∈ R

(ni+pi)×(ni+pi) and D

[
γ

ε

]
∈ R

(n+p)×(n+p) are positive semi-

definite matrices of arbitrary ranks, i = 1, . . . ,m. Further, submatrices Vk,j in (1.5)

are nonzero for k 6= j, k, j = 1, . . . , 2m. Let Vi = D

[
γi

εi

]
, V = D

[
γ

ε

]
, B = [Z, In ]

and Bi = [Zi, Ini
] for brevity. According to assumptions in (1.3)–(1.5),

(1.6) E(y) = Xα, E(yi) = Xiαi, D(y) = BVB′, D(yi) = BiViB
′
i

are obtained, i = 1, . . . ,m.

In linear regression analysis, establishing relations between two or more different

linear models is one of the classical research problems. Consideration ofMi and their

combining model M together is meaningful for obtaining the results separately or

simultaneously for making estimation or prediction on joint unknown vectors αi, γi,

and εi. Thus, we construct the following vector that consists joint unknown vectors

in the considered models:

(1.7) ϕi = K̂iα+ Ĝiγ + Ĥiε or equivalently, ϕi = Kiαi +Giγi +Hiεi

for given matrices K̂i = [0, . . . ,Ki, . . . ,0] ∈ R
s×k, Ĝi = [0, . . . ,Gi, . . . ,0] ∈ R

s×p,

and Ĥi = [0, . . . ,Hi, . . . ,0] ∈ R
s×n with Ki ∈ R

s×ki , Gi ∈ R
s×pi , and Hi ∈ R

s×ni ,

i = 1, . . . ,m. Under the assumptions in (1.3)–(1.5), we obtain

E(ϕi) = K̂iα = Kiαi, D(ϕi) = ĴiVĴ′
i = JiViJ

′
i,(1.8)

cov(ϕi,y) = ĴiVB′, cov(ϕi,yi) = JiViB
′
i,(1.9)

where Ji = [Gi,Hi ] and Ĵi = [ Ĝi, Ĥi ], i = 1, . . . ,m. Detail studies on algebraic

and statistical properties on estimation/prediction of separately or jointly considered

fixed effects, random effects, and error terms in linear mixed models can be found

in, e.g., [2], [13], [14], [18], [19], [22], [35] among others.
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Comparison of predictors of unknown vectors in different models is one of the

main problems encountered in the theory of regression analysis. Predictors of

unknown vectors under different models have different algebraic expressions, prop-

erties and performances. However, observable random vectors may preserve enough

information for predicting and/or estimating unknown vectors in connected mod-

els. Thus, it is natural to consider possible connections and comparisons between

inference results derived from different models since there may be connections

between inference results obtained from all these models. Best linear unbiased

predictors (BLUPs) of unknown vectors play a significant role in statistical in-

ference from linear regression models and their covariance matrices are mostly

used as a criterion in comparisons for optimality with other predictors. Ma-

trix theory is an essential key for establishing equalities and inequalities while

working on characterization and comparison of algebraic or statistical properties

of predictors/estimators. Especially, the rank and inertia formulas of matrices

have been used for simplifying various complicated matrix expressions includ-

ing Moore-Penrose generalized inverses of matrices. We may mention the stud-

ies [10], [11], [12], [28], [29], [30], [32] on comparison of covariance matrices of

predictors/estimators by using matrix inertia and rank method. For more de-

tails on inertias and ranks of symmetric matrices and relations between inertias,

ranks and Löwner partial ordering of symmetric matrices, we may refer to [20],

[25], [26], and [31].

In this study, we consider prediction problems under SULMMs and we give several

results on properties of BLUPs of unknown vectors. Our main purpose is to give

a new insight into the comparison of BLUPs under SULMMs and their combined

model. We establish a variety of equalities and inequalities for comparison of covari-

ance matrices of BLUPs in SULMMs. For doing this, we use an approach consisting

of formulas of inertias and ranks of block matrices for simplifying heavy matrix

operations including Moore-Penrose generalized inverses of matrices. Further, we

consider seemingly unrelated regression models (SURMs) which are special versions

of SULMMs. As an application, the results obtained for SULMMs are also presented

for SURMs.

Let Rm×n stand for the set of all m× n real matrices. A′, r(A), C (A) and A+

denote the transpose, the rank, the column space and the Moore-Penrose gen-

eralized inverse of A ∈ R
m×n, respectively. Im denotes the identity matrix of

order m. Symbol EA = A⊥ = Im − AA+ is used for the orthogonal projec-

tor. The positive inertia and the negative inertia of A are denoted by i+(A) and

i−(A), respectively, which are defined, respectively, as the numbers of the posi-

tive and negative eigenvalues of symmetric matrix A counted with multiplicities,

and also for brief, i±(A) is used for both numbers. For the symmetric matri-
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ces A1 and A2 of the same size, the inequalities A1 − A2 ≺ 0 (A1 ≺ A2),

A1 −A2 4 0 (A1 4 A2), A1 −A2 ≻ 0 (A1 ≻ A2) and A1 −A2 < 0 (A1 < A2)

mean that the difference A1 − A2 is negative definite, negative semi-definite, pos-

itive definite and positive semi-definite matrix in the Löwner partial ordering,

respectively.

2. Preliminary results

In this section, we first give well-known results on BLUPs of all unknown vectors

under the models, and then we give some inertia and rank formulas of block matrices.

In what follows, we assume that the model M is consistent, i.e. y ∈ C [X,BVB′ ]

holds with probability 1, see, e.g. [21]. The consistency assumption ofMi is provided

under the assumption of consistency ofM.

The predictability condition of ϕi underM is expressed that there exists a linear

statistic Liy, Li ∈ R
s×n, such that E(Liy−ϕi) = 0, or equivalently, C (K̂′

i) ⊆ C (X′)

holds; see [28]. This requirement also corresponds to the estimability condition of

vector K̂iα under M; see e.g. [1]. The predictability condition of ϕi under Mi is

C (K′
i) ⊆ C (X′

i). It is obvious that ϕi is predictable under M if it is predictable

underMi. Let ϕi be predictable underM. If there exists Li such that

(2.1) D(Liy −ϕi) = min subject to E(Liy −ϕi) = 0, i = 1, . . . ,m,

holds in the Löwner partial ordering, the linear statistic Liy is defined to be the

BLUP of ϕi, denoted by Liy = BLUPM(ϕi) = BLUPM(K̂iα+ Ĝiγ+ Ĥiε); see [8].

If Ĝi = 0 and Ĥi = 0, BLUP of ϕi reduces the best linear unbiased estimator

(BLUE) of K̂iα, denoted by BLUEM(K̂iα), underM.

The following two lemmas are derived from [20], Proposition 10.6 and [27], Theo-

rem 1.

Lemma 2.1. Let M be as given in (1.2) and let ϕi in (1.7) be predictable un-

derM, i = 1, . . . ,m. In this case,

(2.2) BLUPM(ϕi) = Liy ⇔ Li [X,BVB′X⊥ ] = [ K̂i, ĴiVB′X⊥ ] .

Then

(2.3) BLUPM(ϕi) = Liy = ([ K̂i, ĴiVB′X⊥ ]W+ +UiW
⊥)y,

whereW = [X,BVB′X⊥ ] and Ui ∈ R
s×n is arbitrary. Furthermore,
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(a) r[X,BVB′X⊥] = r[X,BVB′], C [X,BVB′X⊥] = C [X,BVB′], and C (X) ∩

C (BVB′X⊥) = {0};

(b) Li is unique ⇔ r[X,BVB′] = n and Liy is unique ⇔ M is consistent;

(c) BLUPM(ϕi) satisfies

D[BLUPM(ϕi)] = [ K̂i, ĴiVB′X⊥ ]W+BVB′([ K̂i, ĴiVB′X⊥ ]W+)′,(2.4)

cov{BLUPM(ϕi),ϕi} = [ K̂i, ĴiVB′X⊥ ]W+BVĴ′
i,(2.5)

D[ϕi − BLUPM(ϕi)] = ([ K̂i, ĴiVB′X⊥ ]W+B− Ĵi)(2.6)

×V([ K̂i, ĴiVB′X⊥ ]W+B− Ĵi)
′.

Lemma 2.2. Let Mi be as given in (1.1) and let ϕi in (1.7) be predictable

underMi, i = 1, . . . ,m. In this case,

(2.7) BLUPMi
(ϕi) = Liyi ⇔ Li [Xi,BiViB

′
iX

⊥
i ] = [Ki,JiViB

′
iX

⊥
i ] .

Then

(2.8) BLUPMi
(ϕi) = Liyi = ([Ki,JiViB

′
iX

⊥
i ]W+

i +UiW
⊥
i )yi,

whereWi = [Xi,BiViB
′
iX

⊥
i ] and Ui ∈ R

s×ni is arbitrary. Furthermore,

(a) r [Xi,BiViB
′
iX

⊥
i ] = r [Xi,BiViB

′
i ], C [Xi,BiViB

′
iX

⊥
i ] = C [Xi,BiViB

′
i ],

and C (Xi) ∩ C (BiViB
′
iX

⊥
i ) = {0};

(b) Li is unique ⇔ r [Xi,BiViB
′
i ] = ni and Liyi is unique ⇔ Mi is consistent;

(c) BLUPMi
(ϕi) satisfies

D[BLUPMi
(ϕi)] = [Ki,JiViB

′
iX

⊥
i ]W+

i BiViB
′
i(2.9)

× ([Ki,JiViB
′
iX

⊥
i ]W+

i )
′,

cov{BLUPMi
(ϕi),ϕi} = [Ki,JiViB

′
iX

⊥
i ]W+

i BiViJ
′
i,(2.10)

D[ϕi − BLUPMi
(ϕi)] = ([Ki,JiViB

′
iX

⊥
i ]W+

i Bi − Ji)(2.11)

×Vi([Ki,JiViB
′
iX

⊥
i ]W+

i Bi − Ji)
′.

We collect some inertia and rank formulas of block matrices in the following three

lemmas; see [25].

Lemma 2.3. Let A1, A2 ∈ R
m×n or let A1 = A′

1, A2 = A′
2 ∈ R

m×m. Then

(a) A1 = A2 ⇔ r(A1 −A2) = 0;

(b) A1 ≻ A2 ⇔ i+(A1 −A2) = m and A1 ≺ A2 ⇔ i−(A1 −A2) = m;

(c) A1 < A2 ⇔ i−(A1 −A2) = 0 and A1 4 A2 ⇔ i+(A1 −A2) = 0.
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Lemma 2.4. Let A1 = A′
1 ∈ R

m×m, A2 = A′
2 ∈ R

n×n, Q ∈ R
m×n and k ∈ R.

Then

r(A1) = i+(A1) + i−(A1),(2.12)

i±(kA1) =

{
i±(A1) if k > 0

i∓(A1) if k < 0
,(2.13)

i±

[
A1 Q

Q′ A2

]
= i±

[
A1 −Q

−Q′ A2

]
= i∓

[
−A1 Q

Q′ −A2

]
,(2.14)

i±

[
A1 0

0 A2

]
= i±(A1) + i±(A2), i+

[
0 Q

Q′ 0

]
= i−

[
0 Q

Q′ 0

]
= r(Q).(2.15)

Lemma 2.5. Let A1 = A′
1 ∈ R

m×m, B = B′ ∈ R
n×n and A2 ∈ R

m×n. Then

(2.16) i±

[
A1 A2

A′
2 0

]
= r(A2) + i±(EA2

A1EA2
).

In particular,

i+

[
A1A

′
1 A2

A′
2 0

]
= r [A1,A2 ] , i−

[
A1A

′
1 A2

A′
2 0

]
= r(A2),(2.17)

i±

[
A1 A2

A′
2 B

]
= i±(A1) + i±(B−A′

2A
+
1 A2) if C (A2) ⊆ C (A1).(2.18)

3. Comparisons of BLUPs in SULMMs

In this section, some results on the comparison of covariance matrices of predictors

under SULMMs are derived and related conclusions are established for special cases

by using block matrices’ rank and inertia formulas.

Theorem 3.1. LetMi andM be as given in (1.1) and (1.2), respectively, and as-

sume that ϕi is predictable underMi (also predictable underM), i = 1, . . . ,m. Let

BLUPM(ϕi) and BLUPMi
(ϕi) be as given in (2.3) and (2.8), respectively. Denote

(3.1) N =




BVB′ 0 BVĴ′
i X 0

0 −BiViB
′
i BiViJ

′
i 0 Xi

ĴiVB′ JiViB
′
i 0 K̂i −Ki

X′ 0 K̂′
i 0 0

0 X′
i −K′

i 0 0



.
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Then

i+(D[ϕi − BLUPM(ϕi)]−D[ϕi − BLUPMi
(ϕi)])(3.2)

= i+(N)− r [X,BVB′ ]− r(Xi),

i−(D[ϕi − BLUPM(ϕi)]−D[ϕi − BLUPMi
(ϕi)])(3.3)

= i−(N)− r [Xi,BiViB
′
i ]− r(X),

r(D[ϕi − BLUPM(ϕi)]−D[ϕi − BLUPMi
(ϕi)])(3.4)

= r(N)− r [X,BVB′ ]− r(Xi)− r [Xi,BiViB
′
i ]− r(X).

In consequence, the following results hold.

D[ϕi − BLUPMi
(ϕi)] ≻ D[ϕi − BLUPM(ϕi)](a)

⇔ i−(N) = r [Xi,BiViB
′
i ] + r(X) + s;

D[ϕi − BLUPMi
(ϕi)] ≺ D[ϕi − BLUPM(ϕi)](b)

⇔ i+(N) = r [X,BVB′ ] + r(Xi) + s;

D[ϕi − BLUPMi
(ϕi)] < D[ϕi − BLUPM(ϕi)](c)

⇔ i+(N) = r [X,BVB′ ] + r(Xi);

D[ϕi − BLUPMi
(ϕi)] 4 D[ϕi − BLUPM(ϕi)](d)

⇔ i−(N) = r [Xi,BiViB
′
i ] + r(X);

D[ϕi − BLUPMi
(ϕi)] = D[ϕi − BLUPM(ϕi)](e)

⇔ r(N) = r [X,BVB′ ] + r(Xi) + r [Xi,BiViB
′
i ] + r(X).

P r o o f. By using the relation (2.11) and applying (2.18) to the difference be-

tween D[ϕi − BLUPM(ϕi)] and D[ϕi − BLUPMi
(ϕi)],

(3.5)

i±(D[ϕi − BLUPM(ϕi)]−D[ϕi − BLUPMi
(ϕi)])

= i±(D[ϕi − BLUPM(ϕi)]

− ([Ki,JiViB
′
iX

⊥
i ]W+

i Bi − Ji)ViV
+
i Vi([Ki,JiViB

′
iX

⊥
i ]W+

i Bi − Ji)
′)

= i±

[
Vi Vi([Ki,JiViB

′
iX

⊥
i ]W+

i Bi − Ji)
′

([Ki,JiViB
′
iX

⊥
i ]W+

i Bi − Ji)Vi D[ϕi − BLUPM(ϕi)]

]

− i±(Vi)

= i±

([
Vi −ViJ

′
i

−JiVi D[ϕi − BLUPM(ϕi)]

]
+

[
ViB

′
i 0

0 [Ki,JiViB
′
iX

⊥
i ]

]

×

[
0 Wi

W′
i 0

]+ [
BiVi 0

0 [Ki,JiViB
′
iX

⊥
i ]

′

])
− i±(Vi)

is obtained. We can reapply (2.18) to (3.5), since

C (BiVi) = C (BiViB
′
i) ⊆ C (Wi) and C ([Ki,JiViB

′
iX

⊥
i ]′) ⊆ C (W′

i),
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whereWi = [Xi,BiViB
′
iX

⊥
i ]. Then (3.5) is equivalently written as follows:

(3.6)

i±




0 −Xi −BiViB
′
iX

⊥
i BiVi 0

−X′
i 0 0 0 K′

i

−X⊥
i BiViB

′
i 0 0 0 X⊥

i BiViJ
′
i

ViB
′
i 0 0 Vi −ViJ

′
i

0 Ki JiViB
′
iX

⊥
i −JiVi D[ϕi − BLUPM(ϕi)]




− r [Xi,BiViB
′
iX

⊥
i ]− i±(Vi)

= i±




−BiViB
′
i −Xi −BiViB

′
iX

⊥
i BiViJ

′
i

−X′
i 0 0 K′

i

−X⊥
i BiViB

′
i 0 0 X⊥

i BiViJ
′
i

JiViB
′
i Ki JiViB

′
iX

⊥
i D[ϕi − BLUPM(ϕi)]− JiViJ

′
i




− r [Xi,BiViB
′
iX

⊥
i ]

= i±



−BiViB

′
i −Xi BiViJ

′
i

−X′
i 0 K′

i

JiViB
′
i Ki D[ϕi − BLUPM(ϕi)]− JiViJ

′
i




− r [Xi,BiViB
′
i ] + i±(X

⊥
i BiViB

′
iX

⊥
i )

= i∓



BiViB

′
i BiViJ

′
i Xi

JiViB
′
i JiViJ

′
i −D[ϕi − BLUPM(ϕi)] Ki

X′
i K′

i 0




− r [Xi,BiViB
′
i ] + i±(X

⊥
i BiViB

′
iX

⊥
i )

= i∓





BiViB

′
i BiViJ

′
i Xi

JiViB
′
i JiViJ

′
i Ki

X′
i K′

i 0


−



0

Is

0


D[ϕi − BLUPM(ϕi)] [0 Is 0 ]




− r [Xi,BiViB
′
i ] + i±(X

⊥
i BiViB

′
iX

⊥
i ).

We can apply (2.18) to (3.6) after setting D[ϕi − BLUPM(ϕi)] in (2.6). Then in

a similar way to obtaining (3.5), (3.6) is equivalently written as

(3.7) i∓







V 0 −VĴ′
i 0

0 BiViB
′
i BiViJ

′
i Xi

−ĴiV JiViB
′
i JiViJ

′
i Ki

0 X′
i K′

i 0


+




VB′ 0

0 0

0 [ K̂i, ĴiVB′X⊥ ]

0 0




×

[
0 W

W′ 0

]+ [
BV 0 0 0

0 0 [ K̂i, ĴiVB′X⊥ ]′ 0

]



− r [Xi,BiViB
′
i ] + i±(X

⊥
i BiViB

′
iX

⊥
i )− i∓(V).

533



We can apply (2.18) to (3.7), since

C (BV) = C (BVB′) ⊆ C (W) and C ([ K̂i, ĴiVB′X⊥ ]
′
) ⊆ C (W′),

whereW = [X,BVB′X⊥ ]. From Lemma 2.4 and 2.5 and some congruence opera-

tions, (3.7) is equivalently written as

(3.8)

i∓




0 −X −BVB′X⊥ BV 0 0 0

−X′ 0 0 0 0 K̂′
i 0

−X⊥BVB′ 0 0 0 0 X⊥BVĴ′
i 0

VB′ 0 0 V 0 −VĴ′
i 0

0 0 0 0 BiViB
′
i BiViJ

′
i Xi

0 K̂i ĴiVB′X⊥ −ĴiV JiViB
′
i JiViJ

′
i Ki

0 0 0 0 X′
i K′

i 0




− r [Xi,BiViB
′
i ] + i±(X

⊥
i BiViB

′
iX

⊥
i )− i∓(V)− r [X,BVB′X⊥ ]

= i∓




−BVB′ −X −BVB′X⊥ 0 BVĴ′
i 0

−X′ 0 0 0 K̂′
i 0

−X⊥BVB′ 0 0 0 X⊥BVĴ′
i 0

0 0 0 BiViB
′
i BiViJ

′
i Xi

ĴiVB′ K̂i ĴiVB′X⊥ JiViB
′
i JiViJ

′
i − ĴiVĴ′

i Ki

0 0 0 X′
i K′

i 0




− r [Xi,BiViB
′
i ] + i±(X

⊥
i BiViB

′
iX

⊥
i )− r [X,BVB′ ]

= i∓




−BVB′ −X 0 BVĴ′
i 0

−X′ 0 0 K̂′
i 0

0 0 BiViB
′
i BiViJ

′
i Xi

ĴiVB′ K̂i JiViB
′
i 0 Ki

0 0 X′
i K′

i 0




− r [Xi,BiViB
′
i ] + i±(X

⊥
i BiViB

′
iX

⊥
i )− r [X,BVB′ ] + i∓(X

⊥BVB′X⊥)

= i±




BVB′ 0 BVĴ′
i X 0

0 −BiViB
′
i BiViJ

′
i 0 Xi

ĴiVB′ JiViB
′
i 0 K̂i −Ki

X′ 0 K̂′
i 0 0

0 X′
i −K′

i 0 0




− r [Xi,BiViB
′
i ] + i±(X

⊥
i BiViB

′
iX

⊥
i )− r [X,BVB′ ] + i∓(X

⊥BVB′X⊥).

In consequence, by using (2.16) and (2.17), we obtain (3.2) and (3.3). According

to (2.12), adding the equalities in (3.2) and (3.3) yields (3.4). Applying Lemma 2.3

to (3.2)–(3.4) yields (a)–(e). �
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The conclusions obtained in Theorem 3.1 can be considered for certain specific

forms of ϕi as presented in the following corollaries.

Corollary 3.1. Let Kiαi be estimable under Mi (also estimable under M),

i = 1, . . . ,m. Denote

(3.9) N =




BVB′ 0 0 X 0

0 −BiViB
′
i 0 0 Xi

0 0 0 K̂i −Ki

X′ 0 K̂′
i 0 0

0 X′
i −K′

i 0 0



.

Then

i+(D[BLUEM(Kiαi)]−D[BLUEMi
(Kiαi)])(3.10)

= i+(N)− r [X,BVB′ ]− r(Xi),

i−(D[BLUEM(Kiαi)]−D[BLUEMi
(Kiαi)])(3.11)

= i−(N)− r [Xi,BiViB
′
i ]− r(X),

r(D[BLUEM(Kiαi)]−D[BLUEMi
(Kiαi)])(3.12)

= r(N)− r(X)− r(Xi)− r [X,BVB′ ]− r [Xi,BiViB
′
i ] .

Consequently, the following results hold:

D[BLUEMi
(Kiαi)] ≻ D[BLUEM(Kiαi)](a)

⇔ i−(N) = r [Xi,BiViB
′
i ] + r(X) + s;

D[BLUEMi
(Kiαi)] ≺ D[BLUEM(Kiαi)](b)

⇔ i+(N) = r [X,BVB′ ] + r(Xi) + s;

D[BLUEMi
(Kiαi)] < D[BLUEM(Kiαi)](c)

⇔ i+(N) = r [X,BVB′ ] + r(Xi);

D[BLUEMi
(Kiαi)] 4 D[BLUEM(Kiαi)](d)

⇔ i−(N) = r [Xi,BiViB
′
i ] + r(X);

D[BLUEMi
(Kiαi)] = D[BLUEM(Kiαi)](e)

⇔ r(N) = r [X,BVB′ ] + r(Xi) + r [Xi,BiViB
′
i ] + r(X).

Corollary 3.2. Xiαi is always estimable underMi (and thereby underM). Let

X̂i = [0, . . . ,Xi, . . . ,0 ] and denote

(3.13) N =



BVB′ 0 X

0 −BiViB
′
i X̂i

X′ X̂′
i 0


 .
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Then

i+(D[BLUEM(Xiαi)]−D[BLUEMi
(Xiαi)]) = i+(N)− r [X,BVB′ ] ,(3.14)

i−(D[BLUEM(Xiαi)]−D[BLUEMi
(Xiαi)])(3.15)

= i−(N)− r [Xi,BiViB
′
i ] + r(Xi)− r(X),

r(D[BLUEM(Xiαi)]−D[BLUEMi
(Xiαi)])(3.16)

= r(N)− r [Xi,BiViB
′
i ]− r [X,BVB′ ] + r(Xi)− r(X).

Consequently,

D[BLUEMi
(Xiαi)] ≻ D[BLUEM(Xiαi)](a)

⇔ i−(N) = r [Xi,BiViB
′
i ]− r(Xi) + r(X) + s;

D[BLUEMi
(Xiαi)] ≺ D[BLUEM(Xiαi)] ⇔ i+(N) = r [X,BVB′ ] + s;(b)

D[BLUEMi
(Xiαi)] < D[BLUEM(Xiαi)] ⇔ i+(N) = r [X,BVB′ ] ;(c)

D[BLUEMi
(Xiαi)] 4 D[BLUEM(Xiαi)](d)

⇔ i−(N) = r [Xi,BiViB
′
i ]− r(Xi) + r(X);

D[BLUEMi
(Xiαi)] = D[BLUEM(Xiαi)](e)

⇔ r(N) = r [X,BVB′ ]− r(Xi) + r [Xi,BiViB
′
i ] + r(X).

4. Comparisons of BLUPs in SURMs

SULMMs are an extension of SURMs to include random effects. In this section,

as an application, some of the results obtained for SULMMs are also presented for

SURMs. We consider a set of m different SURMs and their combined model which

correspond to Mi andM, respectively. We derived necessary and sufficient condi-

tions on equalities and inequalities for comparing covariance matrices of predictors

of joint unknown vectors under SURMs and their combined model by using Theo-

rem 3.1.

SURMs can have correlated error terms among each other although they seem

unrelated if the same data or an amount of the same independent variables are

used for the models. These models were originally proposed by [36]. Such models

have found many applications in different fields of sciences and they have gained

considerable interest in recent years. As previous and recent works on SURMs, we

may refer to [3], [4], [7], [9], [15], [17], [23], [24], [37] among others and for seemingly

unrelated linear random effects models, see [33].
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In accordance with the modelsMi andM, we consider a set ofm different SURMs

and their combined model as

Si : yi = Xiβi + εi with E(εi) = 0 and cov(εi, εj) = σi,jIn,(4.1)

S : y = Xβ + ε with E(ε) = 0 and D(ε) = Σ⊗ In,(4.2)

respectively, where yi ∈ R
n×1 is a vector of observable response variables,Xi∈R

n×ki

is a known matrix of arbitrary rank, βi ∈ R
ki×1 is a vector of fixed but unknown

parameters, εi ∈ R
n×1 is an error vector, y ∈ R

nm×1, X ∈ R
nm×k, β ∈ R

k×1,

ε ∈ R
nm×1, Σ = (σi,j) ∈ R

m×m is a positive semi-definite matrix of arbitrary rank,

i, j = 1, . . . ,m, k1 + . . .+ km = k. To establish the results, we consider the vector

(4.3) ϕi = K̂iβ + Ĥiε or equivalently ϕi = Kiβi +Hiεi

for given matrices Ki ∈ R
s×ki and Hi ∈ R

s×n with K̂i = [0, . . . ,Ki, . . . ,0 ] and

Ĥi = [0, . . . ,Hi, . . . ,0 ] , i = 1, . . . ,m. In this case,

E(ϕi) = K̂iβ = Kiβi, D(ϕi) = σi,iHiH
′
i = Ĥi(Σ⊗ In)Ĥ

′
i,(4.4)

cov(ϕi,y) = Ĥi(Σ⊗ In), cov(ϕi,yi) = σi,iHi = Ĥi(Σ⊗ In)T
′
i,(4.5)

where Ti = [0, . . . , In, . . . ,0], i = 1, . . . ,m.

According to Lemma 2.1, we obtain the following results for models S. Assume

that the vector ϕi in (4.3) is predictable under S. In this case,

(4.6) Liy = BLUPS(ϕi) ⇔ Li [X, (Σ⊗ In)X
⊥ ] = [ K̂i, Ĥi(Σ⊗ In)X

⊥ ] .

Then

BLUPS(ϕi) = Liy = ([ K̂i, Ĥi(Σ⊗ In)X
⊥ ]W+ +UiW

⊥)y,(4.7)

D[ϕi − BLUPS(ϕi)] = ([ K̂i, Ĥi(Σ⊗ In)X
⊥ ]W+ − Ĥi)(4.8)

× (Σ⊗ In)([ K̂i, Ĥi(Σ⊗ In)X
⊥ ]W+ − Ĥi)

′,

where Ui ∈ R
s×nm is arbitrary andW = [X, (Σ⊗ In)X

⊥ ].

Assume that the vector ϕi in (4.3) is predictable under Si. From Lemma 2.2,

BLUP of ϕi under Si is written as

(4.9) BLUPSi
(ϕi) =Liyi = ([Ki, σi,iHiX

⊥
i ]W+

i +UiW
⊥
i )yi = (KiX

+
i +HiX

⊥
i )yi,

where Ui ∈ R
s×n andWi = [Xi, σi,iX

⊥
i ], i = 1, . . . ,m. The last expression in (4.9)

is the ordinary least-squares predictor (OLSP) of ϕi under Si, see Definition 1.3
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in [28]. We note that the BLUP of ϕi and the OLSP of ϕi under Si coincide since

D(yi) = σi,iIn. Further, we can write

(4.10)

D[ϕi − BLUPSi
(ϕi)] = σi,i([Ki, σi,iHiX

⊥
i ]W+

i −Hi)([Ki, σi,iHiX
⊥
i ]W+

i −Hi)
′.

Now, we can give the following results for comparison of covariance matrices of

the BLUPs and OLSPs of ϕi under SURMs and their combined model.

Theorem 4.1. Let Si and S be as given in (4.1) and (4.2), respectively, and as-

sume that ϕi in (4.3) is predictable under Si (also predictable under S), i = 1, . . . ,m.

Let BLUPS(ϕi) and OLSPSi
(ϕi) be as given in (4.7) and (4.9), respectively. Denote

(4.11) N =




Σ⊗ In X 0 0

X′ 0 K̂′
i −X′Ĥ′

i 0

0 K̂i − ĤiX 0 Ki −HiXi

0 0 K′
i −X′

iH
′
i σ−1

i,i X
′
iXi


 .

Then

i+(D[ϕi − BLUPS(ϕi)]−D[ϕi −OLSPSi
(ϕi)])(4.12)

= i+(N)− r [X,Σ⊗ In ]− r(Xi),

i−(D[ϕi − BLUPS(ϕi)]−D[ϕi −OLSPSi
(ϕi)]) = i−(N)− r(X),(4.13)

r(D[ϕi − BLUPS(ϕi)]−D[ϕi −OLSPSi
(ϕi)])(4.14)

= r(N)− r [X,Σ⊗ In ]− r(Xi)− r(X).

Consequently, the following results hold:

D[ϕi −OLSPSi
(ϕi)] ≻ D[ϕi − BLUPS(ϕi)] ⇔ i−(N) = r(X) + s;(a)

D[ϕi −OLSPSi
(ϕi)] ≺ D[ϕi − BLUPS(ϕi)](b)

⇔ i+(N) = r [X,Σ⊗ In ] + r(Xi) + s;

D[ϕi −OLSPSi
(ϕi)] < D[ϕi − BLUPS(ϕi)](c)

⇔ i+(N) = r [X,Σ⊗ In ] + r(Xi);

D[ϕi −OLSPSi
(ϕi)] 4 D[ϕi − BLUPS(ϕi)] ⇔ i−(N) = r(X);(d)

D[ϕi −OLSPSi
(ϕi)] = D[ϕi − BLUPS(ϕi)](e)

⇔ r(N) = r [X,Σ⊗ In ] + r(Xi) + r(X).

538



P r o o f. According to (3.8) in Theorem 3.1 and by using (4.8) and (4.10), we

can write

(4.15) i±(D[ϕi − BLUPS(ϕi)]−D[ϕi −OLSPSi
(ϕi)])

= i±




Σ⊗ In 0 (Σ⊗ In)Ĥ
′
i X 0

0 −σi,iIn σi,iH
′
i 0 Xi

Ĥi(Σ⊗ In) σi,iHi 0 K̂i −Ki

X′ 0 K̂′
i 0 0

0 X′
i −K′

i 0 0




− r [Xi, σi,iIn ] + i±(X
⊥
i σi,iInX

⊥
i )

− r [X,Σ⊗ In ] + i∓(X
⊥(Σ⊗ In)X

⊥).

From Lemma 2.4 and 2.5 and some congruence operations, (4.15) is equivalently

written as

(4.16)

i±




Σ⊗ In 0 0 X 0

0 −σi,iIn σi,iH
′
i 0 Xi

0 σi,iHi −Ĥi(Σ⊗ In)Ĥ
′
i K̂i − ĤiX −Ki

X′ 0 K̂′
i −X′Ĥ′

i 0 0

0 X′
i −K′

i 0 0




− n+ i±

[
σi,iIn Xi

X′
i 0

]
− r(Xi)− r [X,Σ⊗ In ] + i∓

[
Σ⊗ In X

X′ 0

]
− r(X)

= i±




Σ⊗ In 0 0 X 0

0 −σi,iIn 0 0 Xi

0 0 σi,iHiH
′
i − Ĥi(Σ⊗ In)Ĥ

′
i K̂i − ĤiX −Ki +HiXi

X′ 0 K̂′
i −X′Ĥ′

i 0 0

0 X′
i −K′

i +X′
iH

′
i 0 0




− n+ i±

[
σi,iIn Xi

X′
i 0

]
− r(Xi)− r [X,Σ⊗ In ] + i∓

[
Σ⊗ In X

X′ 0

]
− r(X)

= i±




Σ⊗ In X 0 0

X′ 0 K̂′
i −X′Ĥ′

i 0

0 K̂i − ĤiX 0 Ki −HiXi

0 0 K′
i −X′

iH
′
i σ−1

i,i X
′
iXi


+ i∓(σi,iIn)− n

+ i±

[
σi,iIn Xi

X′
i 0

]
− r(Xi)− r [X,Σ⊗ In ] + i∓

[
Σ⊗ In X

X′ 0

]
− r(X).

In consequence, by using (2.16), (2.17) and Lemma 2.3, the required results are

obtained. �
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5. Concluding remarks

We have presented a comprehensive investigation of the comparison problem of

predictors under SULMMs by making use of formulas of inertias and ranks of matrices

which are effective algebraic tools in matrix theory. In particular, we have established

a variety of equalities and inequalities on the comparison of BLUPs of joint unknown

vectors in SULMMs and their combined model under most general assumptions.

Although Mi and their combined model M can be considered simultaneously or

separately for prediction of joint unknown parameters, it is worth considering certain

links and comparisons among predictors/estimators under these models since there

may be connections between inference results obtained from all these models. We

have also applied some of the results to SURMs, which are a special form of SULMMs.

The results obtained in this paper are general and we believe that they have provided

useful aspects in the theoretical point of view for describing performances of BLUPs

of joint unknown vectors under SULMMs and their combined model, and also under

SURMs.

Acknowledgments. The authors would like to thank the anonymous referees

for their careful reading of the paper and their valuable remarks.
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