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Abstract. Let G be a connected graph of order n and U a unicyclic graph with the same
order. We firstly give a sharp bound for mG(µ), the multiplicity of a Laplacian eigenvalue µ
of G. As a straightforward result, mU (1) 6 n− 2. We then provide two graph operations
(i.e., grafting and shifting) on graph G for which the value of mG(1) is nondecreasing. As
applications, we get the distribution of mU (1) for unicyclic graphs on n vertices. Moreover,
for the two largest possible values of mU (1) ∈ {n − 5, n − 3}, the corresponding graphs U
are completely determined.
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1. Introduction

All graphs considered in this paper are simple. Let G be a graph with vertex

set V (G) and edge set E(G), and A(G) be the adjacency matrix of G. For any

v ∈ V (G) we denote by d(v) the degree of v. Let D(G) be the diagonal matrix

of vertex degrees of G. The matrix L(G) = D(G) − A(G) is called the Laplacian

matrix. The polynomial ψ(G;µ) = det(µI − L(G)), where I is the identity matrix,

is the characteristic polynomial of G with respect to L(G). Since L(G) is positive

semidefinite matrix, its eigenvalues can be ordered as

µ1 > µ2 > . . . > µn−1 > µn = 0.

We denote by mG(µ) the multiplicity of Laplacian eigenvalue µ of G. Let µ1,

µ2, . . . , µt be t distinct Laplacian eigenvalues of G. Then the Laplacian spectrum
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of G is denoted by SpecL(G) = {µm1

1 , µm2

2 , . . . , µmt

t }, where mG(µi) = mi is the

multiplicity of µi for i = 1, 2, . . . , t, and
t∑

i=1

mi = n. Fiedler in [10] showed that

µn−1(G) > 0 if and only if G is connected, so µn−1(G) is called algebraic connectiv-

ity of graph G, and the corresponding vector is called Fiedler vector.

As usual, we always write, Pn, Cn (n > 3) and Sn (n > 2) for the path, the

cycle and the star on n vertices. Connected graphs in which the number of edges

equals the number of vertices are called unicyclic graphs. The girth g of a graph G

is the length of a shortest cycle of G. We denote by U(n, g) the set of all connected

unicyclic graphs with girth g and order n, where n > g > 3. The graph G′ = G− e

(or G′ = G+ e) is obtained from G by deleting (or adding) an edge e of G, and G\ v

is obtained from G by deleting v and its incident edges of G. The diameter of G,

denoted by diam(G), is the maximum distance between any two vertices of G.

Let G = (V,E) be a graph on n vertices. Then for a nonempty V ′ ⊆ V , we denote

by G[V ′] the subgraph of G induced by V ′. A pendant vertex is a vertex of degree 1

and a quasi-pendant vertex is a vertex adjacent to a pendant vertex. The number of

pendant and quasi-pendant vertices of G is denoted by p(G) and q(G) (or p and q

if there is no confusion). Let VP (G) = {v ∈ V (G) : v is a pendant vertex of G}

and VQ(G) = {v ∈ V (G) : v is a quasi-pendant vertex of G}. Then all vertices

of VR(G) = V \ (VP (G) ∪ VQ(G)) are called the inner vertices of G. We denote

|VR(G)| = r, |VP (G)| = p and |VQ(G)| = q. Clearly, r = n − p − q. Other notions

and symbols not defined here are standard, one can also see [6], for instance.

Graphs with few distinct eigenvalues form an interesting class of graphs and possess

nice combinatorial properties, see [8], [13], [15], [16], [17], [18]. The number of distinct

eigenvalues are closely related to their multiplicities (the less number of eigenvalues,

the higher multiplicity of some eigenvalues would be). Therefore, considering the

multiplicity of eigenvalues is a related problem to investigate the graphs with few

of distinct eigenvalues. Grone, Merris and Sunder in [11] proved that for a tree T

with n vertices,mT (µ) = 1 if µ > 1 is a Laplacian integral eigenvalue of T . Moreover,

they gave some results on the multiplicity of 1 as a Laplacian eigenvalue. Barik, Lal

and Pati in [4] gave a complete characterization of trees that have 1 as the third

smallest Laplacian eigenvalue. After that, Guo, Feng and Zhang in [12] presented

the distribution of mT (1) for tree T of order n, and they showed that for every

σ ∈ S = {0, 1, 2, . . . , n−4, n−2} there exists a tree T of order n such thatmT (1) = σ.

Andrade et al. in [3], page 83, (2), showed that if VR(G) = ∅, then

mG(1) = p(G)− q(G)

for any graph G. Clearly, it always holds if T is a tree with |VR(T )| = 0. Recently,

Akbari, van Dam and Fakharan in [2] further considered the multiplicities of the

372



other (non-integral) Laplacian eigenvalues of trees. For the unicyclic graph that

contains a perfect matching, Akbari, Kiani and Mirzakhah in [1] determined the

multiplicity of Laplacian eigenvalue 2.

Motivated by the above researches, we firstly give a sharp bound for mG(µ) (see

Theorem 3.1) in this paper, and it then follows that mU (1) 6 n − 2 for a unicyclic

graph U . In addition, we provide two graph operations (i.e., grafting and shifting,

see Theorems 4.1 and 4.2) of G, which preserve the non-decreasing property for the

value of mG(1). As applications, we obtain the distribution of mU (1) for unicyclic

graphs on n vertices, see Theorem 4.5. Moreover, for the two largest possible values

of mU (1) ∈ {n− 5, n− 3}, the corresponding graphs U are completely determined,

see Theorems 4.3 and 4.6.

2. Preliminaries

In this section, we cite some lemmas as a preparation for later use.

Lemma 2.1 ([6], page 187). If e is an edge of the graph G and G′ = G− e, then

µ1(G) > µ1(G
′) > . . . > µn−1(G) > µn−1(G

′) > µn(G) = µn(G
′) = 0.

Lemma 2.2 ([11], Theorem 2.3). Let µ be an eigenvalue of L(T ) for some tree T

with n > 2 vertices. Then

mT (µ) 6 p(T )− 1.

Lemma 2.3 ([14], Corollary 2.1). Let G be a connected graph on n > 3 vertices.

If G has a cutpoint v, then µn−1(G) 6 1, where equality holds if and only if v is

adjacent to every vertex of G. Especially, if G is a unicyclic graph, then the equality

holds if and only if G ∼= S3
n, see Figure 1.

.

.

.

︸
︷︷

︸

n− 3

Figure 1. Graph S3n.

The nullity of a matrix M , denoted by ν(M), is the dimension of the null space

of M . Let G be a graph with V (G) = VP ∪ VQ ∪ VR, and let LR(G) be the principal

submatrix of L(G) − In that corresponds to the inner vertices VR, where In is an

identity matrix of order n.
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Lemma 2.4 ([11], page 226). Let G be a connected graph on n vertices. Then

(1) mG(1) = p− q + ν(LR(G)).

Remark 2.1. Grone et al. in [11] gave a proof of (1) but not in the form of the-

orem. We here cite it as a lemma to be used later. In addition, Andrade et al. in [3]

also redefined the equation in terms of mLR(G)(1), the multiplicity of eigenvalue 1

in LR(G).

Let Gu : vH be the graph obtained from G and H by joining a vertex u of G to

a vertex v of H . Especially, if H = P2 (= vw), we denote it by Gu : vw for short.

Lemma 2.5 ([12], Corollary 2.3). Let H be a graph and Sn be a star on n > 3

vertices. Set G = Hu : vSn.

(a) If v is a pendant vertex of Sn, then

mG(1) = mH(1) + n− 3.

(b) If v is the center of Sn, then

mG(1) = mHu:vw(1) + n− 2.

Lemma 2.6 ([6], Proposition 7.5.6). If G is a connected graph with s distinct

Laplacian eigenvalues, then diam(G) 6 s− 1.

A graph G is P5-free if it does not contain induced subgraph P5. For a connected

P5-free graph we list the following lemma.

Lemma 2.7 ([15], Lemma 3.4). Let G be a connected P5-free graph on n > 5

vertices with diam(G) = 3. Then at least one of fi for i = 1, 2, 3, 4, 5 (shown in

Figure 2) is an induced subgraph of G.

f1 f2 f3

f4 f5

Figure 2. Graphs f1, f2, f3, f4 and f5.
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3. A bound of the multiplicity of Laplacian eigenvalue 1

of a unicyclic graph

In this section, we mainly consider the bound of the multiplicity of Laplacian

eigenvalue 1 of a unicyclic graph. A connected graph with n vertices and ε edges is

called a k-cyclic graph if k = ε− n+ 1. Such a k is the so called cyclomatic number

of G and is denoted by c(G).

Theorem 3.1. Let G be a connected graph with n > 3 vertices, size ε and p(G)

pendant vertices. Suppose that µ is a Laplacian eigenvalue of G. If G ∼= Cn,

then max{mG(µ)} = 2, where µ = 2 − 2 cos(2πj/n) for j = 1, 2, . . . , ⌈ 1
2n⌉ − 1, and

otherwise,

(2) max{mG(µ) : µ is a eigenvalue of L(G)} 6 p(G) + 2ε− 2n+ 1,

where the equality holds if G ∼= Sn.

P r o o f. Let µ be a Laplacian eigenvalue of G with the multiplicity mG(µ). If

G ∼= Cn, then p(G) = 0. It is well-known that SpecL(Cn) = {2 − 2 cos(2πj/n) : j =

0, 1, . . . , n − 1}, see also [5], page 9. So we have mCn
(µ) 6 2 for any Laplacian

eigenvalue µ of Cn, andmCn
(µ) = 2 if µ = 2−2 cos(2πj/n) for j = 1, 2, . . . , ⌈ 1

2n⌉−1.

In what follows, we always assume that G is a connected graph and G 6∼= Cn. Let

k = ε− n+ 1. Then G is also a k-cyclic graph. In order to prove the conclusion, we

only need to show

(3) max{mG(µ) : µ is a eigenvalue of L(G)} 6 p(G) + 2k − 1.

To promote the proof, we give a fact that can be verified by simple observations.

Fact 3.1. Let G be a k(> 1)-cyclic graph. If there exists an edge uv ∈ E(G)

that lies on some cycle of G such that either d(u) = 2 and d(v) > 2 or d(u) > 2 and

d(v) = 2, then p(G−uv) = p(G)+1 and c(G−uv) = c(G)−1 = k−1, otherwise there

exists edge uv on some cycle with d(u) > 2 and d(v) > 2 such that p(G−uv) = p(G)

and c(G− uv) = c(G)− 1 = k − 1.

We distinct two cases to show inequality (3) as follows.

If G has at least one pendent vertex, we prove it by induction on k. When k = 0,

G is a tree. Then by Lemma 2.2 we have mG(µ) 6 p(G) − 1 = p(G) + 2k − 1.

Clearly, the conclusion holds. Now assume that inequality (3) holds for such graphs

with cyclomatic number less than k > 1, and let G be a k-cyclic graph. Note that

p(G) > 1 and k > 1. If µ is a simple eigenvalue, then mG(µ) = 1 6 p(G) + 2k − 1.
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Otherwise, µ is a multiple Laplacian eigenvalue of G. Since G 6∼= Cn is a k-cyclic

graph, by Fact 3.1 there exists an edge uv ∈ E(G) such that G′ = G − uv (say) is

a spanning subgraph of G, and G′ is a (k − 1)-cyclic graph with p(G′) 6 p(G) + 1.

Thus, it follows from Lemma 2.1 that µ is also a Laplacian eigenvalue of G′. By our

assumption, mG′(µ) 6 p(G′) + 2(k − 1) − 1 6 p(G) + 1 + 2k − 3 = p(G) + 2k − 2.

It therefore follows from Lemma 2.1 that µ is also a Laplacian eigenvalue of G and

mG(µ) 6 p(G) + 2k − 1.

If G has no pendent vertex, then p(G) = 0, meanwhile, it implies that k > 2

since G 6∼= Cn. Here we need to prove mG(µ) 6 2k − 1 for any µ. Since k is

finite, according to Fact 3.1, there exists the smallest integer 1 6 l < k such that

G′ = G − {e1, e2, . . . , el} is a (k − l)-cyclic graph with just one pendent vertex,

where ei is an edge of G for i = 1, 2, . . . , l. Then by the conclusion above we have

mG′(µ) 6 1 + 2(k − l) − 1 = 2k − 2l. Note that G can be obtained from G′ by

adding ei (i = 1, 2, . . . , l) in proper order. Therefore, by Lemma 2.1 it follows that

mG(µ) 6 2k − 2l+ l = 2k − l 6 2k − 1, as desired.

Moreover, if G ∼= Sn, then p(G) = n − 1. Note that SpecL(Sn) = {n, 1n−2, 0}.

Hence, max{mG(µ)} = mG(1) = n− 2 = p(G) + 2ε− 2n+ 1, and thus the equality

of (2) holds.

Summing up the above, the proof is completed. �

Let U be a unicyclic graph. Then k = 1. From Theorem 3.1 we have the following

corollary.

Corollary 3.1. Let U be a unicyclic graph with p(U) pendant vertices, and µ be

an eigenvalue of L(U). Then

mU (µ) 6 p(U) + 2,

where the equality holds if and only if U ∼= Cn and µ = 2 − 2 cos(2πj/n) for j =

1, 2, . . . , ⌈ 1
2n⌉ − 1.

P r o o f. From Theorem 3.1, the inequality is obvious. For the equality, we only

prove the sufficiency. Let U be a unicyclic graph with mU (µ) = p(U) + 2. Assume

that U ≇ Cn, then there exists an edge such that U − e is a tree (say T ) with

p(T ) 6 p(U) + 1. It follows from Lemma 2.1 that mT (µ) > p(U) + 1, which leads

to mT (µ) > p(T ), it contradicts Lemma 2.2, and thus U ∼= Cn. We notice that

SpecL(Cn) = {2 − 2 cos(2πj/n) : j = 0, 1, . . . , n − 1}, it therefore follows that the

sufficiency holds. �

From Corollary 3.1, we give a sharp bound of the multiplicity of 1 for unicyclic

graph below.
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Corollary 3.2. Let U be a unicyclic graph with p(U) pendants and q(U) quasi-

pendents. Then

(4) p(U)− q(U) 6 mU (1) 6 p(U) + 2,

where the right-hand side of the equality holds if and only if U ∼= C6t (t > 1).

P r o o f. From Lemma 2.4 and Corollary 3.1, inequality (4) always holds.

We then prove the right-hand side of equality of (4). Let U be a unicyclic graph

with mU (1) = p+2. Then by Corollary 3.1 we know that U is just a cycle. Note that

SpecL(Cn) = {2−2 cos(2πj/n) : j = 0, 1, . . . , n−1}. Therefore, 2−2 cos(2πj/n) = 1

for some j if and only if n = 6t for t > 1 since cos(2πj/n) = 1
2 , which implies that

j = 1
6n or j = 5

6n, i.e., 6 | n. Thus, the right equality of (4) holds if and only if

U ∼= C6t for t > 1. �

Remark 3.1. In fact, Grone and Merris obtained mG(1) = p− q+ν(LR(G)) for

any graph G (see [11] and Lemma 2.4), which is very useful for a graph if ν(LR(G))

can be determined. In Corollary 3.2, we give a sharp bound of mU (1) for a unicyclic

graph from the perspective of its structure. It is worth to mention that the lower

bound is obvious by Grone and Merris’ result, which was also obtained by Faria

earlier, see [9], page 260. In addition, Andrade et al. in [3], page 83, have proved

that mG(1) = p − q if G has no inner vertex, and thus, the left-hand side of the

equality of (4) always holds for unicylic graphs.

Let U be a unicyclic graph on n vertices, and p(U) the number of pendant vertices.

Then p(U) 6 n−3 since g > 3. Thus, by Theorem 3.1 we have the following corollary.

Corollary 3.3. Let U be a unicyclic graph on n vertices. Then mU (1) 6 n− 2.

In fact, the upper bound given in Corollary 3.3 cannot be achieved. In the next

section, we will further give the distribution of mU (1).

4. Distribution of mU (1) and the characterization

for the extremal unicyclic graphs

Grone et al. in [11] and Andrade et al. in [3], respectively, presented a pretty

formula to count the multiplicity of the Laplacian eigenvalue 1, i.e., mG(1) = p− q+

ν(LR(G)) and mG(1) = p − q + mLR(G)(1) from which, however, we still cannot

compute mG(1) in terms of the structure of G. Let us alone find which value mG(1)

will take. In this section, we first provide two graph operations (i.e., grafting and

shifting) of a connnected graph G that preserve the non-decreasingness of mG(1).
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By using those tools we will determine the distribution of mU (1) among all unicylic

graphs U and then completely characterize extremal graphs U with respect to the

first and second large values of mU (1).

A subgraph of G induced by a quasi-pendant and its pendant vertices is called

a star composition of G. For example, let u be a quasi-pendant with pendant vertices

u1, u2, . . . , un1
in G, and denote V ′ = {u, u1, . . . , un1

} ⊆ V (G). Then G[V ′] ∼= Sn1+1.

For convenience, we say that G has a Sn1+1-composition of G, see Figure 3 for

instance.

v

u

.

.

.

︸
︷︷

︸

v

u

.

.

.

︸
︷︷

︸

.

.

.

.

.

.
.

.

.

︸
︷︷

︸
n2

n1 n1 + n2

G G̃

Figure 3. Graphs G and G̃.

From Lemma 2.4 we find that the star compositions of graphs play an important

role in the multiplicity of Laplacian eigenvalue 1, which was confirmed by Lemma 3.1

of [7]. It is worth to mention that µn−1(G) is the algebraic connectivity of G.

Although µn−1(G) can contribute the multiplicity tomG(1) if µn−1(G) = 1, it follows

from Lemma 2.3 that µn−1(G) = 1 depends on whether there exists a cut-vertex v

adjacent to every vertex of G or not.

Let G be a graph with Sn1+1-composition and Sn2+1-composition, and let u and v

be the center of Sn1+1 and Sn2+1, respectively. Let G̃ be the graph obtained from G

by deleting the pendant edges of v and then joining those isolated vertices to the

center u of Sn1+1. At this point, G̃ has a Sn1+n2+1-composition, and we say G̃ is

obtained from G by grafting Sn2+1-composition to Sn1+1-composition, see Figure 3.

Theorem 4.1. Let G be a connected graph with Sn1+1-composition and Sn2+1-

composition, where u and v are the centers of Sn1+1 and Sn2+1, respectively. Let G̃

be obtained from G by grafting Sn2+1-composition to Sn1+1-composition. Then

mG̃(1) > mG(1).

P r o o f. Let l(LR(G)) and l(LR(G̃)) be the rank of matrices LR(G) (of order r1)

and LR(G̃) (of order r2), respectively. By the well-known Rank-Nullity Theorem, we

have

ν(LR(G)) = r1 − l(LR(G)) and ν(LR(G̃)) = r2 − l(LR(G̃)).

Thus, it follows that

(5) ν(LR(G)) − ν(LR(G̃)) = (r1 − r2) + (l(LR(G̃))− l(LR(G))).
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Suppose that I(G) is the set of the inner vertices in G. We here consider two cases

on vertex v after the grafting of G.

Case 1 : When v becomes a pendant vertex of G̃, then there exists one vertex v′

(say) as its quasi-pendant vertex in G̃.

Subcase 1.1 : If v′ has other pendant vertices as its neighbors in G, then I(G) is

still the set of the inner vertices of G̃. So, it implies that r2 = r1 and l(LR(G̃)) =

l(LR(G)). Thus, by (5) we have ν(LR(G)) = ν(LR(G̃)).

Without loss of generality, we may assume that v′ has n3 pendant vertices in G.

From the grafting we know that the Sn3+1-composition on v
′ of G becomes a new

Sn3+2-composition in G̃. Besides, the Sn1+1-composition and Sn2+1-composition

of G become another new Sn1+n2+1-composition of G̃. Hence, p(G̃) = p(G) + 1 and

q(G̃) = q(G)− 1. Furthermore, it follows from Lemma 2.4 that

mG̃(1) = p(G̃)− q(G̃) + ν(LR(G̃)) = p(G) + 1− q(G) + 1 + ν(LR(G̃))

= p(G)− q(G) + ν(LR(G)) + 2 = mG(1) + 2 > mG(1),

i.e., mG̃(1) > mG(1).

Subcase 1.2 : If v′ has just one pendant vertex v in G̃, that is, v′ is inner vertex

of G, then I(G) \ {v′} is the set of inner vertices of G̃, which implies that LR(G̃) is

a principal submatrix of LR(G). Hence,

(6) r2 = r1 − 1

and

(7) l(LR(G̃)) 6 l(LR(G)).

Combining (5), (6) and (7) we get

(8) ν(LR(G)) 6 ν(LR(G̃)) + 1.

According to the grafting we see that Sn1+1-composition and Sn2+1-composition

of G become a new Sn1+n2+1-composition of G̃. Besides, it produces another new

S2-composition v
′v in G̃. Except for the above, the remainder remains unchangeable

during the operation, and thus, p(G̃) = p(G) + 1 and q(G̃) = q(G). Therefore, it

follows from Lemma 2.4 that

mG̃(1) = p(G̃)− q(G̃) + ν(LR(G̃)) = p(G) + 1− q(G) + ν(LR(G̃))

> p(G)− q(G) + ν(LR(G)) (by (8))

= mG(1),

i.e., mG̃(1) > mG(1).

379



Case 2 : When v becomes an inner vertex of G̃, then from Figure 3 we see that

I(G)∪{v} are the inner vertices of G̃. It implies that LR(G) is a principal submatrix

of LR(G̃) and thus,

(9) r2 = r1 + 1 and l(LR(G̃)) 6 l(LR(G)) + 2.

Combining (5) and (9) we also get the same inequality of (8).

By the operation of G̃, just Sn1+1-composition and Sn2+1-composition of G be-

come a new Sn1+n2+1-composition of G̃, and the other star compositions remain

unchangeable during the operation. So we have p(G̃) = p(G), q(G̃) = q(G) − 1 and

p(G̃)− q(G̃) = p(G)− (q(G)− 1) = p(G)− q(G) + 1.

Furthermore, it follows from Lemma 2.4 that

(10) mG̃(1) = p(G̃)− q(G̃) + ν(LR(G̃)) = p(G)− q(G) + 1 + ν(LR(G̃)).

Hence, from (8) and (10) we get

mG̃(1) = p(G)− q(G) + 1 + ν(LR(G̃)) > p(G)− q(G) + ν(LR(G))

= mG(1) (by Lemma 2.4),

i.e., mG̃(1) > mG(1), as required. �

In what follows, we always denote by U(n, g;n1, n2, . . . , nq) ∈ U(n, g) the unicyclic

graph with Sni+1-composition attached at some vertex vi of the exact cycle Cg, where

1 6 i 6 q 6 g and p = n1 + n2 + . . . + nq < n. Especially, U(n, g;n′) denotes the

unicyclic graph having a unique Sn′+1-composition. So, from Theorem 4.1 we have

the following corollary.

Corollary 4.1. Let U(n, g;n1, n2, . . . , nq) ∈ U(n, g) be a unicyclic graph with

Sni+1-compositions for 1 6 i 6 q. Then

mU(n,g;n′)(1) = mU(n,g;n1+...+nq)(1) > . . . > mU(n,g;n1+nq,n2,...,nq−1)(1)

> mU(n,g;n1,...,nq)(1),

where n′ = n1 + . . .+ nq.
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Let G be a connected graph with Sn′+1-composition on the center vertex v. Let v1

be an inner vertex which is adjacent to v in G, and Ĝ be obtained from G by deleting

the edge vv1 and identifying v and v1 as a new vertex v
′, and also adding a pendant

vertex on the center of Sn′+1-decomposition to obtain a new Sn′+2-composition, see

Figure 4. We say that Ĝ is obtained from G by shifting an inner vertex. Clearly, Ĝ

has a Sn′+2-composition.

.

.

.

︸
︷︷

︸
.

.

.

︸
︷︷

︸

v v′
n′ n′ + 1

G Ĝ

v2
v1

v2

Figure 4. Graphs G and Ĝ.

Remark 4.1. In the operation of shifting, if v and v1 have a common neighbor w,

then v′w must produce a parallel edge, but it does not affect the proof of Theorem 4.1.

In addition, we mainly consider the unicyclic graphs of girth greater than 3, and thus,

the above case will not appear.

Theorem 4.2. Let G be a connected graph with Sn′+1-composition on the cen-

ter vertex v. Let v1 be an inner vertex which is adjacent to v in G, and Ĝ be

obtained from G by shifting the vertex v1. Then Ĝ has a Sn′+2-composition and

mĜ(1) > mG(1).

P r o o f. Let l(LR(G)) and l(LR(Ĝ)) be the rank of matrices LR(G) (of order r1)

and LR(Ĝ) (of order r2), respectively. For convenience, we denote by I(G) =

{v1, v2, . . . , vr1} the inner vertices of G. Then I(Ĝ) = {v2, . . . , vr1}.

According to the definition of Ĝ, LR(Ĝ) is obtained from LR(G) by deleting the

row and column corresponding to v1. Clearly, r2 = r1−1. Let LR(Ĝ) be the principal

submatrix of LR(G) corresponding to I(G) \ {v1}. Then

l(LR(Ĝ)) 6 l(LR(G)).

Similarly to the proof of Theorem 4.1, we have

(11) ν(LR(Ĝ)) + 1 > ν(LR(G)).

Note that p(Ĝ) = p(G) + 1 and q(Ĝ) = q(G). Then by Lemma 2.4 we get

(12) mG(1) = p(G)− q(G) + ν(LR(G))
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and

(13) mĜ(1) = p(Ĝ)− q(Ĝ) + ν(LR(Ĝ)) = (p(G) + 1)− q(G) + ν(LR(Ĝ)).

Therefore, it follows from (11), (12) and (13) that

mĜ(1) = p(G)− q(G) + ν(LR(Ĝ)) + 1 > p(G)− q(G) + ν(LR(G)) = mG(1),

that is, mĜ(1) > mG(1).

The proof is completed. �

According to Theorem 4.2, we have the following corollary.

Corollary 4.2. Let U(n, g;n′) ∈ U(n, g) be a unicyclic graph with the exact

Sn′+1-composition. Then

mS3
n
(1) = mU(n,3;n′+g−3)(1) > . . . > mU(n,g−1;n′+1)(1) > mU(n,g;n′)(1).

From Corollaries 4.1 and 4.2 we have the following theorem.

Theorem 4.3. Let U be a unicyclic graph on n > 4 vertices. Then

mU (1) 6 n− 3,

where the equality holds if and only if U ∼= S3
n.

P r o o f. Let U be a unicyclic graph of U(n, g). For convenience, we denote U =

U(n, g;T1, T2, . . . , Tg), where Ti is a tree-component attaching at ith vertex vi of the

exact cycle Cg = v1v2 . . . vgv1 in U . Applying the grafting and shifting operations

(see Theorems 4.1 and 4.2) on each Ti repeatedly and appropriately, one can get the

resulting graph U(n, g;n1, n2, . . . , ng) (as defined before) such that

(14) mU(n,g;n1,n2,...,ng)(1) > mU (1).

By Corollary 4.1 we have

(15) mU(n,g;n−g)(1) > mU(n,g;n1,n2,...,ng)(1).

Furthermore, it follows from Corollary 4.2 that

(16) mS3
n
(1) = mU(n,3;n−3)(1) > mU(n,g;n−g)(1).

Together with (14), (15) and (16) we have mU (1) 6 mS3
n
(1). By simple calculation,

one can get mS3
n
(1) = n− 3. Thus, mU (1) 6 n− 3.
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We now prove the equality. If U ∼= S3
n, the equality is clear. Conversely, let U be

a unicyclic graph with mU (1) = n− 3. If U is a cycle, then by Corollary 3.2 we have

mU (1) = n − 3 6 2 and deduce that n 6 5, clearly, 6 ∤ n, which is a contradiction.

Thus, U 6∼= Cn, which means that U has at least one cut-point. Then by Lemma 2.3

we have µn−1(U) 6 1. We claim that µn−1(U) = 1 since if not, then µn−1(U) < 1,

which together withmU (1) = n−3, means that we have µn−2(U) = . . . = µ2(U) = 1.

Furthermore, from
n−1∑
i=1

µi = 2n one can get µ1(U) > n + 2, however, it is easy to

deduce that µ1(U) 6 n (see [6], Proposition 7.3.3), a contradiction. Consequently,

by Lemma 2.3 we have U ∼= S3
n.

The proof follows. �

Remark 4.2. Applying Theorems 4.1 and 4.2 we see that mT (1) 6 n − 2 if T

is a tree on n > 6 vertices, and equality holds if and only if T ∼= Sn, which was also

proved by Guo et al. in [12].

Remark 4.3. Using the same method as in the proof of Theorem 4.3 and com-

bining it with Lemma 2.4, one can deduce that mBn
(1) 6 n − 4 if Bn is a bicyclic

graph on n > 5 vertices, and equality holds if Bn is one of B
1
n and B

2
n, shown in

Figure 5.

.

.

.

.

.

.

B
1

n
B

2

n

Figure 5. Graphs B1n and B2n.

For convenience, we also use mU (a, b) (or mU [a, b)) to denote the sum of its multi-

plicity of all Laplacian eigenvalues µ that belong to (a, b) (or [a, b)), where a and b are

two nonnegative integers. From Theorem 4.3 we see that mU (1) 6∈ {n− 2, n− 1, n}

for any unicyclic graph U on n vertices. Besides those, there is another exception

of mU (1) below.

Theorem 4.4. Let U be a unicyclic graph of order n > 7. Then mU (1) 6= n− 4.

P r o o f. Assume that U is a unicyclic graph with mU (1) = n− 4. Then U has at

most 5 distinct Laplacian eigenvalues. By Lemma 2.6 one can get diam(U) 6 4. If

diam(U) 6 2, then U ∈ {S3
n(n > 4), C3, C4, C5}. By Lemma 2.4, one can find that

mS3
n
(1) = n − 3 and mC3

(1) = mC4
(1) = mC5

(1) = 0, a contradiction. So we may

further assume that 3 6 diam(U) 6 4 according to the above arguments. Notice

that U 6∼= S3
n due to mS3

n
(1) = n − 3 and we have µn−1(U) < 1 by Lemma 2.3. If

383



diam(U) = 4, then U contains P5 as its induced subgraph. By a direct calculation

we get

SpecL(P5) = {0, 0.3820, 1.3820, 2.6180, 3.6180}.

It is easy to see that H = P5∪(n−5)K1 is a spanning subgraph of U , and U can be

obtained from H by adding n− 4 edges e1, e2, . . . , en−4, where ei ∈ E(U)\E(P5) for

i = 1, 2, . . . , n− 4. Let Ui = H + {e1, e2, . . . , ei}. Clearly, U = Un−4. By Lemma 2.1

we have

µ1(U) = µ1(Un−4) > µ1(Un−5) > . . . > µ1(U1) > µ1(P5) = 3.6180,

µ2(U) = µ2(Un−4) > µ2(Un−5) > . . . > µ2(U1) > µ2(P5) = 2.6180,

µ3(U) = µ3(Un−4) > µ3(Un−5) > . . . > µ3(U1) > µ3(P5) = 1.3820.

Therefore,mU (1, n]> 3. Since µn−1(U)< 1, we havemU [0, 1)=mU(0)+mU (0, 1)> 2.

So we get

mU (1) = n−mU [0, 1)−mU (1, n] 6 n− 5,

which contradicts mU (1) = n− 4.

f1 0 0.5188 1.0000 2.3111 4.1701

f2 0 0.5188 2.3111 3.0000 4.1701

f3 0 0.8299 2.0000 2.6889 4.4812

f4 0 0.6972 1.3820 3.6180 4.3028

Table 1. The Laplacian spectra of f1, f2, f3 and f4.

So ifmU (1) = n−4, then diam(U) = 3 and U contains no P5 as its subgraph. Note

that U is a unicyclic graph. Therefore, it follows from Lemma 2.7 that U has at least

one of f1, f2, f3 and f4 (see Figure 2) as its subgraph. Furthermore, if U contains

at least one of f2, f3 and f4 as its subgraphs, then from simple calculation we get

Table 1. By regarding fi (i = 2, 3, 4) as P5 as above, we can prove thatmU (1) 6 n−5,

which is a contradiction. Otherwise U only contains f1 as its subgraph. Since U is

a P5-free unicyclic graph, it follows that U must contain C
2
3 (1, 1) (see Figure 8) as

its another subgraph. By direct calculation we have

SpecL(C
2
3 (1, 1)) = {0, 0.4859, 1.0000, 2.4280, 3.0000, 5.0861}.

Thus, we can similarly deduce that mU (1) 6 n− 5, which is also a contradiction.

�
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Guo et al. in [12] first introduced the notion of Laplacian 1-realizable for tree, we

here introduce the concept on unicyclic graphs: a subset N of {0, 1, . . . , n} is said

to be Laplacian 1-realizable for unicyclic graphs with n vertices provided that for

any σ ∈ N, if there exists at least one unicyclic graph U on n vertices such that

mU (1) = σ. It is clear that the largest N such that it is Laplacian 1-realizable for

unicyclic graphs is just the distribution of mU (1).

Theorem 4.5. The set N = {0, 1, . . . , n − 5, n − 3} is Laplacian 1-realizable for

unicyclic graphs with n > 7 vertices.

P r o o f. For any positive integer σ ∈ N, let U be a unicyclic graph on n vertices

with mU (1) = σ. We here distinguish the following situations.

When σ = n− 3, it is clear by Theorem 4.3.

When σ = n− k for 5 6 k 6 n− 1, we consider two subcases as follows:

(i) If k is odd, then we take U = G1 (see Figure 6) with n = 1
2 (k + 3) +

(k−1)/2∑
i=1

ri,

where G1 is obtained from C(k+3)/2 by attaching ri > 1 pendent vertices on each

vertex of C(k+3)/2 except for a pair of adjacent vertices, say u and v. Clearly,

p(G1) = n − 1
2 (k + 3) and q(G1) =

1
2 (k − 1), moreover, u and v are just two inner

vertices of G1. Let LR(G1) be the principal submatrix of L(G1)−In that corresponds

to the inner vertices u and v of G1. Then we have

LR(G1) =

(
1 −1

−1 1

)
.

So, one can see that ν(LR(G1)) = 1. Thus, it follows from Lemma 2.4 that

mG1
(1) = p(G1)− q(G1) + ν(LR(G1)) = n−

k + 3

2
−
k − 1

2
+ 1 = n− k,

as desired.

.

.

.

.

.

.

.

.

.

.

.

.

vu

C(k+3)/2

. . .

G1

︸
︷︷

︸

r1

︸
︷︷

︸

r2

︸
︷︷

︸

r(k−1)/2

︸
︷︷

︸

r(k−3)/2

C(k−3)
u v

︸
︷︷

︸

h+ 1

G2

.

.

.

Figure 6. Graphs G1 and G2.

(ii) If k is even, then we take U = G2 = Ck−3u : vSh+3 (see Figure 6), where

k > 6, h > 1 and n = k+h. Since k is even, k− 3 is odd, we further have 6 ∤ (k− 3).
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Note that SpecL(Cn) = {2 − 2 cos(2πj/n) : j = 0, 1, . . . , n − 1}. Then from the

proof of Corollary 3.2 we get mCk−3
(1) = 0. Therefore, by Lemma 2.5 (a), mG2

(1) =

mCk−3
(1)+(h+3)−3 = mCk−3

(1)+h = h = n−k, where k is even for 6 6 k 6 n−1.

.

.

.

Sun( 1
2
n, n)

.

.

.

Š3

n

︸
︷︷

︸

n−3

2

Figure 7. Graphs Š3n and Sun(
1

2
n, n).

When σ = 0, we take U = Š3
n (see Figure 7) when n > 7 is odd, where Š3

n is

obtained from C3 by joining
1
2 (n− 3) rays (legs) on one of its vertices. Since LR(Š

3
n)

is the principal submatrix of L(Š3
n)− In that corresponds to the inner vertices of Š

3
n,

we have

LR(Š
3
n) =




1 −1 −1

−1 1 −1

−1 −1 1
2 (n− 1)


 .

Since det(LR(Š
3
n)) = −4 for n > 7 and p(Š3

n) = q(Š3
n), by Lemma 2.4 we have

mŠ3
n
(1) = p(Š3

n) − q(Š3
n) + ν(LR(Š

3
n)) = 0. On the other hand, when n is even, we

take U = Sun(12n, n), where Sun(
1
2n, n) is the sun graph (see Figure 7) obtained

from Cn/2 (n > 8) by appending one pendant vertex on each vertex of Cn/2. Then

it follows from Lemma 2.4 that mSun(n/2,n)(1) = p(Sun(12n, n))− q(Sun(12n, n)) = 0,

as required.

Sum up the above, it would meet our requirements whenever σ is taken in N. So

the proof is completed. �

Remark 4.4. Let G = C6 be the cycle on 6 vertices. Then SpecL(C6) =

{0, 12, 32, 4}. Clearly, 1 is a multiple Laplacian eigenvalue of C6. If n = 6, then

mC6
(1) = n−4 = 2, but such a graph C6 is excluded in Theorem 4.4, and thus n > 7

is necessary.

Theorem 4.3 determines the extremal graph for the largest mU (1) = n − 3. Ac-

cording to Theorem 4.5, mU (1) = n− 5 is the second largest multiplicity in U(n, g).

Then we will completely characterize the unicyclic graphs U of order n > 7 with

mU (1) = n− 5 in the following result.

Theorem 4.6. Let U ∈ U(n, g) be a unicyclic graph on n > 7 vertices. Then

mU (1) = n − 5 if and only if U is one of C1
3 (t, h) (t > 1, h > 1), C2

3 (t, h) (t > 0,

h > 1) and C4(t, h) (t > 0, h > 0), and all those graphs are shown in Figure 8.

386



︷ ︸︸ ︷
t

. . .

︸
︷︷

︸

h.

.

.

C1

3
(t, h)

︷ ︸︸ ︷
t

. . .

︸
︷︷

︸

h.

.

.

C2

3
(t, h)

︸
︷︷

︸

t.

.

.

︸
︷︷

︸

h
.

.

.

C4(t, h)

Figure 8. Graphs C13 (t, h), C
2

3(t, h) and C4(t, h).

P r o o f. Let U ∈ U(n, g) be a unicyclic graph with mU (1) = n− 5, where n > 7.

If U is a cycle, then by Corollary 3.2 one can get mU (1) = 2 if and only if 6 | n.

Thus, if mU (1) = n−5 = 2, it leads to n = 7, a contradiction. So we always suppose

that U is not a cycle in the remainder of the proof.

Assume that the girth g of U is no less than 5, that is, g > 5. Then by the same

method as in the proof of Theorem 4.3 we have

mC∗

5
(n,5;n−5)(1) > . . . > mU(n,g;n1+n2+...+ng)(1)

> . . . > mU(n,g;n1,n2,...,ng)(1) > mU (1),

where C∗

5 (n, 5;n − 5) is the unicyclic graph on n vertices obtained from C5 by at-

taching n− 5 pendant vertices at any vertex of C5.

Let LR(C
∗

5 (n, 5;n − 5)) be the principal submatrix of L(C∗

5 (n, 5;n − 5)) − In
corresponding to the inner vertices of C∗

5 (n, 5;n− 5). Then we have

LR(C
∗

5 (n, 5;n− 5)) =




1 −1 0 0

−1 1 −1 0

0 −1 1 −1

0 0 −1 1




by simple computation, ν(C∗

5 (n, 5;n−5)) = 0. Therefore, it follows from Lemma 2.4

that mC∗

5
(n,5;n−5)(1) = n− 6. Consequently, mU (1) 6 n− 6, a contradiction. Thus,

we have 3 6 g 6 4. So, there are two cases to be considered:

Case 1 : g = 3. If U has the form of C3(s, t, h) (see Figure 9) on n = s+ t+ h+ 3

vertices, where s, t, h > 0, then it is not possible to have s, t, h > 1. Because if s > 1,

t > 1 and h > 1, one can see that C3(s, t, h) has no inner vertex. Then it follows

from Lemma 2.4 that mC3(s,t,h)(1) = s+ t+ h− 3 = n− 6, a contradiction.

Subcase 1.1 : Suppose diam(U) = 3. Then U has one of the forms C3(s, t, h) on

n = s+t+h+3 vertices or C2
3 (t, h) on n = t+h+3 vertices. Suppose U has the form

C3(s, t, h), then according to the above argument, it is not possible to have s, t, h > 1.

If two of s, t, h in C3(s, t, h) are equal to zero, then U ∼= S3
n, it is also impossible.
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Otherwise, we may, without loss of generality, assume that s is only equal to 0, that

is, s = 0 and t, h > 1, then U has the form C1
3 (t, h), see Figure 8. Let LR(C

1
3 (t, h))

be the principal submatrix of L(C1
3 (t, h))− In that corresponds to the unique vertex

with degree 2, and LR(C
1
3 (t, h)) = 1. So we have ν(LR(C

1
3 (t, h))) = 0. Therefore,

mC1

3
(t,h)(1) = t+ h− 2 = n− 5 by Lemma 2.4.

︷ ︸︸ ︷
t

. . .

︸
︷︷

︸

h
.

.

.

︸
︷︷

︸s
.

.

.

Figure 9. Graph C3(s, t, h).

If U has the form of C2
3 (t, h) on n = t + h + 4 vertices, clearly, h = 0 im-

plies that U = C2
3 (t, 0)

∼= S3
n, which is impossible, and so h > 1. If t = 0 and

h = 1, then by Lemma 2.4 we can obtain mC2

3
(0,1)(1) = p(C2

3 (0, 1)) − q(C2
3 (0, 1)) +

ν(LR(C
2
3 (0, 1))) = 0. Further, if t = 0 and h > 2, one can get mC2

3
(0,h)(1) =

h − 1 = n − 5 by Lemma 2.5 (b). If t > 1 and h > 1, similarly to C1
3 (t, h) above,

we have ν(LR(C
2
3 (t, h)) = 1. Thus, it follows from Lemma 2.4 that mC2

3
(t,h)(1) =

t+ h− 2 + 1 = n− 5.

Subcase 1.2 : Suppose that diam(U) > 4. Then U contains at least one of J1, J2
and J3 (see Figure 10) as its subgraphs. If U contains J1 as its subgraph, then from

Table 2 we know that

SpecL(J1) = {0, 0.3249, 1.4608, 3, 3, 4.2143}.

From Theorem 4.3 we have U ≇ S3
n. It follows from Lemma 2.3 that mU (0, 1) > 1,

and mU (1, n] > 4 by Lemma 2.1. Therefore, we get

mU (1) = n−mU (0)−mU (0, 1)−mU (1, n] 6 n− 6,

which contradicts mU (1) = n−5. Using the same arguments as for J1 we get that U

does not contain J2 and J3 as its subgraphs.

J1 0 0.3249 1.4608 3.0000 3.0000 4.2143

J2 0 0.4131 1.1369 2.3595 3.6977 4.3928

J3 0 0.3820 0.6086 2.2271 2.6180 3.0000 5.1642

J4 0 0.4384 2.0000 2.0000 3.0000 4.5616

J5 0 0.5858 1.2679 2.0000 3.4142 4.7321

Table 2. The Laplacian spectra of J1, J2, J3, J4 and J5.
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Case 2 : g = 4. By similar reasoning as in the case of J1, U does not contain J4

and J5 (see Figure 10) as its subgraphs. Thus, U must have the form of C4(t, h)

(shown in Figure 8), where t > 0, h > 0 and n = t+ h+ 4.

J1 J2 J3

J4 J5

Figure 10. Graphs J1, J2, J3, J4 and J5.

If t > 1 and h > 1, let LR(C4(t, h)) be the principal submatrix of L(C4(t, h))− In
corresponding to the two vertices of degree 2 in C4(t, h). Then

LR(C4(t, h)) =

(
1 −1

−1 1

)

and ν(LR(C4(t, h))) = 1. It follows from Lemma 2.4 that mC4(t,h)(1) = t+ h− 1 =

n− 5.

If t = 0 or h = 0, without loss of generality, we may assume that h = 0, then

U = C4(t, 0), where n = t+ 4. By a similar proof as above, we have

LR(C4(t, 0)) =




1 −1 0

−1 1 −1

0 −1 1




and ν(LR(C4(t, 0))) = 0. Therefore, mC4(t,0)(1) = t− 1 = n− 5.

Conversely, by Lemma 2.4 it follows that the sufficiency holds. So the proof is

completed. �

Unicyclic graphs with mU (1) ∈ {n − 3, n − 5} are completely characterized in

Theorems 4.3 and 4.6, respectively. It means that the large multiplicity of Laplacian

eigenvalue 1 can determine the unicyclic graph itself. Applying the same method as in

Theorem 4.6, one can also characterize the unicyclic graphs withmU (1) = n−6, n−7

and so on. However, if one keeps doing it the way we did, one has to encounter more

graphs with the same value of mU (1) to be characterized, and this seems to be

complex tasks. Rather, one can consider its opposite. So we propose to characterize

the unicyclic graphs on n vertices with property mU (1) = 0.
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