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K Y B E R N E T I K A — V O L U M E 5 7 ( 2 0 2 1 ) , N U M B E R 3 , P A G E S 4 9 3 – 5 1 2

PARTIALLY OBSERVABLE QUEUEING SYSTEMS WITH
CONTROLLED SERVICE RATES UNDER A DISCOUNTED
OPTIMALITY CRITERION

Yofre H. Garćıa, Saul Diaz-Infante and J. Adolfo Minjárez-Sosa

We are concerned with a class of GI/GI/1 queueing systems with controlled service rates,
in which the waiting times are only observed when they take zero value. Applying a suitable
filtering process, we show the existence of optimal control policies under a discounted optimality
criterion.

Keywords: queueing models, partially observable systems, discounted criterion, optimal
policies

Classification: 90C39, 90B22

1. INTRODUCTION

In this paper we consider GI/GI/1 queueing systems with controlled service rate and
partially observable (PO) waiting times, described as follows. Customers are enumerated
according to the order in which they arrive at the queueing system. Thus, let xt and ut
be the waiting time and the service rate of the tth customer, respectively. The process
{xt} evolves according to the stochastic difference equation

xt+1 = max {xt + atηt − ξt, 0} , t = 1, 2, . . . , (1)

where ηt represents a random “base” service time of the tth customer and ξt denotes
the interarrival time between the tth and (t + 1)th customers, while at is the control
variable defined as the reciprocal of the service rate ut, i. e., at = 1/ut. In addition, the
waiting time is PO in the sense that the controller only observe when xt = 0. That
is, the controller only realizes when a customer arrives directly to the server, and in
such a case it is possible to record the occurrence of the event [xt = 0]. In contrast, the
controller is unable to measure the possible waiting time of customers when the server
is busy, which means that the variable xt is not observable when it takes positive values.
Hence, we can define the observation process {yt} as

yt := I[xt=0], t = 1, 2, . . . (2)
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The actions or controls at each stage are selected by the controller taking into account
the observed history, in order to minimize an infinite horizon total expected discounted
cost. In this sense, the control problem we are dealing with is finding a discounted
optimal policy within this partially observable scenario.

We follow the standard approach (see, e. g., [2, 3, 8, 15, 17, 18] and references therein)
to solve the PO control problem, which essentially consists of to transform it into a
completely observable (CO) control problem whose dynamic is given by a recursive
equation of the form

zt+1 = Ψ(zt, at, yt+1), t = 1, 2, . . . , (3)

where Ψ is a suitable function and zt is the conditional distribution of xt given the
observed history up to time t. Defining properly the corresponding total discounted
cost, this new CO control problem is equivalent to the PO control problem in the sense
that an optimal policy for one is optimal for the other. Hence, the analysis of the
PO problem focuses on guaranteeing the existence of a solution for the CO problem,
by applying one of the several well-known procedures in the field of Markov decision
processes (see, e. g., [2, 3, 7, 12, 13, 14, 15, 17]). It is worth observing that the good
behavior of such procedures depends on knowing the function Ψ in (3) as well as its
properties (e. g., continuity in the pair (z, a)), which can be obtained according to the
specific problem that is being analyzed.

Our main objective in this paper is precisely to present an explicit form of the dynamic
of the CO problem corresponding to the PO queueing system (1) – (2). In general terms,
assuming that the distribution zt of the non observed waiting time xt has a conditional
density κt given the observed history up to time t and applying a convenient filtering
technique, we obtain a recursive equation κt+1 = Ψ(κt) generating the process {κt} .
Then, imposing suitable continuity and compactness condition, we prove the existence
of optimal control policies for the CO problem, which are optimal for the PO queueing
system (1) – (2).

Controlled queueing systems for the CO case have been studied in several scenarios
(see, e. g., [6, 10, 16]). In particular, in [6] is analyzed a queueing system of the form
(1). On the other hand, for PO systems, a special case of (1) is when ηt = 1, which
models an inventory system where the only possible observation is when the stock is
zero. This kind of PO inventory systems were studied in [1] considering unnormalized
probabilities to analyze the dynamic of the corresponding CO problem and supposing
finite expectation respect to the conditional densities κt. In addition, our work is also
related with non controlled queueing systems modeled by the Lindley equation [11]

xt+1 = max {xt + ηt − ξt, 0} , t = 1, 2, . . . , (4)

when the waiting time xt is only observed if it takes zero value, being ηt a random
variable that represents the service time of the customer that arrives at position t.
Thus, our results show a recursive filtering process allowing to study the PO system (4)
in a CO environment. Within the field of the stochastic process filtering theory (see,
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e. g., [5] and references therein), the latter constitutes the first step to obtain important
mathematical properties of the original PO queueing system (4).

The paper is organized as follows. In Section 2 we present a review on general PO
control systems and delineate the approach applied to analyze the PO queueing system
described in Section 3. Next, in Section 4 we introduce the filtering process which define
the dynamic of the densities, whereas in Section 5 the CO control problem is defined.
Next, in Section 6, we prove the existence of optimal policies. Finally, Section 7 contains
some concluding remarks.

2. REVIEW ON GENERAL PO SYSTEMS

We assume that all stochastic processes considered throughout the paper are defined
on an underlying probability space (Ω,F , P ). In addition we shall use the following
notation.

For a Borel space Y — that is, a Borel subset of a complete separable metric space
— B(Y ) denotes the Borel σ–algebra and “measurability” always means measurability
with respect to B(Y ). Given two Borel spaces Y and Y ′, a stochastic kernel q(·|·) on Y
given Y ′ is a function such that q(·|y′) is a probability measure in Y for each y′ ∈ Y ′,
and q(B|·) is a measurable function on Y ′ for each B ∈ B(Y ). The set of all probability
measures on Y is denoted by P(Y ), endowed with the usual weak topology. That is, a
sequence {θt} in P(Y ) converges weakly to θ ∈ P(Y ) if∫

Y

ϕdθt →
∫
Y

ϕdθ,

for all continuous and bounded function ϕ on Y. The sets R+ and N stand for the
nonnegative real numbers set and positive integers subset, respectively. We denote by
L(Y ) the class of lower semicontinuous functions on Y bounded below and by L+(Y ) ⊂
L(Y ) the subclass of nonnegative functions in L(Y ). Moreover, L1(R+) is the space of
integrable functions on R+. In addition, denote by D the set of all density functions ϕ
on R+. Observe that D is a closed subset of L1(R+) respect to the L1−norm, that is, if
{ϕt} is a sequence in D such that

‖ϕt − ϕ‖ :=

∫ ∞
0

|ϕt(ω)− ϕ(ω)| dω → 0, as t→∞, (5)

then ϕ ∈ D. Finally, IB(·) stands for the indicator function of the set B and (x)
+

:=
max {0, x} .

We consider a general PO stochastic system of the form

xt+1 = F
(
xt, at, w

(1)
t

)
, t ∈ N, (6)

yt = G
(
xt, w

(2)
t

)
, t ∈ N, (7)
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where F and G are known functions, xt, at, and yt represent the state, action, and

observation, at time t, with values in X, A, and Y, respectively;
{
w

(1)
t

}
and

{
w

(2)
t

}
are

independent sequences of independent and identically distributed (i.i.d.) random vari-
ables with values in S1 and S2 and distributions θ1 ∈ P(S1) and θ2 ∈ P(S2), respectively.
We assume that the state space X, the observation space Y, and the disturbance spaces
S1 and S2 are all Borel spaces, while the control space A is a compact metric space.
Moreover, the one-stage cost is a nonnegative and continuous function c : X ×A→ R.

The evolution of the PO stochastic system (6) – (7) is as follows. Suppose that the
initial state x1 ∈ X has a given distribution ν ∈ P(X). If x1 = x, then the initial
observation y1 ∈ Y is generated according to the stochastic kernel

K (C|x) :=

∫
S2

IC [G(x, s)] θ2(ds), C ∈ B(Y ). (8)

Taking into account the observation y1 the controller selects an action a1 = a ∈ A.
Next, a cost c(x, a) is incurred and the system moves to a new state x2 = x′ according
to the transition law

Q (B|x, a) :=

∫
S1

IB [F (x, a, s)] θ1(ds), B ∈ B(X). (9)

Once the system is in state x′ a new observation y2 is generated according to the stochas-
tic kernel K (·|x′) , and the process is repeated over and over again.

The actions are selected by means of control policies which are sequences π = {at}
of A−valued random variables such that at is Yt−measurable for each t ∈ N, where
Yt := σ(y1, y2, . . . , yt) is the σ−algebra generated by the observation process. We denote
by Π the set of all control policies. In addition, the costs are accumulated in an infinite
horizon under the following discounted optimality criterion. For each policy π ∈ Π and
initial distribution ν ∈ P(X) we define

V (π, ν) := Eπν

∞∑
t=1

αt−1c(xt, at), (10)

where α ∈ (0, 1) is the discount factor and Eπν is the expectation operator with respect
to the probability measure Pπν induced by π and ν (see, e. g., [3, 4] for construction of
Pπν ). Hence, the PO optimal control problem is to find a policy π∗ ∈ Π such that

V ∗(ν) := inf
π∈Π

V (π, ν) = V (π∗, ν), ν ∈ P(X). (11)

The analysis of the problem (11) is based on the standard approach which consists in
to transform it into a new CO control problem by using a filtering process. To fix ideas,
for each π ∈ Π and ν ∈ P(X), we consider the filtering process {zt} ⊂ P(X) defined, for
B ∈ B(X), as

z1(B) := Pπν (x1 ∈ B) = ν(B) (12)
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and
zt(B) := Pπν (xt ∈ B|Yt−1) , t > 1. (13)

It is well-known (see, e. g., [2, 3, 5, 8, 15, 17, 18]) that there exists a measurable function
Ψ : P(X) × A × Y → P(X) such that the filtering process (13) satisfies a recursive
equation of the form

zt+1 = Ψ(zt, at, yt+1), t ∈ N, (14)

with initial condition z1 = ν ∈ P(X) given in (12). Defining a new cost function
c̃ : P(X)×A→ R as

c̃(z, a) :=

∫
X

c(x, a)z(dx) (15)

and following standard arguments on PO control systems, the performance index (10)
can be written as

V (π, ν) := Eπν

∞∑
t=1

αt−1c̃(zt, at). (16)

Hence, the CO control problem is to find a policy that minimize (16) subject to (12) –
(14). Moreover, both CO and PO control problems are equivalent in the sense that an
optimal policy for one is optimal for the other.

The solution of the CO control problem can be obtained by applying the following
dynamic programming (DP) procedure. For a function U : P(X) → R, we define the
DP operator

TU(z) = min
a∈A

TaU(z), z ∈ P(X), (17)

where, for z1 = z,

TaU(z) := c̃(z, a) + αEπz [U (z2)]

= c̃(z, a) + αEπz [U (Ψ(z, a, y2))] , z ∈ P(X), a ∈ A. (18)

In addition, we define the sequence of value iteration functions {vt} as

v1 = 0;

vt(·) = Tvt−1(·), t > 1. (19)

Then the DP procedure consists in finding a solution of the optimality equation

TU(z) = U(z), z ∈ P(X), (20)

and its respective minimizers. Specifically, it needs to be shown that the value function
satisfies TV ∗ = V ∗ and vt → V ∗, as t→∞. For this purpose, it is necessary to impose
continuity and compactness conditions as these introduced below.

Assumption 2.1. (a) A is a compact set.

(b) c̃ ∈ L+(P(X)×A).

(c) Tau ∈ L+(P(X)×A) for all u ∈ L+(P(X)).
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Following practically the same arguments as in [9, Th. 4.2], we can establish the
following result:

Theorem 2.2. Suppose that Assumption 2.1 holds. Then:

(a) vt ↗ V ∗, as t→∞.

(b) The value function V ∗ : P(X) → R is the minimal solution in L+(P(X)) of the
optimality equation, that is,

V ∗(ν) = min
a∈A
{c̃(ν, a) + αEπν [V ∗ (z2)]}

= min
a∈A
{c̃(ν, a) + αEπν [V ∗ (Ψ(ν, a, y2))]} , ν ∈ P(X). (21)

(c) There exists f∗ : P(X)→ A such that

V ∗(ν) = c̃(ν, f∗(ν)) + αEπν [V ∗ (Ψ(ν, f∗(ν), y2))] , ν ∈ P(X).

Moreover, the policy π∗ = {a∗t } ∈ Π, determined by a∗t = f∗(zt), t ∈ N, is an optimal
control policy.

Since the cost function c̃ is not necessarily bounded, observe that the uniqueness of
the solution to the optimality equation (20) is not ensured under Assumption 2.1. There
is another set of conditions implying uniqueness of V ∗ which fall within the weighted-
norm approach, widely studied under several settings in the field of Markov decision
processes (see, e. g., [12, 14] and reference therein). Such approach allows a possibly
unbounded one-stage cost c̃ provided that it is upper bounded by some weight function
W, which in turns must satisfy a growth condition. However, it is worth noting that
for PO systems that condition could be very strong because the function W would be
defined on the space P(X).

3. DESCRIPTION OF THE PO CONTROLLED QUEUEING SYSTEM

We consider a PO GI/GI/1 queueing system where the waiting times are observable only
when they take zero value. The objective in this section is to define the corresponding
PO optimal control problem in the sense of the previous section. To describe precisely
the model, we define the following variables:

xt : waiting time of the tth customer, which represents the state of the system, taking
values in X = R+, and observable only when xt = 0;

ηt : base service time of the tth customer;

at : control variable taking values in A = [a∗, a
∗], a∗ > a∗ > 0, defined as the reciprocal

of the service rate ut for the tth customer i. e., at =
1

ut
;

ξt : interarrival time between the tth and (t+ 1)−th customers.
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Considering these definitions, the waiting time process {xt} evolves in X according
to the difference equation

xt+1 = (xt + atηt − ξt)+
, t ∈ N, (22)

whose observation process is given by

yt := I[xt=0], t ∈ N. (23)

We assume that the queueing system satisfies the following conditions:

• {ξt} and {ηt} are independent sequences of nonnegative i.i.d. random variables
with distribution functions Fξ and Fη and continuous densities fξ and fη, respec-
tively.

• At initial time t = 1, either x1 = 0, therefore it is observed, or x1 > 0 and has a
density function κ ∈ D.

• For t > 1, when xt > 0 (i. e., it is a non observed state) it has a conditional density
κt given the observed history. That is

κt(·) : conditional density of xt given Yt−1 and xt > 0. (24)

• The one-stage cost c(x, a) is a continuous and nonnegative function. Moreover,
the function

(a, κ)→
∫ ∞

0

c(x, a)κ(x)dx, (a, κ) ∈ A× D, (25)

is continuous.

Observe that the events [xt+1 = 0] and [ξt > xt + atηt] are equivalent.

Under this settings, the initial condition of the PO process is given by a pair (y1, κ1) :=
(y, κ) ∈ {0, 1}×D with the following meaning. If y1 = 1 then x1 = 0, and if y1 = 0 then
x1 > 0 with density κ ∈ D. Thus, the initial distribution ν ∈ P(X) of the PO process
takes the form

ν(B) := yδ0(x1) + (1− y)

∫
B

κ(ω) dω, B ∈ B(X), (26)

where δ0 is the Dirac delta function. Observe that the distribution ν ∈ P(X) is com-
pletely determined by the initial condition. Hence, we use the notation Pπ(y,κ) and Eπ(y,κ)

instead of Pπν and Eπν , respectively. In this context, our objective is to show the exis-
tence of optimal policies for the PO optimal control problem, defined in general form in
(10) – (11). To this end, we apply the standard approach described in previous section
which we can summarize in the following steps:
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• Once defined the PO control problem, transform it into an equivalent CO control
problem by means of a filtered process {zt} (see (12) – (13)), which satisfies a
recursive equation of the form (14). In our case we will see that the distribution
zt is determined by the pair (yt, κt) ∈ {0, 1} × D, leading that our goal is to find
a recursive equation for the densities κt.

• Next, define the CO control problem in terms of the new process {κt} ⊂ D as well
as the corresponding optimality equation.

• Finally, prove that the CO control problem satisfy the appropriate continuity con-
dition in Assumption 2.1, to be able to apply Theorem 2.2.

The next sections are concerned with giving solutions to these points.

4. RECURSIVE EQUATION FOR DENSITIES

Let κt(·) be the conditional density of xt given Yt and xt > 0 (see (24)). Then, for each
policy π ∈ Π and initial condition (y, κ) ∈ {0, 1} ×D, the filtered process {zt} takes the
form ((see (12), (13), and (26)), for B ∈ B(X),

z1(B) := Pπ(y,κ)(x1 ∈ B) = yδ0(x1) + (1− y)

∫
B

κ(ω) dω, (27)

zt+1(B) := Pπ(y,κ)(xt+1 ∈ B | Yt) = yt+1δ0(xt+1) + (1− yt+1)

∫
B

κt+1(ω) dω, t ∈ N.

(28)

Hence, the distribution zt is completely determined by the pair (yt, κt) ∈ {0, 1} × D.
Moreover, because the events [xt+1 = 0] are observed, the densities kt+1 only take part
when xt+1 > 0, i. e., if yt = 0. In this sense, to study the evolution of the filtered process
{zt} it is sufficient to obtain a recursive equation that generates the process {κt} ⊂ D.

For each κ ∈ D, x ∈ X, and a ∈ A, we define the function Ψ(κ, x, a)(·) as

Ψ(κ, x, a)(s) =



∞∫
s/at−1

fξ ((av − s)+) fη (v) dv

∞∫
0

Fξ(av)fη(v) dv

if x = 0,

∞∫
0

∞∫
(s−av)+

fξ ((ω + av − s)+) fη (v)κ(ω) dωdv

∞∫
0

∞∫
0

Fξ(ω + av)fη (v)κ(ω) dωdv

if x > 0.

A straightforward calculation shows that Ψ(κ, x, a) ∈ D, that is, for each κ ∈ D, x ∈ X,
and a ∈ A, we have Ψ ≥ 0 and

∫∞
0

Ψ(κ, x, a)(s) ds = 1.

From this fact, we can state our result as follows.
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Theorem 4.1. The density process {κt} evolves in D according to the system κ1 = κ ∈
D, κt = Ψ(κt−1, xt−1, at−1), t ∈ N. That is, for t ∈ N,

κt(s) = I[xt−1=0]


∞∫

s/at−1

fξt−1
((at−1v − s)+) fηt−1

(v) dv

∞∫
0

Fξt−1
(at−1v)fηt−1

(v) dv


+ I[xt−1>0]


∞∫
0

∞∫
(s−at−1v)+

fξt−1
((ω + at−1v − s)+) fηt−1

(v)κt−1(ω) dωdv

∞∫
0

∞∫
0

Fξt−1
(ω + at−1v)fηt−1

(v)κt−1(ω) dωdv

 .

(29)

The proof of Theorem 4.1 will be consequence of the Lemmas 4.2 and 4.3 below.

Let π ∈ Π and (y, κ) ∈ {0, 1} × D fixed and arbitrary. In the remainder, to ease
notation, we write P and E instead of Pπ(y,κ) and Eπ(y,κ), respectively.

Lemma 4.2. For every bounded function ϕ : X → R and t ∈ N,

E[ϕ(xt) | Yt] = I[xt=0]ϕ(0) + I[xt>0]

E[ϕ(xt)I[xt>0] | Yt−1]

P (xt > 0 | Yt−1)
(30)

= I[xt=0]ϕ(0) + I[xt>0]E[ϕ(xt) | Yt−1, xt > 0]. (31)

P r o o f . Observe that for each t ∈ N,

E[ϕ(xt) | Yt] = E[ϕ(xt)
(
I[xt=0] + I[xt>0]

)
| Yt]

= E[ϕ(xt)(I[xt=0] | Yt] + E[ϕ(xt)I[xt>0] | Yt]
= ϕ(0)I[xt=0] + E[ϕ(xt)I[xt>0] | Yt] (32)

By definition of conditional expectation, there exists a measurable function Φ such that
E[ϕ(xt) | Yt] = Φ(y1, . . . , , yt−1, yt). Therefore, since the event [xt > 0] is Yt−measurable,
the last term in (32) can be rewrite as

E[ϕ(xt)I[xt>0] | Yt] = I[xt>0]E[ϕ(xt) | Yt]
= I[xt>0]Φ(y1, . . . , , yt−1, yt)

= I[xt>0]Φ(y1, . . . , yt−1, 0), (33)

where the last equality comes from the equivalence of the event [xt > 0] and [yt = 0] .
Applying conditional expectation respect to Yt−1 in (33), and taking into account that
Yt−1 ⊆ Yt and Φ(y1, . . . , , yt−1, 0) is Yt−1−measurable, we obtain

E[ϕ(xt)I[xt>0] | Yt−1] = Φ(y1, . . . , , yt−1, 0, )P (xt > 0 | Yt−1). (34)
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Combining (32) – (34) we get equality (30), that is

E[ϕ(xt) | Yt] = I[xt=0]ϕ(0) + I[xt>0]

E[ϕ(xt)I[xt>0] | Yt−1]

P (xt > 0 | Yt−1)
. (35)

To prove (31), by the Conditional Bayes Theorem (see [5]), we have that∫ ∞
0

ϕ(s)κt(s) ds = E[ϕ(xt) | Yt−1, xt > 0]

=
E[ϕ(xt)I[xt>0] | Yt−1]

E[I[xt>0] | Yt−1)

=
E[ϕ(xt)I[xt>0] | Yt−1]

P (xt > 0 | Yt−1)
. (36)

Hence, using (36) in (35) we get (31). �

Lemma 4.3. For every bounded function ϕ : X → R and t ∈ N,

E[ϕ(xt) | Yt]I[xt>0]

= I[xt−1=0]


∞∫
0

∞∫
s/at−1

ϕ(s)fξt−1
((at−1v − s)+) fηt−1

(v) dvds

∞∫
0

Fξt−1
(at−1v) fηt−1

(v) dv

+ I[xt−1>0]

·


∞∫
0

∞∫
0

ϕ(s)
∞∫

(s−at−1v)+
fξt−1

((ω + at−1v − s)+) fηt−1
(v)κt−1(ω) dω dvds∫∞

0

∫∞
0
Fξt−1 (ω + at−1v) fηt−1 (v)κt−1(ω) dω dv

 (37)

P r o o f . For each t ∈ N, using independence of the sequences {ξt} and {ηt}, and that
the density of the random vector ρt−1 = (ξt−1, ηt−1) is fρt−1

(u, v) = fξt−1
(u)fηt−1

(v) we
have

E[ϕ(xt)I[xt>0] | Yt−1]

= E[ϕ
(
(xt−1 + at−1ηt−1 − ξt−1)+

)
I[xt−1+at−1ηt−1−ξt−1>0] | Yt−1]

= E
[
E
[
ϕ
(
(xt−1 + at−1ηt−1 − ξt−1)+

)
I[xt−1+at−1ηt−1−ξt−1>0] | Yt−1, xt−1

]
| Yt−1

]
= E

[∫∫
{(v,u):xt−1+at−1v−u>0, u>0,v>0}

ϕ
(
(xt−1+at−1v−u)+

)
fξt−1

(u)fηt−1
(v) dudv | Yt−1

]

= E

[∫ ∞
0

∫ xt−1+at−1v

0

ϕ
(
(xt−1 + at−1v − u)+

)
fξt−1

(u)fηt−1
(v) dudv | Yt−1

]
By applying the change of variable s := xt−1 + at−1v − u and standard integration
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properties, it follows

E[ϕ(xt)I[xt>0] | Yt−1]

= E

[∫ ∞
0

[∫ xt−1+at−1v

0

ϕ(s)fξt−1

(
(xt−1 + at−1v − s)+

)
fηt−1 (v) ds

]
dv | Yt−1

]
= E

[∫ ∞
0

∫ ∞
0

ϕ(s)fξt−1

(
(xt−1 + at−1v − s)+

)
fηt−1

(v) I[xt−1+at−1v−s>0] dsdv | Yt−1

]
=

∫ ∞
0

∫ ∞
0

ϕ(s)E
[
fξt−1

(
(xt−1 + at−1v − s)+

)
fηt−1

(v) I[xt−1+at−1v−s>0]|Yt−1

]
dsdv.

(38)

On the other hand, note that from (31)

E[ϕ(xt−1) | Yt−1] = I[xt−1=0]ϕ(0) + I[xt−1>0]

∫ ∞
0

ϕ(s)κt−1(s) ds, (39)

for any real bounded function ϕ. Then we can take

ϕ(xt−1) = fξt−1

(
(xt−1 + at−1v − s)+

)
fηt−1

(v) I[xt−1+at−1v−s>0]

in (39) to obtain, for each s, v ∈ R+,

E
[
fξt−1

(
(xt−1 + at−1v − s)+

)
fηt−1 (v) I[xt−1+at−1v−s>0] | Yt−1

]
= I[xt−1=0]fξt−1

(
(at−1v − s)+

)
fηt−1 (v) I[at−1v−s>0]

+ I[xt−1>0]

∫ ∞
0

fξt−1

(
(ω + at−1v − s)+

)
fηt−1

(v) I[ω+at−1v−s>0]κt−1(ω) dω. (40)

Hence, combination of (38) and (40) yields

E[ϕ(xt)I[xt>0] | Yt−1]

= I[xt−1=0]

∫ ∞
0

∫ ∞
0

ϕ(s)fξt−1

(
(at−1v − s)+

)
fηt−1

(v) I[at−1v−s>0] dsdv

+ I[xt−1>0]

∫ ∞
0

∫ ∞
0

ϕ(s)

∫ ∞
(s−at−1v)+

fξt−1

(
(ω + at−1v − s)+

)
fηt−1 (v)κt−1(ω) dωdsdv,

(41)
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which is the numerator in (37). Also, the denominator in (37) can be expressed as

P [xt > 0 | Yt−1] = E
[
I[xt−1+at−1ηt−1−ξt−1>0] | Yt−1

]
= E

[
E[I[xt−1+at−1ηt−1−ξt−1>0] | Yt−1, xt−1] | Yt−1

]
= E

[
E[I[ξt−1<xt−1+at−1ηt−1] | Yt−1, xt−1] | Yt−1

]
= E

[
P
(
I[ξt−1<xt−1+at−1ηt−1] | Yt−1, xt−1

)
| Yt−1

]
= E

[∫ ∞
0

Fξt−1
(xt−1 + at−1v) fηt−1

(v) dv | Yt−1

]
= I[xt−1=0]

∫ ∞
0

Fξt−1
(at−1v) fηt−1

(v) dv

+ I[xt−1>0]

∫ ∞
0

∫ ∞
0

Fξt−1
(ω + at−1v) fηt−1

(v)κt−1(ω) dωdv, (42)

where the last equality follows by applying (39) with

ϕ(xt−1) =

∫ ∞
0

Fξt−1
(xt−1 + at−1v) fηt−1

(v) dv.

Finally, interchanging the order of integration in (41), substituting (41) and (42) in
(30), multiplying both sides of the resulting equality by I[xt>0], and using properties of
indicator functions, we get (37). �

P r o o f of Theorem 4.1. Observe that the conditional expectation in Lemma 4.2 can
be expressed in terms of the density κt as follows

E[ϕ(xt) | Yt] = I[xt=0]ϕ(0) + I[xt>0]

∞∫
0

ϕ(s)κt(s) ds. (43)

Then we obtain the desired result by comparing equations (37) and (43). �

For functions ϕ1, ϕ2 : R+ → R+ and a ∈ A, we define

< ϕ1, ϕ2 >:=

∞∫
0

ϕ1(s)ϕ2(s) ds (44)

and

ρ(a,ϕ1)(s) :=

∞∫
0

∞∫
(s−av)+

fξ
(
(ω + av − s)+

)
fη (v)ϕ1(ω) dωdv. (45)

In the particular case when ϕ1 is the Dirac delta function we have

ρ(a,δ)(s) =

∞∫
0

∞∫
(s−av)+

fξ((ω + av − s)+)fη (v) δ(ω)ωdv

=

∞∫
0

fξ((av − s)+)fη (v) I[s<av] dv.
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Additionally we define

θ(s; a, ϕ1) :=
ρ(a,ϕ1)(s)

< ρ(a,ϕ1), 1 >
. (46)

Then, considering these definitions and the observation process (23), and following
straightforward calculations we can get a simplified version of the equation (29) of the
form

κ1 = κ,

κt(s) = yt−1θ(s; at−1, δ) + (1− yt−1)θ(s; at−1, κt−1), t > 1. (47)

5. THE CO CONTROL PROBLEM

Following the outlined scheme, in this section we will define the CO control problem in
terms of the dynamic of densities given in (47), and obtain the corresponding optimality
equation.

We define the one-stage cost (see (15) and (28)) as

c(zt, at) := c̃(yt, κt, at)

=

∞∫
0

c(x, at)zt(dx)

= ytc(0, at) + (1− yt)
∞∫

0

c(x, at)κt(x) dx

= ytc(0, at) + (1− yt) 〈c(·, at), κt(·)〉 . (48)

Thus, if (y, κ) ∈ {0, 1} × D is the initial condition defining the initial distribution z1 =
ν ∈ P(X) (see (27)), then for each π ∈ Π we define the total discounted cost for the CO
control problem as

V (π, y, κ) =

∞∑
t=1

αt−1Eπ(y,k)[c̃(yt, κt, at)], (49)

with optimal value function

V ∗(y, κ) = inf
π∈Π

V (π, y, κ), (y, κ) ∈ {0, 1} × D. (50)

Hence, the control problem consists of to find a policy π∗ ∈ Π such that

V ∗(y, κ) = V (π∗, y, κ), for all (y, κ) ∈ {0, 1} × D. (51)

5.1. Optimality equation

Similarly as (20), a function U : {0, 1} × D→ R satisfies the optimality equation if

U(y, κ) = min
a∈A

{
yc(0, a) + (1− y) 〈c(·, a), κ(·)〉+ αEπ(y,k)[U(y2, κ2)]

}
, (52)
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where, from (47),

Eπ(y,k) [U (y2 , κ2)] = Eπ(y,k) [U (y2, yθ(x; a, δ) + (1− y)θ(x; a, κ))]

= U (1, yθ(x; a, δ) + (1− y)θ(x; a, κ))Pπ(y,k)[x2 = 0]

+ U (0, yθ(a, δ)(x) + (1− y)θ(a, κ)(x))Pπ(y,k)[x2 > 0]. (53)

By properties of conditional expectation

Pπ(y,k)[x2 = 0] = Pπ(y,k) [ξ ≥ x+ aη]

= 1− Pπ(y,k) [ξ ≤ x+ aη]

= 1− Eπ(y,k)

[
Eπ(y,k)

[
I[ξ<x+aη]

]
| x
]

= 1−
∫ ∞

0

Pπ(y,k)(ξ < ω + aη)κ(ω) dω

= 1−
∫ ∞

0

∫ ∞
0

Fξ(ω + av)fη (v)κ(ω) dvdω (54)

and

Pπ(y,k)[x2 > 0] = Pπ(y,k) [ξ < x+ aη]

=

∫ ∞
0

∫ ∞
0

Fξ(ω + av)fη (v)κ(ω) dvdω. (55)

Thus, substituting (55) and (54) in (53), and then in (52), we obtain the optimality
equation

U (y, κ) = min
a∈A

{
yc(0, a) + (1− y) 〈c(·, a), κ(·)〉

+ αU (1, yθ(x; a, δ) + (1− y)θ(x; a, κ))

(
1−

∫ ∞
0

∫ ∞
0

Fξ(ω + av)fη (v)κ(ω) dvdω

)
+ αU (0 , yθ(x; a, δ) + (1− y)θ(x; a, κ))

(∫ ∞
0

∫ ∞
0

Fξ(ω + av)fη (v)κ(ω) dvdω

)}
.

(56)

Hence, we define the operators (see (17), (18))

TaU(y, κ) = yc(0, a) + (1− y) 〈c(·, a), κ(·)〉

+ αU (1, yθ(x; a, δ) + (1− y)θ(x; a, κ))

(
1−

∫ ∞
0

∫ ∞
0

Fξ(ω + av)fη (v)κ(ω) dvdω

)
+ αU (0 , yθ(x; a, δ) + (1− y)θ(x; a, κ))

(∫ ∞
0

∫ ∞
0

Fξ(ω + av)fη (v)κ(ω) dvdω

)
,

(57)

and

TU(y, κ) = min
a∈A

TaU(y, κ). (58)
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6. EXISTENCE OF OPTIMAL POLICIES

According to the approach given in Theorem 2.2, to prove the existence of optimal
policies for the PO queueing system, it is sufficient to show that Assumption 2.1 is
satisfied within the scenario stated in previous section. In this case, we consider the
convergence under the L1−norm (5) in D for the lower semicontinuity of the costs
and the corresponding dynamic programming operator. That is, we need to prove the
following properties:

P1 The one-stage cost c̃ belongs to L+ ({0, 1} × D×A) (see (48)).

P2 TaU ∈ L+ ({0, 1} × D×A) , for all function U ∈ L+ ({0, 1} × D) .

Specifically our main results can be stated as follows.

Theorem 6.1. If Properties P1 and P2 hold, then:

(a) Ut (y, κ)↗ V ∗(y, κ), as t→∞, (y, κ) ∈ {0, 1}×D, where {Ut} is the sequence of
value iteration functions defined as U0 := 0 and

Ut (y, κ) = TUt−1 (y, κ) , t > 1, (y, κ) ∈ {0, 1} × D,

and T is the operator (58).

(b) The function V ∗ : {0, 1} × D → R is the minimal solution in L+ ({0, 1} × D) of
the optimality equation, i. e., TV ∗ = V ∗.

(c) There exists f∗ : {0, 1} × D→ A such that (see (57))

V ∗(y, κ) = Tf∗V ∗(y, κ), (y, κ) ∈ {0, 1} × D,

and π∗ = {f∗} ∈ Π is a stationary optimal policy for the queueing system.

We then proceed to prove that properties P1 and P2 hold for the queueing system.
Property P1 follows from the continuity of the function c and the condition (25), whereas
P2 will be consequence of the following facts.

Lemma 6.2. The function

(a, ϕ) 7→
∫ ∞

0

∫ ∞
0

fξ((ω + av − s)+)fη (v)ϕ(ω) dωdv, (a, ϕ) ∈ A× D (59)

is continuous.
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P r o o f . Let {(at, ϕt)} be a sequence in A× D converging to (a, ϕ) ∈ A× D (see (5)).
By adding and subtracting the term∫ ∞

0

∫ ∞
0

fξ((ω + atv − s)+)fη (v)ϕ(ω) dωdv

we get∣∣∣∣∣∣
∞∫

0

∞∫
0

fξ((ω+atv−s)+)fη (v)ϕt(ω) dωdv−
∞∫

0

∞∫
0

fξ((ω+av−s)+)fη (v)ϕ(ω) dωdv

∣∣∣∣∣∣
≤

∞∫
0

∞∫
0

fξ((ω + atv − s)+)fη (v) |ϕt(ω)− ϕ(ω)| dωdv

+

∞∫
0

∞∫
0

∣∣fξ((ω + atv − s)+)fη (v)− fξ((ω + av − s)+)fη (v)
∣∣ϕ(ω) dωdv.

Since fξ and fη are bounded functions, there exists a constant M > 0 such that
fξ(·)fη(·) ≤ M. Then, letting t → ∞, from the continuity of fξ and fη and the Domi-
nated Convergence Theorem, we obtain∣∣∣∣∣∣

∞∫
0

∞∫
0

fξ((ω+atv−s)+)fη (v)ϕt(ω) dωdv−
∞∫

0

∞∫
0

fξ((ω+av−s)+)fη (v))ϕ(ω) dωdv

∣∣∣∣∣∣
≤ M lim

t→∞

∞∫
0

|ϕt(ω)− ϕ(ω)| dω

+ lim
t→∞

∞∫
0

∞∫
0

∣∣fξ((ω + atv − s)+)fη (v)− fξ((ω + av − s)+)fη (v))
∣∣ϕ(ω) dωdv = 0,

which proves the continuity of function (59). �

Applying similar arguments as the proof of Lemma 6.2, it is easy to prove the conti-
nuity of the following functions:

(a, ϕ) 7→ 1−
∫ ∞

0

∫ ∞
0

Fξ(ω + av)fη (v)ϕ(ω) dωdv,

(a, ϕ) 7→
∫ ∞

0

∫ ∞
0

Fξ(ω + av)fη (v)ϕ(ω) dωdv,

(a, ϕ) 7→
∫ ∞

0

∫ ∞
(s−av)+

fξ((ω + av − s)+)fη (v)ϕ(ω) dωdv

and

(a, ϕ) 7→
∫ ∞

0

∫ ∞
0

∫ ∞
0

fξ((ω + av − s)+)fη (v)ϕ(ω) dωdvds.
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Hence, by observing that

θ(x; a, ϕ) : =
ρ(a,ϕ)(x)〈
ρ(a,ϕ), 1

〉
=

∫∞
0

∫∞
(x−av)+

fξ((ω + av − x)+)fη (v)ϕ(ω) dωdv∫∞
0

∫∞
0

∫∞
(x−av)+

fξ((ω + av − x)+)fη (v)ϕ(ω) dωdvdx
,

we have that, for each x ∈ [0,∞), the function

(a, ϕ) 7→ θ(x; a, ϕ1)

is continuous. Therefore, standard arguments yield that TaU ∈ L+ ({0, 1} × D×A) for
all function U ∈ L+ ({0, 1} × D) , that is property P2 holds.

7. CONCLUDING REMARKS

In this paper we have analyzed a GI/GI/1 queueing system with controlled service rate
where the waiting times xt are partially observed; that is the controller only observe
when xt = 0. We have followed the standard approach which consists of to transform
the partially observed control problem into a completely observable control problem
where the state’s process evolves on a space of probability measures. In general, the
key point in this standard procedure is precisely to obtain the function that defines
the dynamical system. However, commonly, many works in the literature on partially
observable control problems assume the existence of such a function, also asking that it
fulfill the necessary hypotheses. In this paper, assuming that the measures have density,
we have obtained an explicit form of the dynamical process, which in turn defines the
filtering process, satisfying the appropriate properties to prove the existence of optimal
policies. In order to illustrate, in a certain way, the behavior of the filtering process, we
consider the following particular case.

We assume that the base service time for the tth customer, ηt, has a uniform distri-
bution on [0, 1] and the interarrival time between the tth and (t + 1)th customers, ξt,
follows an exponential distribution with parameter γ > 0. Moreover, we assume that the
controller can select only two possible service rates, namely, a normal service (ns) and
an express service (es). Hence, the corresponding controls are ans := 1

ns and aes := 1
es

(recall at = 1
ut

where ut is the service rate for the tth customer). Under this scenario we
have X = [0,∞) and A = {aes, ans}, and assuming x1 v Exp(λ), λ > 0, the evolution
of the conditional densities (29) defining the filtering process is given by

κ1(s) = λe−λs, s ∈ X;
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and for t ∈ N,

κt+1(s) = yt

1∫
s/at

γe−γ(atv−s)+ dv

1∫
0

(1− e−γatv) dv

+ (1− yt)

1∫
0

∞∫
(s−atv)+

γe−γ(ω+atv−s)+κt(ω) dωdv

1∫
0

∞∫
0

(
1− e−γ(ω+atv)

)
κt(ω) dωdv

= yt

1
at

(
1− e−γ(at−s)+

)
1− 1

γat
(1− e−γat)

+ (1− yt)

1∫
0

∞∫
(s−atv)+

γe−γ(ω+atv−s)+κt(ω) dωdv

1−
1∫
0

∞∫
0

e−γ(ω+atv)κt(ω) dωdv

. (60)

For the specific values ans = 0.9, aes = 0.8, λ = 0.4, and γ = 0.3, Figures 1 and 2

show the behavior of the distribution functions Fκt
(s) =

∫ s

0

κt(ω | yt, at) dω, s ≥ 0, for

two different trajectories.

Fig. 1. Graph approximations of Fκ1 , Fκ2 , Fκ3 and Fκ4 conditioned

to y1 = 1, a1 = aes, y2 = 1, a2 = aes, y3 = 0, a2 = ans.

A challenging problem, which in itself is interesting, is the numerical implementation
of the value iteration algorithm established in Theorem 6.1. Indeed, as it is well known,
for its implementation the obstacle represented by the so-called “curse of dimensional-
ity” has to be overcome. Such an obstacle intensifies in partially observable problems,
as the one studied in this paper, due to the fact that we are dealing with spaces of
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Fig. 2. Graph approximations of Fκ1 , Fκ2 , Fκ3 and Fκ4 conditioned

to y1 = 0, a1 = aes, y2 = 0, a2 = ans, y3 = 1, a2 = ans.

infinite dimension, e. g., the set of densities D. The authors are currently working on
obtaining general approximation algorithms for both the optimal value function and
the optimal policy in spaces of infinite dimension, within the context of approximate
dynamic programming.
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